Publication # 338

338. A. K. Okyay, A. J. Pethe, D. Kuzum, S. Latif, D. A. Miller, and K. C. Saraswat, "SiGe optoelectronic metal-oxide semiconductor field-effect transistor," Opt. Lett. 32, 2022-2024 (2007)

We propose a novel semiconductor optoelectronic switch that is a fusion of a Ge optical detector and a Si metal-oxide semiconductor field-effect transistor (MOSFET). The device operation is investigated with simulations and experiments. The switch can be fabricated at the nanoscale with extremely low capacitance. This device operates in telecommunication standard wavelengths, hence providing the surrounding Si circuitry with noise immunity from signaling. The Ge gate absorbs light, and the gate photocurrent is amplified at the drain terminal. Experimental current gain of up to 1000 is demonstrated. The device exhibits increased responsivity (3.5) and lower off-state current (4) compared with traditional detector schemes.

pdf.gif (917 bytes)Full text available for download

[Biographical Information] [Publications] [Home]