Semiconductor Technology Panel

Semiconductor Technology and Manufacturing in the US for the 21st Century: Back to the Future for Lessons from the Past

We are organizing a webinar to bring together experts whose collective deep industrial experience will help guide discussions toward a national strategy for Semiconductor/Microelectronics design, technology, R&D and manufacturing of the future. In this forum, the experts will share perspectives based on their (decades long) experience in various aspects of government-academia-industry collaborations. There will be ample time for discussions and brainstorming.

Friday, October 16, 2020 • 10:00am -12:00pm PST

VIEW AGENDA 

VIEW EXECUTIVE SUMMARY

Image
robert burgelman
Postcard Header
Panelist

Postcard Body

Robert BurgelmanProfessor of Strategy, Stanford Business School; former collaborator to Andy Grove (former CEO of Intel)

Image
AntunDomic
Postcard Header
Panelist

Postcard Body

Antun Domic, former Chief Technical Officer, at Synopsys

Image
prabu gopalraja
Postcard Header
Panelist

Postcard Body

Prabhu Gopalraja, Senior Vice President, Applied Material

Image
Steven Hillenius
Postcard Header
Panelist

Postcard Body
Steven Hillenius former Director, Agere Systems; Executive Vice President in Semiconductor Research Corporation

Image
Liam Madden
Postcard Header
Panelist

Postcard Body


Liam Madden, Executive Vice President and General Manager, Wired and Wireless Group, Xilinx

Image
Jeff Rittener
Postcard Header
Panelist

Postcard Body

Jeff Rittener, Chief Government Affairs Officer and General Manager of Governments, Markets, and Trade (GMT) at Intel

Image
Hans Stork
Postcard Header
Panelist

Postcard Body

Hans Stork, Senior Vice President and Chief Technology Officer, On Semiconductors; former CTO of TI

Image
Cherry Murray
Postcard Header
Moderator

Postcard Body

Cherry Murray, former Senior VP Physical Sciences Research, Lucent Bell Labs; Benjamin Peirce Professor of Technology and Public Policy in the John A. Paulson School of Engineering and Applied Sciences and Professor of Physics in the Faculty of Arts and Sciences, Emeritus, Harvard University

Image
Sadasivan Shankar
Postcard Header
Moderator

Postcard Body

Sadasivan Shankar, Associate, Applied Physics, Harvard University; first Margaret and Will Hearst Lecturer in Harvard University; formerly Senior Principal Engineer and Project Leader, Materials Design, Intel Corporation

Image
Subhasish Mitra
Postcard Header
Moderator

Postcard Body

Subhasish Mitra, Professor of Electrical Engineering and of Computer Science at Stanford University and former Principal Engineer, Intel Corporation

 

Post event presentations and Related links

[PDF] Presentation slides

[PDF] Executive Summary

[VIDEO] Panel Presentations [AUDIO] Discussions and Attendee Questions
The path from invention of semiconductors and integrated circuits to the manufacturing billions of microprocessors is a U.S-led story, which has led to the technological revolutions that have furthered national security and have accelerated all levels of the economy.  The technology that leading-edge semiconductor electronics enabled includes computers and communication, digitalization, the internet, automation and their associated applications.  This industry is also one of most R&D-intensive, as evidenced from 1989 to 2019.  Merchant semiconductor firms devoted 12.3% to 15% (in 2018) of their sales to R&D, compared with 3.1% for U.S. industry overall average.

In 1987, according to the Defense Science Board Task Force on Semiconductor Dependency, the U.S. leadership in semiconductor manufacturing was rapidly eroding and the task force recommended the creation of an industry-wide consortium to "develop, demonstrate and advance the technology base for efficient, high yield manufacture of advanced semiconductor devices." The U.S. Congress voted to match industry contributions to conduct precompetitive research in a non-profit consortium. In addition, the industrial companies consisting of 14 US manufacturers also set up multiple consortia to connect the links from university research to manufacturing. The consortia and the pre-competitive nature of collaborations connecting research to technology and manufacturing is credited with the success of the U.S. leadership in semiconductors in 1990s, as by 1992 the U.S. chip manufacturers, overtook the Japanese manufacturers in terms of worldwide market share. In addition, the efforts led to design, development, and optimization of process equipment, manufacturing and design methodologies, hardware architectures, and the creation of a science-based global technology roadmap for semiconductors. 

Now in 2020, according to the Semiconductor Industry Association, the U.S accounts for only “12 percent of global semiconductor manufacturing capacity”, and the end of circuit miniaturization (often correlated with Moore’s law) is at hand, requiring vastly different chip architectures, materials and technologies than the industry has been using and a roadmap “beyond Moore’s law” is needed[1].  We are in a situation which is much more serious than in 1987.. The US leadership in manufacturing has been eroded and China has intentions of becoming the world leader from R&D to design to manufacturing. Many countries including China, Taiwan, South Korea, and Europe are investing to seize leadership. For regaining and sustaining the leadership necessary for the future of computing, it is critical for a different renaissance of the entire ecosystem and the building blocks within the US. As in 1987, since the U.S. innovation leadership and national security depend upon design and manufacturing, we would like to revisit the lessons of the government-academia-industry partnership from the 1980-1990’s.


The panel will address the following questions:

  1. What are the lessons learned from the 1980s and 1990s for semiconductor manufacturing for the US?  What worked and what did not?  What could have been done better?
  2. What is different this time?
  3. What is the relevance of the above learnings today (both from standpoints of global situation, tech challenges)?
  4. How can we ensure US leadership in the future design, manufacturing, and assembly of cutting-edge semiconductors vital to United States national security and economic competitiveness?
  5. If the US must lead from research and development all the way to the assembly line, what should the specific efforts be?
    1. In R&D
    2. Design
    3. Manufacturing etc.

Friday, October 16, 2020 • 10:00am -12:00pm PST
AGENDA:

10:05am - Welcome and Event Overview
Panel Chair: C. Murray, formerly SVP at Bell Labs, chair of DOE Basic Research Needs for Microelectronics, 2019

10:05am - 10:40am - Panel Presentations

  • Robert Burgelman, Professor of Strategy, Stanford Business School; former collaborator to Andy Grove (former CEO of Intel)
  • Antun Domic, former Chief Technical Officer, at Synopsys
  • Prabhu Gopalraja, Senior Vice President, Applied Materials
  • Steven Hillenius former Director, Agere Systems; Executive Vice President in Semiconductor Research Corporation
  • Liam Madden, Executive Vice President and General Manager, Wired and Wireless Group, Xilinx
  • Jeff Rittener, Chief Government Affairs Officer and General Manager of Governments, Markets, and Trade (GMT) at Intel
  • Hans Stork, Senior Vice President and Chief Technology Officer, On Semiconductors; former CTO of TI

10:45am-12:00pm - Discussions and Attendee Questions

Post event presentations and Related links

[PDF] Presentation slides

[PDF] Executive Summary

[VIDEO] Panel Presentations [AUDIO] Discussions and Attendee Questions

SIA Weblinks

Investments in Research

Incentives for Manufacturing

General Resources

 

 

Event Questions? Contact Beverly Davis: beverlyd [at] stanford.edu