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Effect of Mode Coupling on Signal Processing
Complexity in Mode-Division Multiplexing

Sercan O. Arik, Daulet Askarov and Joseph M. Kahn, Fellow, IEEE

Abstract— Mode-division multiplexing systems employ multi-
input multi-output (MIMO) equalization to compensate for
chromatic dispersion (CD), modal dispersion (MD) and modal
crosstalk. The computational complexity of MIMO equalization
depends on the number of modes and on the group delay (GD)
spread arising from CD and MD. Assuming the strong-coupling
regime, in which the total system length far exceeds the
correlation length of modal fields, we quantify the GD spread
arising from MD, showing that it can be reduced significantly by
mode coupling. We evaluate the computational complexity of
various MIMO single-carrier equalizers, considering separate or
combined equalization of CD and MD, in the time or frequency
domain. We present numerical examples for the optimally
designed graded-index depressed-cladding fibers supporting D =
6, 12, 20 or 30 modes in two polarizations. Assuming a 2000-km
system length, a 1-km correlation length, and a combined
CD+MD frequency-domain equalizer, the complexity (in complex
multiplications per two-dimensional symbol) is a factor 1.4, 1.7,
2.2, 2.8 times higher for D = 6, 12, 20, 30 than for polarization-
multiplexed systems in standard single-mode fiber (D = 2).

Index Terms— Mode-division multiplexing, multimode fiber,
mode coupling, receiver signal processing, DSP complexity,
MIMO, equalization, multimode coherent receiver

I. INTRODUCTION

HE continued growth of data traffic has motivated

research on increasing long-haul optical transmission
system capacity [1]. Promising approaches to move beyond the
limits of single-mode fibers include spatial multiplexing in
multi-core fibers or mode-division multiplexing (MDM) in
multi-mode fibers (MMFs), a form of multi-input multi-output
(MIMO) transmission [2-4]. In MDM, system capacity ideally
scales in proportion to the number of modes employed [3,4].
At present, MMF is widely used for short-range optical links
because of relaxed connector alignment tolerances and
reduced transceiver component costs [5].

Current long-haul systems already use multiplexing in the
two polarization modes of a single-mode fiber (SMF), enabled
by coherent detection and digital signal processing (DSP) to
compensate for chromatic dispersion (CD), polarization-mode
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dispersion (PMD) and polarization crosstalk [6,7]. The latter
effects are compensated using a 2x2 MIMO equalizer.
Increasing the number of spatial modes beyond one tends to
increase DSP complexity, because of the increased
dimensionality of the MIMO equalizer, and because of the
group delay (GD) spread associated with modal dispersion
(MD), which can exceed the GD spread associated with PMD
or CD. One of the primary goals of MDM s reducing energy
consumption per transmitted bit [8]. Hence, the computational
complexity and resulting energy consumption of the MIMO
equalizer are of critical importance.

There are two general approaches to reducing MIMO
equalizer complexity. The first approach is to design the entire
transmission system to minimize mode coupling crosstalk [9-
11], with goal of using a sparse MIMO equalizer. While
possible in principle, this approach requires low crosstalk in
all system components, including modal (de)multiplexers,
transmission fibers, amplifiers, and optical switches, and may
be problematic in practice. The second approach is to design
the transmission system for low GD spread, with goal of using
a temporally short MIMO equalizer. Several recent MDM
experiments [12-15] used fibers supporting six modes (two
polarization modes and three spatial modes, the latter
comprising two degenerate mode groups) with the index
profile optimized for low uncoupled GD spread. Achieving
low uncoupled GD spread is likely to be more challenging
when the number of modes exceeds six (the number of
degenerate mode groups exceeds two); some approaches are
discussed in [16,17].

Strong mode coupling can help reduce the GD spread in
MMF [18,19]. This approach is synergistic with a low
uncoupled GD spread, since the latter tends to enhance mode
coupling. Unintentional mode coupling can arise from random
index perturbations, bends, twists or crosstalk at modal
(de)multiplexers and other components. Furthermore, mode
coupling might be enhanced via mode couplers or scramblers
[20] or by intentional perturbation of the MMF [21]. The latter
would be analogous to the spinning of SMF employed to
reduce the GD spread due to PMD [22]. In the presence of
mode coupling, modal fields [23] in a MMF are correlated
over a correlation length, which is a generalization of the
polarization correlation length in SMF [24,25]. In the strong-
coupling regime, when the total system length far exceeds the
correlation length, the GD spread arising from MD is reduced
significantly, and scales in proportion to the square-root of the
total system length or equivalently the number of independent
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sections [18,19].

Aside from reducing GD spread and thus MIMO
equalization complexity, strong mode coupling can also
mitigate the effects of mode-dependent loss or gain
(collectively referred to as MDL), increasing average channel
capacity [3,26]. In the presence of MDL, channel capacity
becomes a random variable, and system outage occurs with
finite probability. Strong mode coupling, in conjunction with
MD, can lead to frequency diversity, significantly reducing
outage probability [27].

In this paper, we study the effect of strong mode coupling
on MIMO equalization complexity. Using the equivalence of
strongly coupled MD to a Gaussian unitary ensemble [19], we
quantify the GD spread arising from MD for MMFs supporting
various numbers of modes. We consider various MIMO
equalizers using separate or combined equalization of CD and
MD in the time or frequency domain. We study a model long-
haul system using MMFs designed for low uncoupled GD
spread, and evaluate the computational complexity of the
various MIMO equalizers as a function of the number of
modes and the correlation length. Quantifying complexity in
terms of complex multiplications per two-dimensional symbol,
we find that complexity increases with an increase in the
number of propagating modes, and decreases with a decrease
of the correlation length. Nevertheless, with sufficiently short
correlation length and optimized MIMO equalizer structures
(combined frequency-domain equalization of CD and MD),
the complexity per symbol for MDM systems using D = 6, 12,
20, 30 modes (in two polarizations) can be only a factor of
about 1.3 to 2.9 times higher than for polarization-multiplexed
systems in standard SMF (D = 2).

The remainder of the paper is organized as follows. Section
Il reviews models for MMF with strong mode coupling and
quantifies the GD spread arising from MD. Section Il
describes various MIMO single-carrier equalizer structures
and their computational complexities. Section IV presents a
long-haul system example, and evaluates the complexity of
different MIMO equalizer structures as a function of the
number of modes and the correlation length. Sections V and
VI provide discussion and conclusions, respectively.

Il. TEMPORAL MEMORY OF MODAL DISPERSION

A. Multi-Section Propagation Model

We consider a fiber supporting a total of D propagating
modes (including spatial and polarization degrees of freedom).
In a basis of the ideal uncoupled eigenmodes of an ideal fiber,
a propagating field can be represented by a Dx1 vector.
Neglecting additive amplifier noise and nonlinear effects, the
fields at the fiber input and output, at angular frequency w, can
be related by a linear time-invariant propagation operator (or
D x D matrix):

M(@) =Mcp (@) Myp (@) , 1)
where Mp(w) describes CD (or group velocity dispersion)

operator and M ,p(w) describes MD operator.

For analytical convenience, without loss of generality,
M ¢p(w) can be written as:

I, ()

- L 2
M cp(@) = exp[ J,Bz,av2 tot @ ]

where f,,, is the mode-averaged CD constant, L, is the

total fiber length, and | isa Dx D identity matrix.

Assuming the strong-coupling regime, the fiber can be
described in terms of K independent equal-length sections,
where the section length is equal to or slightly greater than the
correlation length. As the total fiber length far exceeds the
correlation length, K >>1. The modal dispersion operator can
be expressed as [19,26]:

K
My (@) = knlv<k> AW (@)u OH 3)

Here, V® and U® are frequency-independent DxD
random unitary matrices representing random mode coupling,
which are independently distributed over k in the strong-

coupling regime, and " denotes Hermitian conjugate. The
diagonal matrix

A® (@) = diag [e*iwfl,e*mz ..e”Jom ] ()
describes propagation of uncoupled modes, assuming mode-
dependent gain/loss is negligible. The uncoupled GDs per
section are (rl,...,‘rD), which are assumed to be identical in

each section, with zero mean and variance o2. The statistics
of strongly coupled GDs are known to depend on the
uncoupled GDs only through af [19]. Mode-dependent CD,

if present, can be incorporated in the AW (w), and may alter

the statistics of the coupled GDs [19]. In the numerical
examples in Section IV, mode-dependent CD is found to be
small.

B. Group Delay Spread Statistics

Given the modal dispersion operator, following [19,28], we
define a GD operator:

G- j M@y, ()", (5)

whose eigenvalues are the coupled GDs (Tl,...,TD), where
we assume the ordering T; <T, <---<Tp. Assuming a

random coupling model for the dispersion operator such as (3),
the coupled GDs are random variables. As explained in [19],
for K>>1, the GD operator is equivalent to a zero-trace
Gaussian unitary ensemble, so the statistics of the coupled
GDs are given by the statistics of the eigenvalues of the
ensemble. In particular, for D=2, the probability density
function (pdf) of unordered coupled GDs is Maxwellian, as is
known from the study of PMD [29,30]. In the limit of many
modes, D — oo, the pdf approaches a semicircle distribution.
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Fig 1. Empirical probability density function of the normalized peak-to-peak
group delay spread pp for D = 6, 12, 20 and 30 modes

For all values of D, the root-mean-square (rms) coupled GD
spread after K independent sections is:

og =Ko, . (6)
In a MIMO equalizer, the temporal memory required for

compensating MD is the peak-to-peak coupled GD spread,
Tp —T;, for the model (3). Normalizing by the rms coupled

GD spread, we define the random variable:
To-T
O—gd

which has pdf f, (x). For D=2 and 3, analytical

expressions for the pdf's f, (x) and f, (x) are given in

[19]. As D —> w, up —4, since an infinite number of GD
values are confined in the finite support of the semicircle
distribution [19]. For intermediate values of D, the pdf
f,, (X) is not known analytically, so we have estimated

- - 7 - -
f,, (x) numerically using 10" realizations of the zero-trace

Gaussian unitary ensemble, which are generated following the
procedure described in [26]. Empirical pdfs for D =6, 12, 20
and 30 are shown in Fig. 1. We have verified the accuracy of
this technique by comparison to the known analytical
expressions for unordered coupled GD distributions given in
[19].

As the required temporal memory is a random variable, we
will compute the temporal memory required to equalize MD
with high probability. We define up(p) as the temporal

memory, normalized by the rms coupled GD spread, required
to equalize with probability 1— p. This is defined by:

up (p)
If% (X)dx=1-p. ®)
0
Table 1 gives values of up(p) for D =6, 12, 20 and 30. For

p = 1072, values of Up (p) are just below 4 for these values of
D, while for the smaller values of p, values of up(p) lie

between 4 and 5 for these values of D. For a given p, the
required temporal memory length in time units becomes:

ATyp =0 4Up (p) =Ko, up (p). 9)

TABLE 1.VALUES OF up(p) .

p=102 | p=102 | p=10* | p=10"° | p=10"°
D=6 3.85 4.18 4.47 4.72 4.94
D=12 3.91 4,12 4.30 4.45 4.59
D=20 3.93 4.09 421 4.32 4.42
D=30 3.95 4.07 4.16 4.25 4.32
Number of
modes
(V4D +1-1)
6
4
i T Uncoupled
At group delay

Fig 2 Histogram of uncoupled GDs per section of a D-mode fiber, assuming a
constant spacing, At, between mode groups.

C. Comparison of Group Delay Spread for Uncoupled and
Strongly Coupled Propagation

In Section 1V, exact GD values are computed for the fiber
type used in numerical examples. Here, in order to illustrate
the effect of strong mode coupling on the required temporal
memory length, we consider a simple uncoupled GD
distribution, as shown in Fig. 2. Uncoupled GDs form

degenerate groups of 2,4,6,...,4/4D +1 -1 modes, which add
up to D =2,6,12,20,30,... modes in two polarizations, as in
any circularly symmetric fiber in the weak-guidance limit [31].
Adjacent mode groups are assumed to differ in GD by a
constant spacing Az, as found approximately in a wave-optics
analysis of step-index fibers [32], and observed experimentally
in several different fiber types [17,33,34]. For the uncoupled
GDs in Fig. 2, the uncoupled peak-to-peak GD spread per

section is (\/4D +1—3)Ar/2, while the uncoupled rms GD

spread per section is o, =4/(D-2)/18 Az . Including K

sections, in the absence of mode coupling, the required
temporal memory is K times the uncoupled peak-to-peak GD
spread per section, whereas with strong mode coupling, the
required temporal memory is \/EUD(p) times the uncoupled
rms GD spread per section. Taking the ratio between these last
two quantities, the reduction of required temporal memory

length by strong mode coupling is approximately +/K/5 for

D =6and p=10", and approaches +/9K/8as D —

(independent of p).

This example illustrates that strong mode coupling and a
decreased correlation length can substantially reduce the
temporal memory required in the MIMO equalizer.
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Fig 3. Single-carrier MIMO equalizer structures: (a) separate equalizers for

chromatic dispersion (CD) and modal dispersion (MD), (b) combined

equalizer for CD and MD. All inputs and outputs are complex-valued.

1. COMPUTATIONAL COMPLEXITY OF EQUALIZATION

A. Multi-Input Multi-Output Equalizers and Temporal
Memory Lengths

In a coherent MDM receiver, after modal demultiplexing, a
set of D dual-quadrature homodyne downconverters yields a
set of D complex baseband signals. These are sampled at a rate
rsRs, Where R, is the symbol rate and r, is an

0s
oversampling ratio. In practice, a ratio r,, =2 is usually

employed to provide immunity to sampling time errors and
increase CD tolerance [22]. Assuming single-carrier
modulation, after sampling, DSP operations include timing
recovery, interpolation, MIMO equalization, frequency and
phase estimation, symbol decisions and error-correction
decoding [6,7,36,37]. We focus here on the computational
complexity of MIMO equalization, rather than that of other
DSP operations. Although the MIMO equalizer is an adaptive
filter, we focus here on the complexity of the filtering, rather
than that of the adaptation. The computational complexity and
convergence time for adaptation are also critical design issues,
and are important topics for future research.

Possible structures for the single-carrier MIMO equalizer
are shown in Fig. 3. In Fig. 3(a), CD is compensated by a
separate single-input single-output (SISO) equalizer for each
of the D complex baseband signals, and MD and mode
coupling crosstalk are compensated by a DxD MIMO
equalizer. In each CD equalizer, the number of filter taps
(temporal memory measured in sampling intervals) required
for compensation with very low power penalty [37,38] is given

by:

NCD :|_2ﬂ|l32,av|l-tot (rosRs )2-‘ (10)
where |_x-| denote smallest integer greater than or equal to x.
In (10), the quadratic dependence on r,, arises because the

GD spread of the discrete-time impulse response describing
CD is proportional to the bandwidth of the signal being
sampled, which scales in proportion to r,, in a well-designed
system. The MD equalizer requires an array of Dx D filters,
each with temporal memory equal to AT,y , given by (9). In
terms of filter taps, each requires a temporal memory
approximately given by:

N o :(ATMD Fos Rs—" (11)

In Fig. 3(b), a Dx D MIMO equalizer compensates for CD,
MD and modal crosstalk with temporal memory, measured in
filter taps given by Ngp +Nyp, the sum of (10) and (11).

This follows from the observation that the convolution of two
continuous-time impulse responses has a support equal to the
sum of the individual supports.

In the following two subsections, we analyze the
computational complexity of the equalizer structures shown in
Fig. 3(a)-(b). As in [39-41], we quantify complexity in terms
of complex multiplications per two-dimensional data symbol,
which is proportional to the complexity per information bit,
assuming a fixed-size signal constellation.

B. Frequency-Domain Equalization Complexity

For long impulse response durations, digital filtering can be
implemented most  efficiently by frequency-domain
equalization (FDE) using the Fast Fourier Transform (FFT)
algorithm and either the overlap-save or the overlap-add
method [42]. Alternatively, transmitting a cyclic prefix allows
one to avoid overlap-save or overlap-add, but decreases net
throughput [43].

In Fig. 3(a), in each of the D equalizers for CD, processing a
block of Nger samples requires an FFT, frequency-domain
filtering with N complex multiplications and an inverse
FFT. Here, for simplicity, we restrict attention to radix-2 FFT
algorithms, although FFTs of different radices can be
computed efficiently [44,45], albeit at the cost of an increased
number of additions and a more complex implementation. In
processing each  Dblock, these operations equalize
(Nger —Nep +1) /1, symbols, so the number of complex

multiplications per symbol is [42,46]:

Neer 1095 (Ngpr ) + Neger
(Neer =Nep +1)

which is independent of D. For equalization of MD, since the

equalizer size is Dx D, the number of complex multiplications
per symbol is:

: (12)

CM cp rpE = Fos

Neer 1095 (Nger)D + Nper D?
(Neer —Nyp +1)D
In Fig. 3(b), the combined equalizer for CD and MD is
analogous to the MD equalizer in Fig. 3(a), but with temporal
memory increased and the number of complex multiplications
per symbol is:

CM b, roE = Fos (13)

Nerr 109, (Nger )D+Nper D?
(Neer =Nwp —Nep +1)D
In each frequency-domain equalizer, the FFT block

length N can be any integer of power of 2 that is longer

than the corresponding temporal memory length (Nep, Nyp
or Nep+Nyp) and can be optimized to minimize

computational complexity given by (12), (13) or (14). It is
shown that when using an optimized FFT block length, the
computational complexity is relatively insensitive to the
temporal memory length. Unfortunately, as discussed in
Section V, using long FFT block lengths can increase circuit
complexity and processing latency.

. (14)

CM comb,FDE = Tos



To be published in Journal of Lightwave Technology

1.455

1.450

1.445

Refractive index

I
>
N
o

1.435

20 10 0 10 20
Radial position (um)

Fig 4. Index profile of optimized graded-index depressed cladding (GIDC)

fiber for NA = 0.15 and D = 12 modes.

TABLE 2. UNCOUPLED FIBER PARAMETERS. VALUES FOR D = 2 ARE FOR
STANDARD STEP-INDEX SINGLE-MODE FIBER. VALUES FOR D > 2 ARE FOR
GRADED-INDEX DEPRESSED-CLADDING MULTI-MODE FIBERS WITH NA = 0.15.

D=2 D=6 | D=12 | D=20 | D=30

Core radius (um) 4.1 10.0 13.2 16.6 19.8

Effective area Ae (m?) 63.6 166 271 419 580

Mode-averaged chromatic

dispersion Bz, (ps’/km) 225

-28.0 -28.4 —28.6 —28.7

Mode-dependent
chromatic dispersion, rms - 13 1.9 2.3 2.7

APB2,ms (ps?/km)

Modal dispersion per
unit length, rms Aty yms 0 277 383 415 451
(ps/km)

C. Time-Domain Equalization Complexity

Digital filtering can also be implemented using direct time-
domain convolution.

In Fig. 3(a), in each of the D equalizers for CD, processing a
block of N.p samples requires N&, complex multiplications
and equalizes Np /1, symbols, so the number of complex
multiplications per symbol is:

CMcppe =TosNep (15)
which is independent of D. In Fig. 3(a), in the DxD equalizer
for MD, processing D blocks of N,,;, samples requires

NZpD? complex multiplications and equalizes NypD /o

symbols, so the number of complex multiplications per symbol
for MD compensation is:

CM b moe = fosNmp D
which scales linearly with D, unlike (15).

In Fig. 3(b), the combined equalizer for CD and MD is
analogous to the MD equalizer in Fig. 3(a), but with temporal
memory increased, so the number of complex multiplications
per symbol is:

(16)

CM comboE =Tos(Nwp + Ncp) D, (17)

which scales linearly with D, like (16).

In time-domain equalization (TDE), increasing the temporal
memory length causes the computational complexity (15), (16)
or (17) to increase in direct proportion to the memory length.

IV. LONG-HAUL SYSTEM EXAMPLE

In this section, we describe a family of fibers and their
uncoupled GDs. We then consider a long-haul system with

Lsec \|'_Lamp_'|
| 1 |"'|Ksec

11 |---|KseCB ] Kook ]
Fiber Span L~ Fiber Span Fiber Span |~

Amplifier Amplifier Amplifier

Fig 5. Multi-section model of long-haul system with inline amplifiers.

mode coupling and study how the fiber GD spread and the
equalizer memory length and computational complexity scale
with the number of modes and the correlation length.

A. Graded-Index Depressed-Cladding Fibers

We consider a family of fibers supporting D = 6, 12, 20, 30
modes in two polarizations. We have chosen a graded-index
depressed-cladding (GIDC) index profile and numerical
aperture NA = 0.15, as these enable low GD spreads over a
wide range of D and, in conjunction with optimized erbium
doping profiles, enable optical amplification with low MDL
[47]. At a given D, the core radius has been chosen so that
over the C band, exactly D modes propagate and, at the
shortest wavelength of 1530 nm, the next higher-order mode is
just barely cut off. An index profile for D = 12 is shown in Fig.
4. We have used numerical methods to solve for the exact
modes [47,48], without assuming weak guidance or linearly
polarized modes.

Table 2 summarizes key properties of the GIDC fibers. As
D varies from 6 to 30, the effective area A ranges from 166
to 580 um?, in proportion to D%, For all values of D from 6
to 30, the mode-averaged CD f,,, is close to —28.4 ps’/km,
and the rms mode-dependent CD A, ms is small, in the range
of 5-10% of B, SO mode-dependent CD is neglected here.
The uncoupled rms modal GD spread per unit length Aty e
varies from 277 to 451 ps/km, in proportion to D**° from D =
6 to 30, a much weaker dependence on D than for the model in

Section Il.A, where it scales with 4D -2 . It might be
possible to further optimize these index profiles to reduce the
GD spread and its dependence on D, which is an important
topic for future research

Table 2 also summarizes key properties of standard step-
index SMF [49] for comparison. We neglect here the GD
spread due to PMD, which is much smaller than that due to
MD [35,50-52].

B. Multi-Section System Model

We consider the model long-haul system shown in Fig. 5,
comprising Kamp = 20 spans separated by optical amplifiers,
each of length Lam, = 100 km, a total system length Ly, = 2000
km. Each span is modeled as comprising K. sections with
independent modal fields, so each section has length L, =
Lamp/Ksee. The total system comprises K = KanpKsee = Liot/Lsec
independent sections.

The section length L is assumed just slightly longer than
the correlation length, so each individual section is in the
weak-coupling regime, and the uncoupled rms GD spread per
section is o, = L ATy s - Using (6), the end-to-end system
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has a coupled rms GD spread:

Section length Lg,, (M)
(10 10° 10 10 10 1
10 ' ' ' '

10' |

Ncp or Nyp (sampling intervals)

2 . . . .

10

1 10 10° 10° 10" 10°
Number of sections per span K.

Fig 6. Memory length (in sampling intervals) required to compensate CD or
MD, Ncp or Nmp, vs. number of sections per span, Ksec, in systems with 20
spans, each 100 km long, of GIDC fiber.

Lamp Lot
Ogd =+ Lsec Lot ATL ms = K—ATL,rms . (18)
sec

By holding Lamp and Ly constant and varying Kgec Or L, the
coupled GD spread can be varied. Given a fiber with known
uncoupled rms GD spread per unit length Az .o in a system

with known coupled rms GD spread o, the section length

L. can be chosen empirically so that (18) yields the observed

value of oy . Computation of the correlation length and the

section length from fundamental fiber properties, such as
modal field distributions and propagation constants, and
perturbations inducing mode coupling, requires further study.

C. Memory Length and Computational Complexity

We consider the family of GIDC fibers supporting D = 6,
12, 20, 30 modes described in Section IV.A in the multi-span
transmission system described in Section IV.B. We assume
single-carrier modulation at a symbol rate R, =32 Gbaud and
an oversampling ratio r,, =2. In computing up(p) and the
temporal memory length of MD, we conservatively assume p =
1075, All results are shown as a function of Kg and Lee.

Fig. 6 shows the temporal memory lengths for CD and MD,
Ncp and Nyp for various D. The CD memory length, Ncp, is
equal to 1155 samples for SMF (D = 2) and 1476 samples for
MMF (D = 6, 12, 20, 30). The MD memory length in MMF,
Nmp increases by only about 1.5-fold as D increases from 6 to
30, because a 1.6-fold increase in Az . is partly offset by a

0.9-fold decrease in up(p). Most significantly, for all values

of D, as Kg and L vary, Nyp decreases from about 5x10*
to about 150, demonstrating the dramatic impact of mode
coupling on temporal memory length.

Section length L, (M)
3 2

10 10' 10 10 10 1

IOgZ(NFFT,opt)

10 * * * *
1 10 10° 10° 10' 10°

Number of sections per span K.
Fig 7. Optimized FFT block length, Nrrrop, for separate frequency-domain
equalization (FDE) of CD and MD vs. number of sections per span, Ksc, in
systems with 20 spans, each 100 km long, of GIDC fiber.

Section length Ly (M)
3 2

10 10' 10 10 10 1

80

IN
o

Complex mult. per symbol
D
o

N
o
L

1 10 10° 10° 10' 10°
Number of sections per span K.

Fig 8. Complex multiplications per two-dimensional symbol for separate FDE
of CD and MD, CMcp,roe and CMwp epe, VS. number of sections per span,
Ksec, in systems with 20 spans, each 100 km long, of GIDC fiber.

Figs. 7 and 8 concern separate FDE of CD and MD. Fig. 7
shows values of the FFT block length optimized to minimize
computational complexity, Nger o For equalizing CD, in

SMF and all MMF, N ger o0 = 2*%, which is equal to about 14

or 11 times the respective values of N¢p. For equalizing MD in
MMF, N ger o IS about 20 to 30 times the respective value of

Nmp- Fig. 8 shows the computational complexities for separate
FDE of CD and MD. The complexity for CD, CM¢p ppe, IS
almost identical for SMF or MMF, about 32-33 complex
multiplications/symbol. The complexity for MD in MMF,
CM yp.roe Increases modestly with increasing D and
decreases modestly with increasing K .

Figs. 9 and 10 concern combined FDE of CD and MD. Fig.
9 shows values of the optimized FFT block length, Nggr oy -
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Section length L. (m)
3 2

10 10 10 1
— D=2
D=6
—D=12
— D=20 |
"gi i : R D =30
g T
n P
% .
o
< 14
12t 1
10 ‘ ‘ ‘ ‘
1 10 10° 10° 10" 10°

Number of sections per span K.

Fig 9. Optimized FFT block length, Nerr opt, for combined FDE of CD and
MD vs. number of sections per span, Ksec, in systems with 20 spans, each 100
km long, of GIDC fiber.

Section length L. (m)

100 p

o]
o

(9]
o

N
o
.

Complex mult. per symbol

N
o
L

0

1 10 10° 10° 10’ 10°
Number of sections per span K.

Fig 10. Complex multiplications per two-dimensional symbol for FDE vs.
number of sections per span Kse, in systems with 20 spans, each 100 km
long, of GIDC fiber. For D = 6,...,30, solid lines denote multiplications for
combined equalizer, CMcomn,roe, While dotted lines denote sum of
multiplications for separate CD and MD equalizers, CMcp,epet+ CMwip,FpE-

For SMF, independent of Kee, Ngerop =2, which is about
14 times Ncp. For MMF, N ger o is about 20 to 40 times the

respective value of Nep + Nyp -

Fig. 10 shows (using solid lines) the computational
complexities for combined FDE of CD and MD, CM .y FpE -
In MMF, CM ., rpe increases modestly with increasing D
and decreases modestly with increasing Kgec. As K. increases,
for D=6, CM g roe ranges from about 1.6 to 1.3 times the
value for D = 2, while for D = 30, CM ,p rpe  Fanges from

about 3.2 to 2.9 times the value for D = 2. Fig. 10 also shows
(using dotted lines) the overall computational complexity for
separate FDE of CD and MD in MMF, which is the sum of the
complexities, CM ¢p gpg +CM yp gpe - In terms of its
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Fig 11. Complex multiplications per two-dimensional symbol for separate
time-domain equalization (TDE) of CD and MD, CMcp,tpe and CMwp TpE,
vs. number of sections per span, Kse, in systems with 20 spans, each 100 km
long, of GIDC fiber.

dependence on D or K., this exhibits the same general trends
as CM qonp Foe - But at any Kee, CMcp ppe +CM yp ppe S

higher than CM ., Fpe » Py a factor of about 1.6 for D = 6,

and by a factor of about 1.3 for D = 30.

Fig. 11 shows the computational complexity for separate
TDE of CD and MD. The complexity for CD, CM ¢p 1pg , is
about 2300 and 3000 complex multiplications per symbol for
SMF and MMF, respectively, which are about 72 to 90 times
higher than for FDE. In MMF, the complexity for MD,
CM yp pe » increases by about 7.3 as D increases from 6, to
30, and decreases by nearly 300 as K. increases from 1 to
10°,

In MMF, the complexity of separate TDE is always lower
than that of combined TDE (CM cprpe +CM yp1pe), in
contrast to FDE, which can be traced to the factor of D that
appears in (16) and (17), but not in (15). For small K,
Nyp >>Nep, and  CMcprpe + CM yp 1pe # CM yp e -

For large Kg, Npyp Iis comparable to Ngp, and
CM cppe +CM yp1pe is modestly larger than CM yp pe -
In  the large K,
CM cp 1o +CM yp1pE = CM ¢p 1pe - However, the overall

limit of very Nwo << N¢p

complexity of TDE, whether in combined or separate form, is
so high to render it practical, even with strong mode coupling.

V. DISCUSSION

Our results clearly demonstrate the large difference in
computational complexity between TDE and FDE in coherent
MDM systems, as shown in [52] under different assumptions
about propagation. For MDM using D = 6, 12, 20, or 30
modes, the complexity of combined FDE, assuming an
optimized FFT block length, can be comparable to that for
polarization-multiplexed transmission in SMF (D = 2). The
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complexity depends mainly on D, and depends only weakly on
the strength of mode coupling, as quantified by the section
length Lg.

In FDE, the optimum FFT block length Nggr oy IS

proportional to the corresponding channel memory length, so
N et ope depends strongly on the section length Leec. This has

major implications for the MIMO FDE, both in terms of DSP
circuit complexity and adaptation speed. As a rough measure
of overall DSP circuit complexity, we will consider the
number of complex multiplications per D blocks of Nggr

samples. For SMF (D = 2), the complexity is dominated by CD
equalization, and FDE requires NpgerD[log, (Neer )+1]

DNpger  samples.  Assuming
Nerrope =2, this corresponds to  4.9x10°  complex

multiplications. For MMF, the separate FDE for MD or the
combined FDE for CD+MD requires
Neer D[IogZ(N FET )+ D] complex  multiplication  per

D- Nger samples. With strong mode coupling, such that L
= 100 m, Nyp ~Ncp ~1000. Assuming Ngpr o =2,

complex multiplication per

Nger D[log, (Nger )+ D] = 8.7x10° and 9.0x107 for D =6

and 30, respectively. These values are 18 and 184 times the
value for D = 2, so it may be possible to realize a single-chip
MIMO FDE. On the other hand, with weaker mode coupling,

such that Lec = Lamp = 10° m, Nyp ~5x10*. Assuming
NFFT,Opt = 221, NFFT D[|092(N FFT)+ D] = 3.4)(108 and

3.2x10° for D = 6 and 30, respectively. These values are 690
and 6500 times the value for D = 2, so it likely would be
difficult to realize a single-chip MIMO FDE.

One of the drawbacks of frequency-domain equalization is
the block processing latency, which also affects the adaptation
time. An FFT block length N - implies a block processing

latency of Ngpr /(rgRg) seconds. Assuming ros = 2 and Ry =
32 Gbaud, with strong mode coupling, such that L, = 100 m
and Nggr o =2, the latency for equalizing one block is 1

us. With weaker mode coupling, such that Ly = 10° m and
Nerr ot = 271, the latency is 33 ps.

Adaptation algorithms are not analyzed in detail in this
paper. Exploiting the fact that CD exhibits minimal variation
over time, one may choose to employ fixed FDE for CD and
adaptive FDE for MD. While not minimizing the
computational complexity of equalization, this approach may
minimize the computational complexity of adaptation and
facilitate faster adaptation. Two major approaches for data-
aided adaptive equalization (initially with training sequences,
then either with training sequences or decision-directed) are
MIMO least mean squares (MIMO-LMS) and MIMO
recursive least squares (MIMO-RLS) algorithms [53]. As
compared to MIMO-LMS, MIMO-RLS provides faster
convergence rates, but has higher complexity, as it requires

matrix inversions [54]. The number of adaptation steps
required for MIMO-RLS to converge is roughly of the order of

D? [54]. Since each adaptation step requires equalization of
D blocks of Nger samples, the convergence time for MIMO-

RLS is roughly D?Nggr/(rsR,). Using the latencies
estimated in the previous paragraph, for strong mode coupling
(Lec = 100 M, Negger oy =2'°) the convergence times are

roughly 36 us and 900 ps for D = 6 and 30, respectively. For
weaker mode coupling (Lec = 10° m, Ngpr o =2°) the

convergence times are roughly 1.2 ms and 30 ms for D = 6 and
30, respectively. Convergence times for MIMO-LMS are
expected to be at least an order of magnitude longer than these.
Clearly, mode coupling strength can have a strong impact on
adaptive FDE convergence time. Measurements of modal field
temporal variations in deployed long-haul MMFs may be
needed to determine adaptive FDE convergence time
requirements.

Although only single-carrier transmission is considered in
this paper, orthogonal frequency division multiplexing
(OFDM) might also be applicable in MDM systems. The
computational complexity of OFDM is identical to that of the
FDE considered here. In OFDM, the optimized block length
Ngpr ope COrresponds to the number of orthogonal carriers

(including carriers used for data transmission and zero carriers
used for oversampling).

The impact of MDL is not considered in detail in this paper.
MDL can reduce average capacity and increase the variance of
capacity, potentially causing outage [26]. Strong mode
coupling, in combination with MD, enables frequency
diversity, which can reduce the variance of capacity and thus
reduce outage probability [27]. The capacity variance is
reduced by a frequency diversity order [27]
Fo ~ Rsogg = Nyp /[restip (p)]. Introducing sufficient mode

coupling such that Ny,p ~ Ncp ~1000 corresponds to a

frequency diversity order Fy ~100 for the parameters

considered in this paper, which should be sufficient to make
outage probability negligible, assuming low-to-moderate MDL
values [26,27]. Aside from reducing average capacity and
potentially causing outage, MDL also affects the statistics of
the coupled GDs. Our simulations have shown that MDL
typically narrows the GD spread. Hence, values of the
temporal memory Nyp and the computational complexity
presented here should be considered upper bounds for systems
with MDL.

Methods to achieve strong mode coupling without
introducing substantial MDL, whether by using mode couplers
or scramblers, or by intentional perturbation of the MMF, are
an important subject for future research.

VI. CONCLUSION

In MMF, the temporal memory length of MD scales with the
square-root of a section length over which modal fields are
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correlated, and is thus reduced significantly by strong mode
coupling. In coherent MDM systems, considering realistic
correlation lengths, the computational complexity of MIMO
TDE is extremely high. By contrast, using MIMO FDE and an
optimized FFT block length, the computational complexity
(measured in complex multiplications per two-dimensional
symbol) can be only 1.3 to 2.9 times higher than for FDE in
SMF, and depends only weakly on the temporal memory
length. Nevertheless, the optimized FFT block length is
proportional to the temporal memory length of MD. Hence,
introducing strong mode coupling to reduce the temporal
memory of MD can greatly reduce signal processing circuit
complexity, and can greatly reduce block processing latency,
thereby reducing MIMO FDE convergence time.
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