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Hiding Information and Signatures in 
T rap’door Knapsacks 

RALPH c. MERKLE, STUDENT MEMBER, IEEE AND MARTIN E. HELLMAN, SENIOR MEMBER, IEEE 

Ahwcz--The knapsack problem is aa  Np-complete combinatorial 
problem that is strongly bel ieved to be  computationally difficult to solve in 
general.  Specific instances of this problem tbat appear  very difficult to 
solve unless one  pawses “trapdoor information” used in the design of 
the problem are demonstrated. Because only the designer can easily solve 
problems, others can send bim ioformation h idden in the solution to the 
problems without fear that au  eavesdropper  will be  able to extract the 
information. This approach differs from usual cryptograpkic systems in 
that a  secret key is not needed.  Conversely, only the designer can generate 
signature8 for messages,  but anyone  can easily check their authenticity. 

I. INTRODUCTION 

G IVEN A one-dimensional knapsack of length S and  
n  rods of lengths ~,,a,, . . . ,a,, the knapsack prob- 

lem is to find a  subset of the rods that exactly fill the 
knapsack, if such a  subset exists. Equivalently, find a  
binary n-vector x such that S=a*x, if such an  x exists (* 
applied to vectors denotes dot product, otherwise normal 
mu ltiplication). 

A supposed solution x is easily checked in at most n  
additions, but finding a  solution is bel ieved to require a  
number  of operations that grows exponentially in n. Ex- 
haustive trial and  error search over all 2” possible x is 
computationally infeasible if n  is larger than 100  or 200. 
The  best publ ished method for solving knapsacks of the 
form considered here requires 2”/* complexity both in 
time  and  memory [l]. In addition, Schroeppel [2] has 
devised an  algorithm that takes 0(2”/*) time  and  0(2”/3 
space. Theory supports these beliefs because the knapsack 
problem is known to be  an  NP-complete problem,’ and  is 
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‘Other definitions of the knapsack problem exist in the literature [l], 
[5]. The  definition used  here is adapted from Karp [14]. To  be  precise, 
Karp’s knapsack problem is to determine whether or not a  solution x 
exists, while the corresponding cryptographic problem is to determine x, 
given that it exists. The  cryptographic problem is not NP-complete, but 
it is just as  hard as  the corresponding NP-complete problem. If there is 
an  algorithm for solving the cryptographic problem in time T(n), i.e., for 
determining x given that it exists, then we can determine whether or not 
an  x exists in time T(n), i.e., solve the corresponding NP-complete 
problem. If the algorithm determines x in time T(n), then some x exists. 
If the algorithm does  not determine x in time T(n) or determines an  
incorrect x-which is easily checked- then no  such x exists. 

therefore one  of the most difficult computational prob- 
lems of a  cryptographic nature [3, pp. 363-4041,  [4]. Its 
degree of difficulty, however, is crucially dependent  on  
the choice of a. If u  = (1,2,4, * . * ,2*-l), then solving for x 
is equivalent to finding the binary representation of S. 
Somewhat less trivially, if for all i 

i-l 

ai > C  q, 0) 
then x is also easily found. x,, = 1  if and  only if S > a,,, and  
fori=n-l,n-2;..,1,xi=1ifandonlyif 

s- 2  (2) 
j=i+l 

xj*aj > a,. 

Wh ile the theory of NP-complete problems and  these 
examples demonstrate that the knapsack problem is only 
difficult from a  worst case point of view, it is probably 
true that choosing the a, independently and  uniformly 
from the integers between 1  and  2” generates a  difficult 
problem with probability tending to one  as n  tends to 
infinity. Wh ile several efficient algorithms exist for solving 
the knapsack problem under  special conditions [ 11, [5], [6], 
none  of these special conditions is applicable to trapdoor 
knapsacks generated as suggested in this paper. 

A trapdoor knapsack [4] is one  in which careful choice 
of a  allows the designer to easily solve for any x but 
prevents anyone else from finding the solution. We  will 
describe two methods for constructing trapdoor knap- 
sacks and  indicate how they can be  used to hide informa- 
tion. Each user Z in a  system generates a  trapdoor knap- 
sack vector a(Z) and places it in a  public file with his 
name and  address. When  someone wishes to send the 
information x to the Zth user, he  sends S=x*u(Z). The  
intended recipient can recover x from S, but no  one  else 
can. Section VI shows how trapdoor knapsacks can be  
used to generate electronic signatures and  receipts [4]. 

Before proceeding, a  word of caution is in order. F irst, 
as is usually the case in cryptography, we cannot yet 
prove that the systems described in this paper  are secure. 
For brevity, however, we will not continue to repeat this. 
Second, the trapdoor knapsacks described in this paper  
form a  proper subset of all possible knapsacks, and  their 
solutions are therefore not necessarily as difficult as for 
the hardest knapsacks. It is the hardest knapsacks with 
which NP theory is concerned. 
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II. A METHODFORCONSTRUCTINGTRAPDOOR 
KNAPSACKS 

The designer chooses two large numbers m and w such 
that w is invertible modulo m (equivalently gcd(w,m)= 1). 
He selects a knapsack vector a’ which satisfies (1) and 
therefore allows easy solution of S’ = a’*~. He then trans- 
forms the easily solved knapsack vector a’ into a trapdoor 
knapsack vector a via the relation 

a, = w*a,l mod m. (3) 
The ai are pseudo-randomly distributed, and it therefore 
appears that anyone who knows a, but not w and m, 
would have great difficulty in solving a knapsack problem 
involving a. The designer then can easily compute 

S’=w-l*Smodm (4) 

=w -‘*z xi*ui mod m (5) 

= we’* 2 x,*w*a,’ mod m (6) 

=x x,*a,’ mod m. 
If m is chosen so that 

(7) 

m> xai, (8) 

then (7) implies that S’ is equal to Xxi*u; in integer 
arithmetic as well as mod m. This knapsack is easily 
solved for x, which is also the solution to the apparently 
difficult, but trapdoor knapsack problem S= u*x. 

To help make these ideas clearer, we give a small 
example with n = 5. Taking m = 8443, a’ = 
(171,196,457,1191,2410), and w=2550 (so w-‘=3950), 
then a = (5457,1663,216,6013,7439). Given S = 1663 + 
60 13 + 7439 = 15 115, the designer computes 

S’=w-‘*S mod m (9) 
=3950*15115 mod 8443 (10) 
= 3797. (11) 

Because S’ > a;, he determines that xs = 1. Then using (2) 
for the a’ vector, he determines that x4= 1, x3 =O, x2= 1, 
X, =O, which is also the correct solution to S= u*x. 

Anyone who does not know m, a’, and w has great 
difficulty in solving for x in S= u*x even though the 
general method used for generating the trapdoor knapsack 
vector u is known by the public. The code breaker’s task 
can be further complicated by scrambling the order of the 
a, and by adding different random multiples of m to each 
of the a,. 

The example given was extremely small in size and was 
only intended to illustrate the technique. Using n = 100, 
which is the bottom end of the usable range for secure 
systems, we would suggest that m be chosen uniformly 
from the numbers between 2*Oi + 1 and 2*‘* - 1, that a; be 
chosen uniformly from the range [ 1, 2ioo], that a; be 
chosen uniformly from [2’O”+ 1, 2*2’O”], that a; be chosen 
uniformly from [3*2’O”+ 1, 4*2loo], that ai be chosen uni- 
formly from [(2’-‘- 1)*2ioo+ 1, 2’-‘*2’09], that aioo be 

chosen uniformly from [(299- 1)*2”“‘+ 1, 2W*21”e’J, and 
that w’ be chosen uniformly from [2, m -21 and then 
divided by the greatest common divisor of w’ and m to 
yield w. 

These choices ensure that (8) holds and that an oppo- 
nent has at least 2’O” possibilities for each parameter and 
hence cannot even search over one of them. Note that 
each ai will be pseudo-randomly distributed between 1 
and m - 1 and hence will require a 202-bit representation. 
Since S requires a 209-bit representation, there is a 2.09 : 1 
data expansion from x to S. 

III. MULTIPLICATIVE TRAPDOOR KNAPSACKS 

A multiplicative knapsack is easily solved if the vector 
entries are relatively prime. Given a’ = (6,11,35,43,169) 
and P = 2838, it is easily determined that P =6* 11*43 
because 6, 11, and 43 evenly divide P but 35 and 169 do 
not. A multiplicative knapsack is transformed into an 
additive knapsack by taking logarithms. To make both 
vectors have reasonable values, the logarithms are taken 
over GF(m) where m is a prime number [7]. 

A small example is again helpful. Taking it = 4, m = 257, 
a’ = (2,3,5,7), and the base of the logarithms to be b = 13 1 
results in u=(80,183,81,195). That is, 131*‘=2 mod 257, 
13 1 lg3 = 3 mod 257, etc. Finding logarithms over GF(m) is 
relatively easy if m - 1 has only small prime factors [7]. 
(On a computer, the current upper limit on small is in the 
range lo6 to lo’*.) 

Now suppose we are given S = 183 + 8 1 = 264 and are 
asked to find the solution to S=u*x. Knowing the 
trapdoor information m, a’, and b, we are able to compute 

S’=b”modm 
= 13 1264 mod 257 
= 15 
= (2°)*(3’)*(5’)*(70) (12) 

which implies that x = (0, 1, 1,O). This is because 
),S = b(%*“i) 

= n b@i*“,) 

=na,l”modm. 

It is now necessary that 

fi a,l<m 
i=l 

(13) 

(14) 

to ensure that IIuix, mod m equals J&z;xi in arithmetic 
over the integers. 

An opponent who knows the public information u, but 
who does not know the trapdoor information m, a’, and b, 
again appears to face an impossible computational prob- 
lem. 

The example given was again small and only intended 
to illustrate the technique. Taking n = 100, if each a,! is a 
random lOO-bit prime number, then m would have to be 
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approximately 10  000  bits long to ensure that (14) is met. ists B and  A such that 
Wh ile a  100  : 1  data expansion is acceptable in certain 
applications, such as secure key distribution over an  in- 

a  = Gd’ mod  A. (18) 

secure channel  [4], [8], it is probably not necessary for an  Then  a, = 25  and  a; = 5  imply that 
opponent  to be  so uncertain of the a,‘. It may even be  25  = #*5 mod  fi. (19) 
possible to use the first n  primes for the a,‘, in which case 
m  could be  as small as 730  bits long when n  = 100  and  still 

F rom this we have 

meet condition (14). There is a  possible trade-off between 2*25 = 9*2*5 mod  fi (20) 
security and  data expansion. or 

50= 6  10  mod  G i. (21) 
IV. AN ITERATIVE METHOD But now the relation between a2  = 87  and  a;l = 10  implies 

This section discusses techniques for improving the 
that 

security and  utility of the basic methods. 87= 9*10 mod  #r (22) 
In the first method we transformed a  hard and  appar-  

ently very difficult knapsack problem u  into a  very simple 
so 87= 50  mod  & or 37=0 mod  A, which implies that 

and easily solved knapsack problem u’ by means  of the 
$r = 37. Equation (19) then becomes 

transformation 
25  = 9*5 mod  37  (23) 

a; = w -‘*ai mod  m . (15) 
We  could solve a  knapsack involving a  because we could 
solve a  knapsack involving a’. Notice though that it does 
not matter why we are able to solve knapsacks involving 
a’; all that matters is that we can solve them. Rather than 
requiring that a’ satisfy (l), we could require that u’ be  
transformable into a  new problem u” by the transforma- 
tion 

a,!’ = w’-‘q’ mod  m ’ (16) 
where the new problem u” satisfies (1) or is otherwise easy 
to solve. Having done  the transformation twice, there is 
no  problem in doing it a  third time. That is, we select an  
u” that is easy to solve, not because it satisfies (l), but 
because it can be  transformed into a”‘, which is easy to 
solve, by 

qY=w “-‘*ail) mod  m ”. (17) 

It is clear that we can repeat this process as often as we 
wish. 

W ith each successive transformation, the structure in 
the publicly known vector a  becomes more and  more 
obscure. In essence, we are encrypting the simple knap- 
sack vector by the repeated application of a  transforma- 
tion that preserves the basic structure of the problem. The  
final result a  appears to be  a  collection of random num- 
bers. The  fact that the problem can be  easily solved has 

so 8= 5. However, if C=5 and  &=37, then (18) for 
a3  = 33  and  a; = 20  becomes 

33  = 5*20 mod  37  (24) 
or 33  =26 mod  37, a  contradiction. We  conclude that no  
such +G and  fi can exist. 

The  original easy-to-solve knapsack vector can meet 
any condition, such as (l), that guarantees it is easy to 
solve. For example it could be  a  mu ltiplicative trapdoor 
knapsack. In this way it is possible to combine both of the 
trapdoor knapsack methods into a  single method, which is 
presumably harder to break. 

It is important to consider the rate of growth of a  
because this rate determines the data expansion involved 
in transmitting the n-bit vector x as the larger quantity S. 
The  rate of growth depends on  the method of selecting the 
numbers,  but with n  = 100, each ai need  be  at most seven 
bits larger than the corresponding a,!, each al! need  be  at 
most seven bits larger than a,“, and  so on. Each successive 
stage of the transformation needs to increase the size of 
the problem by only a  small fixed amount.  Repeating the 
transformation 20  times will add  at most 140  bits to each 
a,. If each a, is 200  bits long to begin with, then they need  
only be  340  bits long after 20  stages, and  S is represent- 
able in 347  bits. The  data expansion is then only 3.47: 1. 

V. COMPRESSINGTHE PUBLIC FILE 

been totally obscured. - 
The  effect of repeating the Process several times is very 

As described above, the Zth user must place his 

different from that obtained with certain ciphers, such as 
trapdoor knapsack vector a(Z) in a  public file. The  Jth 
user can then look up  u(Z) and  send a  message x to I, 

a  simple substitution, A simple substitution cipher is not hidden as S=a(Z)*x. To  avoid storing the rather large 
strengthened by repetition because the composit ion of two 
substitution ciphers is yet another substitution cipher. The  

vector u(Z), J could ask Z  to transmit u(Z) to him. But, 

(w,m) transformations do  not have this closure ProPeTtY. 
unless J has some method for testing u(Z), user K m ight 

The  following example shows that the repetition of two 
fool J by sending him U(K) and saying it was U(Z). J 

(w,m) transforms need  not be  equivalent to a  single (w,m) 
would then m istakenly tell all his secrets to K. A method 

transform. 
is needed  for J to convince himself that he  was really sent 
a(Z). W ith a  public file, each user can make one  personal 

If w =3, m  = 89, w’= 17, m ’=47, and  4” =(5,10,20), appearance when deposit ing his vector, and  after identify- 
then u’ = (38,29,11) and  u  = (25,87,33). Assume there ex- ing himself to the system, he  could identify (authenticate) 
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himself to any user by his ability to decipher messages 
hidden with his vector. The file itself must be protected, 
but this is relatively easy because only write protection is 
needed. 

To preserve this authentication benefit of the public 
file, but to reduce its size (potentially 20 or more kilobits 
per user), we suggest storing a lOO-bit one-way hash total 
h[u(Z)] instead of u(Z) itself. When J receives u(Z) from I, 
he computes h[u(Z)] and checks this against the value Z 
stored in the public file. The hash function h must be a 
one-way function [4,9,10,11], so that K camot generate a 
new vector u(K) such that h[u(K)]=h[(u(Z)], without 
having to perform a computationally impossible feat. 

Allowing 100 bits for storing the user’s name and 
address, (or phone number) the public file now contains 
200 bits, instead of over 20 kbit/user. A system with a 
million users requires a 200 million bit, instead of a 20 
billion bit, public file. Transmission costs are comparable 
for both implementations. 

A lOO-bit number can be coded as 20 alphanumeric 
characters, which is small enough to fit in a telephone 
book. A typical entry would look like this: 

Joe Smith......497-1573 
KSDJR E6K65 3GFVM OMK4K 

The second line is the one-way hash total of Smith’s 
trapdoor knapsack vector u(Smith). With this information 
we can call up Smith and hold a secure conversation with 
him that no one else can understand. We do not need to 
have met Smith previously to know we are talking with 
him or for him to know he is talking with us. 

Transmitting 20 kbits on a high-speed 50 kbit/s link 
takes 0.4 s, but on a low-speed 300 bit/s link, it takes 
more than a minute. The transmitted data can be reduced 
by a factor of five to about 4 kbits, which takes less than 
15 s to transmit at 300 bit/s, by cutting the number of ai 
to n = 20. The vector x, however, now has only 20 binary 
elements, which is small enough to allow solution by 
exhaustive search. To maintain security, the information 
in the x vector must be increased to about 100 bits while 
keeping n = 20. This can be done by allowing each ele- 
ment xi to take on values in the set {0,1,2,3; * * ,31} 
instead of just in (0, 1 }. Specifying each xi takes 5 bits and 
specifying the whole vector x takes 100 bits. Equation (1) 
must now be modified to 

i-l 
a,>31* x Qi. 

j=l 
(25) 

If n is reduced to 1 and the single element of the x 
vector assumes a value in (0, 1,2, * . . , 2ioo - 1 }, then the 
system is easily broken because 

x = S/a. (26) 

When n = 2, the system can also be broken easily by an 
algorithm similar in spirit to the greatest common divisor 
algorithm. It seems that small values of n weaken the 
system, and further research is needed to determine how 
small n can be while still preserving security. 

VI. SIGNATURES 

As discussed in [4], the need for a digital equivalent of a 
written signature is a major barrier to the replacement of 
physical mail by teleprocessing systems. Usual digital 
authenticators protect against third party forgeries but 
cannot be used to settle disputes between the transmitter 
and receiver as to what message, if any, was sent. A true 
digital signature allows the recipient to prove that a par- 
ticular message was sent to him by a particular person. 
Obviously it must be impossible for the recipient to alter 
the contents of the message and generate the correspond- 
ing signature, but it must be easy for him to check the 
validity of a signature for any message from any user. A 
digital signature can also be used to generate receipts. The 
recipient signs a message saying, “I have received the 
following message: TEXT.” This section describes how 
trapdoor knapsacks can be used to generate such signa- 
tures and receipts. 

If every S in some large fixed range had an inverse 
image x, then it could be used to provide signatures. 
When the Zth user wanted to send the message m, he 
would compute and transmit x such that u(Z)*x= m. The 
recipient could easily compute m from x and by checking 
a date/time field (or some other redundancy in m) de- 
termine that the message was authentic. Because the re- 
cipient could not generate such an x, he saves x as proof 
that the Zth user sent him the message m. 

This method of generating signatures can be modified 
to work when the density of solutions (the fraction of S 
between 0 and Zu, that have solutions to x*a = S) is less 
than 1, provided it is not too small. The message m is sent 
in plain-text form or encrypted if eavesdropping is a 
threat, and a sequence of one-way functions [4], [9], [lo], 
[ 1 l] y, = F,(m), y,= F,(m); . . are computed. The trans- 
mitter then seeks inverse images for yi, y2, * * * until one is 
found and appends the corresponding x to m as a signa- 
ture. The receiver computes y = u*x and checks that y is 
equal to yk with k not too large, for example, at most 10 
times the expected value of k. 

The sequence of functions &(*) can be as simple as 

or 
4(m)=F(m)+i (204 

&(m)=P(m+i) W’b) 

where F(*) is a one-way function. It is necessary that the 
range of F(*) have at least 2’O” values to foil trial and 
error attempts at forgery. If the message is much longer 
than 100 bits, the expansion caused by the addition of a 
lOO-bit authentication field is unimportant. 

If the trapdoor knapsack vector were generated as sug- 
gested at the end of Section II, the solution density would 
be less than 1/2im, and more than 2”“’ yk would have to 
be tried on the average before one with a solution is 
found. The multiplicative method of Section III has an 
even smaller solution density. It is possible, however, to 
use the iterative method of Section IV to obtain a solution 
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density of approximately l/l@  with two iterations or 
l/lo6 with three iterations when n  = 100. F irst, a  knapsack 

Merkle and  Reeds [12] have developed another ap- 
proa& to obtaining high-density haps&s. Empirical 

vector U” with a  solution density near  1  is selected. If results indicate densities of approximately 20 percent 
u”=(1,2,4,8;. . , 299)  then the solution density is 1, but when n  = 100. 
increasing some of the larger a: need  not greatly reduce 
the solution density. For example, (1,2,4,8,17,35,68,142) 
has a  solution density of 0.92 and  still satisfies (1). Such 
choices may not be  necessary, but they provide an  addi- 

VII. DISCUSSION 

tional margin of safety at almost no  additional cost. 
After selecting u”, parameters m' and  w’ are chosen 

We  have shown that it is possible to construct trapdoor 

such that m' > Zuy and  w - ” exists modu lo m'. The  weak 
knapsack problems and  that information and  signatures 
can be  hidden in them for transmission over an  insecure 

trapdoor knapsack vector channel. Conventional cryptographic systems also can 
a’= w’*a” mod  m' (27) hide information and  authenticators during transmission 

is then computed. New parameters m  > LX,’ and  w (with 
over an  insecure channel  but have the disadvantage that 

w - ’ existing mod  m) are chosen, and  the more secure 
first a  “key” must be  exchanged via courier service or 

trapdoor knapsack vector 
some other secure means.  Also in conventional cryptogra- 
phy, the authenticator only prevents third party forgeries 

u= w*u’ mod  m  (28) and cannot be  used to settle disputes between the trans- 
is computed. The  process can be  iterated more than twice m itter and  receiver as to whether a  message was actually 
to obtain the final vector a, but the solution density sent* 
typically decreases by a  factor of n/2 with each iteration. We  have not proved that it is computationally difficult 
When  used for hiding information this decrease is of little for an  opponent  who does not know the trap information 
importance, but when used for signatures several itera- to solve the problem. Indeed, proofs of security are not 
tions are all that can be  afforded because of the need  for a  yet available for normal cryptographic systems, and  even 
high solution density. W ith so few iterations, it is possible the general  knapsack problem has not been  proved dif- 
for two adjacent ui to be  in the same ratio (usually 2  : 1) as ficult to solve. The  theory of computational complexity 
they were in the a  vector. This weakness can be  overcome has not yet reached the level of development where such 
by adding mu ltiples of m' (or m) to a  subset of the u,! (or proofs are feasible. The  best publ ished algorithm for solv- 
ui) that suffer from this problem. This decreases the splu- ing the knapsack problem is exponential, taking 0(2”/*) 
tion density somewhat and  accounts for our l/ 104  and  time  and  space [l]. Schroeppel [2] has devised an  algo- 
l/ lo6 estimates for two and  three iterations when n  = 100. rithm that takes O(2n/2) time  and  0(2”14) space. Faith in 

A small example is again helpful in illustrating the the security of these systems must therefore rest on  intui- 
method. Starting with tion and  on  the failure of concerted attempts to break 

u”=(1,2,4,8,17,35,68,142) (29) 
them. 

Attempts to break the system can start with simplified 
whose components sum to 277, we choose m' = 291  and  P roblems (e.g., assuming m  is known). If even the most 
w’ = 176  (w’- i = 167)  resulting in favored of certificational attacks is unsuccessful, then 

a’= (176,61,122,244,82,49,37,257). (30) 
there is a  margin of safety against cleverer, wealthier, or 
luckier opponents.  Or, if the favored attack is successful, 

The  second, third, and  fourth components are in the ratio it helps establish where the security really must reside. For 
of 2  : 1, which can be  hidden by adding m' to the third example, if knowledge of m  allows solution, then an  
component  to obtain the new vector opponent’s uncertainty about m  must be  large. 

a/=(176,61,413,244,82,49,37,257) (31) 
As noted, the techniques suggested in this paper  gener-  

whose components sum to 1319. Choosing m  = 1343, w = 
alize to xi in the set (0, 1,2,3, * * * ,N}. The  advantages and  

498  (w-l =925) yields 
weaknesses of such systems deserve further study. Further 
work with knapsack-based methods is in progress, and  

a  = (353,832,195,642,546,228,967,401) (32) research oriented toward placing trapdoors in other com- 

whose components sum to 4164. The  density of solutions 
binatorial problems also appears promising. 

using a  is 256/4164=0.061 so approximately 16  attempts 
O ther techniques for securely communicat ing over an  

insecure channel  have been  proposed in [4], [8], and  [13]. 
are needed  on  the average to obtain a  signature. This The  method described in [4] involved exponentiat ion mod  
agrees well with the estimated range of n*/4= 16  to n*= 
64. 

q. The  techniques proposed in this paper  appear  to be  
significantly more secure and  allow the direct transfer of 

The  density of solutions can be  increased by restricting information x generated by the transmitter. The  technique 
the yk to lie near  the m iddle of the range (O,ZuJ, say proposed in [4] allows the transmitter and  receiver to 
between 1000  and  3000  in this example. The  law of large 
numbers indicates that for most x the sum u*x will lie in 

generate a  common piece of information K which they 

this range. 
then use as the key in a  normal cryptographic system, but 
K cannot be  predetermined by either party. Merkle’s 
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technique [8] was generalized to the first public key 
cryptosystem and is quite secure but computationally ex- 
pensive. The current work describes a computationally 
efficient public key cryptosystem. 

Recently, Rivest, Shamir, and Adleman [ 131 have pro- 
posed another public key cryptosystem that yields signa- 
tures more directly because the density of solutions in 

‘their problem is one. Their system also requires a smaller 
key (apparently 600 bits versus 20 kbits). Neither system’s 
security has been adequately established, but when 
iterated, the trapdoor knapsack appears less likely to 
possess a chink in its armor. When used for obtaining 
signatures the trapdoor knapsack appears to be the 
weaker of the two. Both public key systems clearly need 
further certification and study. 
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Compression of lndiwdual Sequences via 
Variable-Rate Coding 

JACOB ZIV, FELLOW, IEEE, AND ABRAHAM LEMPEL, MEMBER,  IEEE 

Abstract-Compressibiity of individuai sequences by the ciam of gener- 
aihd finite-atate information-losales encoders ia investigated These en- 
codersrpnoperateinavariabie-ratemodeasweUasaflxedrateone,nnd 
they aiiow for any fhite-atate acheme of variabie-iength-to-variable-ien@ 
coding. For every individuai hfiite aeqence x a quantity p (x) ia defined, 
calledthecompressibilityofx,whirhisshowntobetheasymptotieatly 
attainable lower bound on the compression ratio tbat cao be achieved for x 
by any finite-state encoder. ‘flds is demonstrated by means of a amatruc- 
tivecodtngtbeoremanditsconversethat,apartfnnntheirafymptotic 
significance, also provide useful performance criteria for finite and practi- 
cai data-compression taaka. The proposed concept of compressibility ia aiao 
shown to play a role analogous to that of entropy in ciaasicai informatfon 
theory where one- deaia with probabilistic ensembles of aequencea ratk 
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tium with individuai sequences. Widie the delinition of p (x) aiiows a 
different machine for each different sequence to be compresse4 the 
constructive coding theorem ieada to a universal algorithm that is aaymik 
toticaiiy optfmai for au sequencea. 

I. INTRODUCTION 

I N A RECENT paper [l], data-compression coding 
theorems and their converses were derived for the class 

of finite-state encoders that map at a fixed rate input 
strings drawn from a source of (Y letters into equally long 
strings over an alphabet of /I < (Y letters. In the context of 
data-compression, the aim is to m inimize the number of 
bits/symbol log, /3, while securing zero or negligibly small 
distortion. For every individual infinite sequence x, this 
m inimal bit/symbol rate was shown in [l] to be equal to a 
quantity H(x) that, in analogy with the Shannon entropy 
(which is defined for probabilistic ensembles rather than 
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