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for such i, (j+;,,-I) = (jj. By Lemma 3, the well-known 

combinatorial identity 

reduces in GF(2) to 

is periodic with period 2”, so that 

Note that 0 % i - 2”-’ < 2”-’ ‘j + 2”-‘, so that the right-hand 
side of (2) is 0, and (1) becomes, in GF(2), 

(j+;n-,) = (;j. 0 

,o~;~E~F”(;;2nj,= (4, d;;..,d,;-l-,) f O,, let ,,d’, = 

c(i). 
then (d ) E B(2 ) has c(d ) = 2 - + 

Proof: For i 2 0, suppose 

with 1 5 c(d) % 2”-’ and ac(,,-, = 1. Then Lemma 4 implies 

Theorem 6: Let s = (se, s,; . .,s*“-,) = (L(s) t R(s)) be a 
binary vector with associated sequence (s) E B(2”), n 2 1. Form 
d = R(s) - L(s), so that (d) E B(2”-‘). 

a) If d = 0, then c(s) = c(L(s)). 
b) If d # 0, then c(s) = 2”-’ + c(d). 

Proof: If d = 0, then R(s) = L(s), so (s) = ((L(s) I 
L(s))) = (L(s)) and c(s) = c(L(s)). If d # 0, then write 

s = (L(s) : R(s)) 

= (L(s) : L(s)) + (0 i R(s) - L(s)) 
= (L(s) i L(s)) + (0 i d). 

Let d’ = (0 ! d), so that (s) = (L(s)) + (d’). Note that c( L(s)) 
5 2”-’ and, by Corollary 5, c(d’) = 2”-’ + c(d) > 2”-‘, so that 

i 
the term 

c(d) - 1 + 2”-I 
occurs in the basis expansion of 

s, = L(s), + d:. Thus c(s) = c(d’) = 2”-’ + c(d). 0 

The algorithm of Section II applies the result of Theorem 6 
recursively, starting with the initial vector s of length 2”, and 
stopping when the vector (0) (of complexity 0) or the vector (1) 
(of complexity 1) is encountered. 

CONCLUSION 

For a given sequence of arbitrary period N, the Massey algo- 
rithm [3] accepts the sequence sequentially and at each stage 
computes the connection polynomial for the shortest LFSR that 
generates the encountered portion of the sequence. The Massey 

algorithm may have to run through more than one period of 
length N of the sequence before it stabilizes on the correct 
connection polynomial. In practice, additional iterations are re- 
quired to ensure that the algorithm has in fact stabilized. The 
algorithm given in this correspondence works only for a sequence 
with period of length N = 2” and computes the complexity c in 
log N = n steps. The connection polynomial f(E) then must be 
(E - 1)’ in this case. The storage requirements of the Massey 
algorithm depend directly on the eventual complexity of the 
sequence, while the present algorithm must always store a single 
period of the sequence, making the algorithm inappropriate for 
very long periods. 
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The Largest Super-Increasing Subset of a Random Set 

EHUD D. KARNIN, STUDENT MEMBER, IEEE, AND 
MARTIN E. HELLMAN, FELLOW, IEEE 

Abstract-It is shown that the longest super-increasing sequence which 

can be constructed from a set of n independent uniformly distibuted 

random variables is almost surely asymptotic to log, n. Some extensions of 

this result, as well as the implications for the security of knapsack-based 

cryptographic systems, are discussed. 

I. INTRODUCTION AND MOTIVATION 

Given a set A of n positive numbers u,, i = 1,2,. . . , n and a 
positive number S, the knapsack problem [l] is to find a binary 
solution vector x = (x, , x2,. . . ,x,,) such that 

n 
2 x,q=s xi E (0, l}. (1) 

I=1 

The associated decision problem, i.e., determining whether (1) 
has a solution, is in the class of NP-complete problems [2]. 
Therefore, it is believed that solving (1) is very hard in general. 
However, there are sets A for which the problem is extremely 
easy. 

Consider the case when the sequence ui i = 1,2,. . . , n is super- 
increasing: 

J-1 

u,’ Ix ui j= 2,3;..,n. (2) 
i=l 

When (2) holds, (1) is solvable in time which grows only linearly 
in n (cf. [I]). Also when a large subset of A can be ordered as a 
super-increasing sequence, the effort of solving (1) is substantially 
reduced (as discussed in Section V). 

The knapsack problem forms the basis for a public key crypto- 
graphic system [l]. The public key is generated by choosing a 
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sequence of n super-increasing integers, multiplying each by w 
and reducing modulo m (where w and m are large integers, 
typically of the order of 22n). This transformation is the basis of 
most pseudorandom number generators and produces integers 
which appear to be uniformly distributed in (0, 1,. . , m}. Divid- 
ing by m and neglecting quantization effects (since m is very 
large), we can model the resulting u,, i = 1,2; . . , n as being 
uniformly distributed in [0, I]. 

Motivated by this we consider the following question: let 
A = { ui}:‘=, with each u, independent and uniformly distributed 
in [0, I]. Look at all subsets of A which have elements that can be 
ordered as a super-increasing sequence. What is the cardinality pn 
of the largest such super-increasing subset? 

This problem and some extensions are studied in the following 
sections. 

II. MAINRESULT 

Theorem: 

(3) 

Proof: We establish a lower and an upper bound for 
Pn/l%, n. 

Lower Bound: Consider the events 

A, = {gu, E [23-U - 2-“,2-(‘-‘)]}, i= 1,2;..,m. 

Then 

which is equivalent to 

P(p, Cm) 5 P 5 5 P(A:) = m(l - 2-m)n. 
i=l 

Let m = (1 - c)log, n, c > 0. Then 

P 
( 

-!5!- < 1 - c 
log* n I 

2 [(l - c)log, U][l - 2-(‘-E)10g2n]n 

= [(l - c)log, n] 

-[(I -r)log,n]e 

Moreover these terms are summable, i.e., 

Consequently, by the Borel-Cantelli lemma 

P lim infA 
( log2 n 

<l-c =o. 
1 

Since E is arbitrary we get 

lim inf JK- 
log, n 

21 a.s. 

Upper bound: 

P(p,, 2 m) 5 P{3u, such that u, 5 22Pm}. (5) 

We prove this claim by contradiction. From (2), any super- 
increasing sequence starting with u, should grow faster than 

u,,u,,~u~,~u,;~~,~“‘-~u,. 

But u, > 22-” implies that the last term is greater than one, a 

contradiction. Relation (5) can be further bounded by 

P(p,, 2 m) 5 n22-m = 4n2-“. 

Let m = (1 + c)log, n, E > 0. Then 

p-t?% 
( log2 n 

2 1 + 6 
1 

( 4n27(‘+‘)1”gZ” = 4n-’ + 0, 

To establish the almost surely convergence consider the subse- 
quence ni = 2’, and observe that 

Hence by the Borel-Cantelli lemma, 

P lim sup - 
i 

pn, 
l-M log2n, 

21$-e =o 
1 

which implies, since E is arbitrary, that 

lim sup 
Pn 

i-m Ggyl 
a.s. 

Now consider n in the gap 2’-’ < n 5: 2’. The cardinality p,, is 
monotonically increasing, so p, 5 pLzJ. Also, log, n > log, 2’-’ = 
i - 1. Hence, 

P,, 112’ _ P2’ -<-- 
log,n-i- 1 i(l - l/i) 

‘&(I - I/i,)-‘, i 2 i,. 

Therefore 

PL,, lim sup ~ 
n+m log2 n 

4 lim sup i-oo &(I - l/b-’ 

?‘(I - l/i,)-‘. 

Since i, may be taken arbitrarily large, this implies 

lim sup __ IIn <1 
log, n - 

a.s. (6) 

Finally, (4) and (6) yield (3), which completes the proof. 

III. HIGHERDIMENSIONS 

In a k-dimensional vector space we define a relation: a > b if 
each component of a is greater than the corresponding compo- 
nent of b. This relation is a partial ordering, and we use it to 
define a super-increasing sequence of vectors as 

j-l 

u,’ I2 u,, j=2,3;..,n, (7) 
I=1 

where addition of vectors is, as usual, on a component by 
component basis. 

As before let (u,}:=, be independent, uniformly distributed in 
10, Ilk, and let p,, be the length of the largest super-increasing 
sequence which can be constructed from them. 

Corollary 1: 

Pn 1 ___ *- 
log, n k 

a.s. (8) 

Proof: For a lower bound take 

A, = {su, E [2-“-l’ - 2-‘“,2-“-1’]k} 

and proceed as in the proof of the theorem. For the upper bound, 
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observe that 

P(p, 2 m) % P(Ztu;such thatu, < (22--m,22~m,...,22~m)) 

and then proceed as before. 

IV. NONBINARY KNAPSACK 

Suppose we modify the knapsack problem by asking for a 
solution of (1) such that 

xi E (0, l;..,B - l} 

instead of x, E (0, I}. Such “compact” knapsacks are of interest 
in cryptography, because they allow a reduction in the size of the 
public key [I]. The analog of an easily solved super-increasing 
knapsack is now 

j-1 

u,>(B- 1) 2 ui j=2,3;..,n, (9) 
i=l 

which clearly reduces to (2) for the special case B = 2. When (9) 
holds the non binary knapsack is easily solved, so we ask about 
p,,, the cardinality of the largest subset satisfying (9). Again we 
assume u, independent, uniformly distributed in [0, I], and obtain 
the following. 

Corollary 2: 

Pn 
log, n +l a.s. 

Proof: For a lower bound consider the events 

Ai = {3ui E [B-c’-‘) - B-“, B-C’-‘)]} 

and proceed as in the theorem. For the upper bound, observe that 

&B--j 

and proceed as before. (For the subsequence argument take 
n, = B’.) 

Note: The extension of this result to a k-dimensional vector 
space (cf. Section III) is 

-!A!?-J. 
log,n k 

a.s. 

V. APPLICATION AND DISCUSSION 

In cryptography a knapsack can be used to conceal an n bit 
message x (see [ 11). The cryptanalyst knows u,, i = 1,2,. . , n and 
S, and tries to find X. Searching over all the 2” possible x will 
yield a solution for (1). However, one may also use the following 
procedure. 

For the n - pLn u,‘s, which are not in the largest super-increas- 
ing subset, try all the 2”-‘n possible x,. In each trial subtract 
from S the u, which correspond to x, = 1. Then see if there is a 
solution to the associated easy super-increasing knapsack with pn 
components, in O(p,) operations. 

By our theorem p,, is almost surely asymptotic to log, n, and 
the effort of solving (1) is reduced only by a factor of about 
2’n = n, compared to an exhaustive search. Thus the security of a 
knapsack-based cryptographic system is not substantially de- 
creased by the above procedure. 

As a final remark we compare a binary knapsack of length n 
and a nonbinary knapsack of length N. If both have to conceal 
the same amount of information, then n = Nb, where b = log, B. 

About log, n bits of information are involved in an “easy” 
super-increasing subset of the binary knapsack. For the nonbi- 

nary knapsack we have by Corollary 2 

-log,N= log2 (n/b) 1% n 
PN 

-- 
1x2 B b 

Since each element carries b bits of information, bpN - log, n 
bits of information are involved in the super-increasing part, 
which is the same number obtained for the binary knapsack. 
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A Combinatorial Approach to Polygon Similarity 

DAVID AVIS AND HOSSAM ELGINDY 

Abstract-A new approach is presented to the classification problem of 

planar shapes represented by polygons. A shape is abstracted combinatori- 

ally by means of its visibility graph, and two shapes are deemed similar 

whenever their graphs are cyclically isomorphic. Efficient algorithms are 

presented for performing these operations. 

I. INTRODUCTION 

In pattern recognition, a common and economical approach to 
representing planar shapes within a computer is to describe their 
boundaries by polygons with a finite number of vertices [l, pp. 
168-1841. With appropriate selection of vertices on or near the 
boundary, the shape can be adequately described without affect- 
ing its important features. Such polygons may be described by a 
sequence of edges representing a piecewise approximation to the 
boundary, or a graph which preserves important properties of the 
original shape. 

The problem of classification requires the partition of the set of 
all polygons into a number of classes such that the polygons in 
each class are equivalent (or similar) with respect to a selected 
equivalence relation. In other words, a polygon can be uniformly 
mapped onto other polygons in its equivalence class such that 
certain features are preserved. 

A hierarchial approach to the classification problem would 
involve classifying the polygons into broad equivalence classes, 
and then using further discrimination criteria within each class. 

In this correspondence, we present a purely combinatorial 
technique. We define a finite graph on the vertices of the polygon 
and then deal exclusively with the graph. Two polygons are said 
to be equivalent whenever the corresponding graphs are isomor- 
phic under some cyclic permutation of the vertices. 

This equivalence relation decomposes the class of n-vertex 
polygons into broad equivalence classes. For example, it groups 
all n-vertex convex polygons in one class, which may be thought 
of as the structurally most simple class. Further, and more 
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