News

February 2017

Excerpted from acting Dean Thomas Kenny's announcement:

 

Krishna Shenoy has been appointed as the inaugural Hong Seh and Vivian W. M. Lim Professor in the School of Engineering. This professorship was established with an endowed gift from Hong Seh and Vivian Lim

Krishna joined the Stanford faculty as an assistant professor in 2001, was promoted to associate professor in 2008, and has been a full professor at Stanford since 2012. He currently leads the Neural Prosthetic Systems Laboratory (NPSL) and co-directs the Neural Prosthetics Translational Laboratory (NPTL) with Professor Jaimie Henderson, MD. Krishna is a Howard Hughes Medical Institute (HHMI) investigator and currently serves on advisory boards for the National Science Foundation's Research Center for Sensorimotor Neural Engineering at the University of Washington, Heal Inc., and Cognescent Inc.

A senior member of the Institute of Electrical and Electronics Engineers (IEEE) since 2006, Krishna is also a fellow at the American Institute for Medical and Biological Engineering and an investigator for the Simons Collaboration on the Global Brain. He is a recipient of the McKnight Foundation's Technological Innovations in Neurosciences Award and the National Institutes of Health Director's Pioneer Award. Additionally, Krishna was awarded the Alfred P. Sloan Research Foundation fellowship in 2002 and the Burroughs Wellcome Fund Career Award in the Biomedical Sciences in 1999. He has also served on the Defense Science Research Council (DSRC) for DARPA and was elected a fellow of the DSRC in 2003.

Krishna received his bachelor's degree in electrical engineering and computer science from the University of California, Irvine, and his master's degree and PhD in electrical engineering and computer science from MIT, in 1992 and 1995, respectively. He was a postdoctoral scholar (1995 to 1998) and a senior postdoctoral scholar (1998 to 2001) in neurobiology at Caltech.

Krishna's innovative research, which blends a deep understanding of signal processing and neuroscience with techniques to build clinical innovations, makes him a deserving recipient of this endowed chair.

 

Please join us in congratulating Krishna on this well-deserved honor.

February 2017

Tom Kailath has been selected as an Eminent Member of IEEE-Eta Kappa Nu (IEEE-HKN). The designation of Eminent Member is the organization's highest membership category and is conferred upon those select few whose outstanding technical attainments and contributions through leadership in the fields of electrical and computer engineering have significantly benefited society.

Eta Kappa Nu established the Eminent Member recognition in 1950 as the society's highest membership classification. It is to be conferred upon those select few whose attainments and contributions to society through leadership in the fields of electrical and computer engineering have resulted in significant benefits to humankind. Since 1950, only 134 individuals have been selected to receive this honor.

Designation of Eminent Member is the organization's highest membership category and is conferred upon those select few whose outstanding technical attainments and contributions through leadership in the field of electrical and computer engineering have significantly benefited society.

IEEE-Eta Kappa Nu (IEEE-HKN), the honor society of IEEE, is dedicated to encouraging and recognizing individual excellence in education and meritorious work, in professional practice, and in any of the areas within the IEEE-designated fields of interest.

 

Please join us in congratulating Tom for this very well deserved honor.

 

Related News:

The President Awards the National Medal of Science to EE Professor Kailath, November 2014. Read article

February 2017

Andrea Goldsmith has been elected to the National Academy of Engineering with the citation, "For contributions to adaptive and multiantenna wireless communications."

Election to the National Academy of Engineering is among the highest professional distinctions accorded to an engineer. Academy membership honors those who have made outstanding contributions to "engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature," and to "the pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education."

A professor of Electrical Engineering, Goldsmith is the Stephen Harris Professor in the School of Engineering. Dr. Goldsmith's research is focused on the design, analysis, and fundamental performance limits of wireless systems and networks, as well as the application of communications and signal processing to biology and neuroscience.

Professor Goldsmith is chair of the national Rising Stars Faculty Job Preparation Workshop for Women Ph.D./Postdocs in EE and CS; part of the University Budget Group, Committee on Research, Task Force on Women and Leadership, and the Planning and Policy Board.

Please join us in congratulating Andrea Goldsmith for this well-deserved recognition of her profound contributions and leadership.

 

Read NAE Press Release, February 8, 2017

Chan Zuckerberg Biohub includes four Stanford EE faculty
February 2017

Four EE faculty have been awarded an opportunity to join the Chan Zuckerberg Biohub, a project of the Chan Zuckerberg Initiative. The CZ Biohub vision is to find and support the best and brightest scientists, engineers and technologists. [To] foster an environment that emphasizes intellectual freedom and true collaboration. [To] provide the best scientific tools available – and when they don't exist, [to] invent them. (source: https://czbiohub.org/vision/)

"The research by these extraordinary scientists receiving CZ Biohub awards exemplifies the exciting opportunities that lie in collaborative research at the intersection of biology and engineering," states Marc Tessier-Lavigne, Stanford's President. "We look forward to the new discoveries benefiting human health that will be made possible by their collaborations."

The EE faculty currently involved are Adam de la Zerda, Ada PoonH. Tom Soh, and James Zou.

 

Chan Zuckerberg Biohub is a project of the Chan Zuckerberg Initiative. CZI is committed to harnessing the power of science, technology and human capacity to cure, prevent or manage all disease in our children's lifetime.

Working collaboratively is at the heart of everything Biohub is doing. It starts with bringing together—for the first time ever—three of the world's leaders in biomedical and engineering innovation: University of California, Berkeley, University of California, San Francisco and Stanford.

[The] three university partners provide the very backbone of Biohub's work. Investigators come from these outstanding research institutions, and their faculty will be an integral part of day-to-day operations at Biohub.

 

Visit CZBiohub.org

February 2017

In an article titled, "Graphene-Girded Interconnects Could Enable Next-Gen Chips," work by EE PhD candidate Ling Li, a Nanoelectronics Lab researcher, provides insight to the possible future of copper and graphene.

At the IEEE International Electron Devices Meeting in San Francisco in December, researchers described the coming problems for copper interconnects, and debated ways of getting around them. One approach studied by H.-S. Philip Wong's Nanoelectronics Lab, is to bolster copper with graphene. The research group found that the nanomaterial can alleviate a major problem facing copper, called electron migration.

Copper wires are getting so thin, and must carry so much current, that the atoms in the wire can literally get blown out of place. "The electron wind can physically move the copper atoms and create a void," says Wong. Growing graphene around copper wires prevents this, according to research Wong's group presented at the meeting. It also seems to bring down the resistance of the copper wires.

The Stanford group worked with Lam Research, which makes chip manufacturing tools, as well as researchers from Zhejiang University, in China, to make and test the composite interconnects. The materials are a good pair: graphene is often made by growing it on copper. Lam Research has developed a proprietary process for doing this at temperatures that won't damage the rest of the chip—below 400 °C. Compared to copper alone, the composite improved electromigration by a factor of 10. And the composite wires had half the electrical resistance.

Wong says the interconnect problem can no longer be dismissed. "Before, most of the time we were hearing about transistors," he says. "Now it's not just transistors but wires, memory—many other things that were previously not a problem are beginning to be a problem."

 

Excerpted from IEEE Spectrum, 6 January 2017.

February 2017

Mingyu Gao (PhD '18) and co-authors received the acknowledgement at ISCA 2016. Their paper is titled, "DRAF: A Low-Power DRAM-Based Reconfigurable Acceleration Fabric".

IEEE Micro will include a complete list of 2016's significant papers in its annual publication, "Micro's Top Picks from the Computer Architecture Conferences" in its May / June 2017 issue. The issue collects some of the year's most significant research papers in computer architecture based on novelty and potential for long-term impact. Any computer architecture paper (not a combination of papers) published in the top conferences of 2016 (including MICRO-49) is eligible. The Top Picks committee will recognize those significant and insightful papers that have the potential to influence the work of computer architects for years to come.

 


 

Abstract:
FPGAs are a popular target for application-specific accelerators because they lead to a good balance between flexibility and energy efficiency. However, FPGA lookup tables introduce significant area and power overheads, making it difficult to use FPGA devices in environments with tight cost and power constraints. This is the case for datacenter servers, where a modestly-sized FPGA cannot accommodate the large number of diverse accelerators that datacenter applications need.

This paper introduces DRAF, an architecture for bit-level reconfigurable logic that uses DRAM subarrays to implement dense lookup tables. DRAF overlaps DRAM operations like bitline precharge and charge restoration with routing within the reconfigurable routing fabric to minimize the impact of DRAM latency. It also supports multiple configuration contexts that can be used to quickly switch between different accelerators with minimal latency. Overall, DRAF trades off some of the performance of FPGAs for significant gains in area and power. DRAF improves area density by 10x over FPGAs and power consumption by more than 3x, enabling DRAF to satisfy demanding applications within strict power and cost constraints. While accelerators mapped to DRAF are 2-3x slower than those in FPGAs, they still deliver a 13x speedup and an 11x reduction in power consumption over a Xeon core for a wide range of datacenter tasks, including analytics and interactive services like speech recognition.

 

Congratulations to Mingyu and co-authors. His research advisor is Christos Kozyrakis

January 2017

SPF is a place to use and share expertise; nurture innovation and learning; build efficient, specialized electronics; and reduce researchers' burden of developing electronics without expertise.

Located in the Allen Building, the newly renovated space sports glass-topped walls, surrounded by sleek workstations. Inside the SPF, workbenches and collaborative areas provide organized space for system design, building, and testing.

"The SPF's mission is to support electronic sub-system design for cutting-edge research across our campus," states Professor Boris Murmann, lead SPF faculty. "We are currently working on projects with Principal Investigators in the departments of Physics, Applied Physics, Electrical Engineering, Psychology, Psychiatry and Behavioral Sciences and Bioengineering, looking to enable new possibilities in a wide range of disciplines."

Professor Murmann is also pleased that SPF – together with ExFab (Experimental Fabrication lab) – provides a complete spectrum of device development from creation to software interfacing. Similar to ExFab, SPF usage will help inform the design of future system prototyping facilities on campus.

The SPF welcomes researchers from any department on campus, accommodating project needs with a tiered service and support structure. The tiered structure is based on how much expertise is needed – from independently using the tools to requesting a turnkey solution. Stanford researchers are able to design and build a system themselves, or collaborate with SPF's electrical engineers.

 

SPF is made possible by funding from SLAC and School of Engineering.

Interested in SPF? Please email lab director, Angelo Dragone: dragone@slac.stanford.edu

Pictured above: SPF faculty director, Professor Boris Murmann speaks with Professor Marty Breidenbach, Dr. Angelo Dragone,  Professor Chi-Chang Kao and Sawson Taheri.

January 2017

This month's Electrical Engineering staff recognized for their outstanding effort include Marsha Dillon, Sue George, Kenny Green, and Teresa Nguyen. Each were nominated by peers, faculty and/or students for professionalism that went above and beyond their everyday roles. Gift card recipients continue to make profound and positive impact in EE's everyday work and academic environment.

 

Please join us in congratulating Marsha, Sue, Kenny, and Teresa. Excerpts from their nominations follow.

 

Marsha Dillon, Executive Assistant to the Chair

  • "Marsha was able to identify exactly what was needed by untangling a vague request, and identifying the actual goal."
  • "She never hands back a request; instead, she is always willing to help. She's a strong asset to EE."

Sue George, Administrative Associate, Computer Science

  • "Sue always makes time to answer questions; she is quick to followup, and willing to spend time finding an answer she doesn't know."
  • "It is always a pleasure to work with her."

Kenny Green, Facilities and Health & Safety Manager

  • "Kenny is always very helpful."
  • "He has been a great resource — especially with our new labs, greater number of students, and managing improvements and requests."

Teresa Nguyen, Student Financial Officer

  • "Teresa has a terrific understanding of Stanford's financial system. She also remembered my name!"
  • "She is extremely capable; I never worry about leaving things in her hands."

 

The Staff Gift Card Bonus Program is sponsored by the School of Engineering. Each year, the EE department receives several gift cards to distribute to staff members who are recognized for going above and beyond their role. Each month, staff are chosen from nominations received from faculty, students, and staff. Past nominations are eligible for future months.

 

Nominate a deserving staff person or group today! We encourage you to nominate individuals or groups that have made a profound improvement in daily work life. Each recipient receives a $50 Visa card. Nominations can be made at any time.

January 2017

Jonathan Fan was awarded the Presidential Early Career Awards for Scientists and Engineers (PECASE). This is the highest honor bestowed by the United States Government on science and engineering professionals in the early stages of their independent research careers.

Announced by President Obama in early January, Fan and 101 other scientists and researchers were honored with the PECAS. "I congratulate these outstanding scientists and engineers on their impactful work," Obama said. "These innovators are working to help keep the United States on the cutting edge, showing that federal investments in science lead to advancements that expand our knowledge of the world around us and contribute to our economy."

Jonathan is an assistant professor and director of the ExFab at the Stanford Nanofabrication Facility. He recently won the prestigious 2016 Packard Fellowship in Science and Engineering, which funds the most promising early-career professors in fields ranging from physics and chemistry to engineering.

Two other Stanford faculty also received the Presidential Early Career Awards for Scientists and Engineers (PECASE): Jacob Fox, professor of mathematics, and Marco Pavone, assistant professor of aeronautics and astronautics.

 

Related news:

 

January 2017

 "It's all in the name," state Professors Jonathan Fan and Roger Howe.

"Experimental fabrication. We want to change the way that people go from thinking about a device to making it in the lab. With ExFab, we will make that process faster and cheaper, with fewer restrictions on materials. It will allow the rapid prototyping of microscale and nanoscale devices in a time scale not typically associated with microelectronic fabrication, and it will bring together researchers from in engineering, medicine, and the basic sciences.

"With our investment in the tools and space, we can explore how it's used, and let that guide us in how to develop the space into the future."

ExFab emerged from a two-year process of faculty brainstorming about how best to address the need for new tools and processes for research in materials, electronics, and photonics. In addition, faculty also wanted to study how the new tools and space are used. The goal was to create an accessible space for faster, cheaper fabrication of a wider range of materials and processes.

Strategically located in the Allen Building near the engineering quad and the David Packard building, and across from the Medical School, ExFab is open to all: Stanford students and postdocs from all departments and schools, as well as researchers from other universities and industry.

Repurposing existing space, ExFab boasts several new tools, including those that can translate computer-generated images into physical microscale and nanoscale patterns within minutes. Many of these tools are housed in a reconfigured cleanroom. Complementing the System Prototyping Facility (SPF) – just a few steps away – students can easily utilize both areas to integrate fabricated devices into electronic systems.

In Spring, ExFab will be fully outfitted with equipment enabling researchers to define structures from the nanoscale (two-photon 3D printing) to the milli-scale (3D wax printing) and in between (direct-write lithography, aerosol jet printing) as well as to machine and meld disparate materials (laser cutting, CNC micromilling, grinding, bonding.) This toolset supports heterogeneous materials processing for emerging applications such as stretchable electronics, micro-batteries, photovoltaics, and microfluidics. With lower materials restrictions than a typical microelectronics fab, we anticipate the processing of a broad range of materials into devices and systems, including traditional semiconductors, soft materials, polymers, and bio-materials.

Nine months ago, excited for the potential of this proposed lab, over 30 faculty pledged they would use ExFab for their research, thus seeding this program. Now ExFab is a reality, and available to all. If you are an interested researcher or faculty, please email snf-access@stanford.edu or check out the website, snf.stanford.edu to learn more.

 

Pictured below (left to right) Jon Fan, Mary Tang, and Roger Howe in a nearly completed ExFab space.

Pages

January

No content classified for this term

February

February 2014

Three staff members each received a $50 Visa card in recognition of their extraordinary efforts as part of the department’s 2014 Staff Gift Card Bonus Program. The EE department received several nominations in January, and nominations from 2013 were also considered.

Following are January’s gift card recipients and some of the comments from their nominators:

Ann Guerra, Faculty Administrator

  • “She is very kind to students and always enthusiastic to help students… every time we need emergent help, she is willing to give us a hand.”
  • “Ann helps anyone who goes to her for help with anything, sometimes when it’s beyond her duty.” 

Teresa Nguyen, Student Accounting Associate

  • “She stays on top of our many, many student financial issues, is an extremely reliable source of information and is super friendly.”
  • “Teresa’s cheerful disposition, her determination, and her professionalism seem to go above and beyond what is simply required.”

Helen Niu, Faculty Administrator

  • “Helen is always a pleasure to work with.”
  • “She goes the extra mile in her dealings with me, which is very much appreciated.”

The School of Engineering once again gave the EE department several gift cards to distribute to staff members who are recognized for going above and beyond. More people will be recognized next month, and past nominations will still be eligible for future months. EE faculty, staff and students are welcome to nominate a deserving staff person by visitinghttps://gradapps.stanford.edu/NotableStaff/nomination/create.

Ann Guerra  Teresa Nguyen  Helen Niu

Pages

March

No content classified for this term

April

No content classified for this term

May

No content classified for this term

June

No content classified for this term

July

No content classified for this term

August

No content classified for this term

September

No content classified for this term

October

No content classified for this term

November

No content classified for this term

December

No content classified for this term

Story

No content classified for this term

Stanford

No content classified for this term

Test

No content classified for this term

Subscribe to RSS - News