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The coefficient matrix reduces by (3.5) to [3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of 
Numbers, 4th ed. New York: Oxford Univ. Press, 1960, pp. 49-71. 

[4] J. D. Hill and G. J. McMurtry, “An application of digital computers 
to linear system identification,” IEEE Trans. Automat. Contr. (Short 
Papers), vol. AC-9, pp. 536-538, Oct. 1964. 

which is of the form yU + zl, where y and z are real numbers, Z A C on Bd 
is the identity matrix, and U is the matrix whose elements are 
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all 1’s. But a matrix of this form with order k, z # 0, and JOHN A. HOROS AND MARTIN E. HELLMAN 
yk + z # 0, has for its inverse the matrix (- y/z(yk + z))U + 
(l/z)Z. It follows that the inverse of the coefficient matrix is Abstract-A confidence model for finite-memory learning systems is 

advanced in this correspondence. The primary difference between this 
and the previously used probability-of-error model is that a measure of 
confidence is associated with each decision and any incorrect decisions 

[(l/k)A’A]-’ = (k/(k + 1)) are weighted according to their confidence measure in figuring total loss. 
The optimal rule for this model is deterministic, whereas the previous 
model required randomized rules to achieve minimum error probability. 

Substituting (3.3) and (3.6) into the matrix equation (3.2), we 
thus obtain Theorem 2. 

IV. AN EXAMPLE 

With r = 3 we are assuming that 

ci = h,mio~,m~~,m~~, -I- * * * $ h7m~~lmf-,m~-3. 

Consider the sequence ai generated by x3 + x + 1 (mod 2): 

ai 3 --ai- - aim3 (mod 2), a-, = (I-~ = 0, u-a = 1 

and normalized by 

mi’ = 1 - 2ai. 

I. INTRODUCTION 

Let X1,X,;. . be a sequence of independent random variables 
with common probability density function&). Under hypothesis 
Ho: p(x) = PO(x), while under HI : p(x) = pi(x). The a priori 
probabilities no and 7r1 = 1 - rco, as well as p,(x) and pi(x), 
are assumed known. If no constraint is placed on memory, then 
a standard likelihood ratio test yields a probability of error that 
tends to zero exponentially in the number of observations. 

In [l ] Hellman and Cover investigate the above problem under 
a finite-memory constraint. They define a rule to have memory of 
size m if the decision made after the nth observation d, depends 
on the data only through an m-valued statistic T whose value T, 
at time n is a function of TX-, and X,,. Such a rule may be 
written in the form 

i 0 2 
ai -: : -: z 

4 
ii 8 

mi 
I 

-1 

-: 

1 
mi+l -1 -1 1 

-: -: 
mi+z -1 l-l 1 : -: -1 

Note from the table that 

{(m ~,m~+l,m;+2) 1 i = 0; * .,6} 

= (l,- 1)X(1,- 1)X(1,- 1) - (l,l,l) 

Therefore, if u = (ilizi3)2, u = (jlj2j3)2, then 

i H(u,t)H(v,t) = j. (m,~::j1)(m,l::j2)(m,is+j3) 
t=o 

= fJl (lik+jk + (-l)*k+jk) - 1. (4.1) 

If u = a, then ik + j, = 0 (mod 2) for all k and (4.1) is 7. If 
I( # v, then ik + j, = 1 (mod 2) for some k and (4.1) is - 1. 
The coefficient matrix and its inverse, respectively, are therefore 
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T, = fU’,,-l,KJ E U,Z. . *,ml 

4 = d(T,) E Wo,ff,l. 

Letting e,, equal 1 or 0 according to whether the nth decision is 
in error or not, define 

to be the (asymptotic) probability of error of the algorithm 
(Ad). In [l] it is shown that 

P*(m) 4 inf P(Ad) = min 2(7con,ym-‘)“2 - 1 
m-1 - 1 (3) 

f,d Y 

where y is a function only of pa(x) and pi(x), and the infimum 
is over all m-state algorithms, both randomized and deter- 
ministic. Later work [2]-[7] d’ iscusses the differences between 
randomized and deterministic rules. Letting P,*(m) denote the 
infimum of P(f,d) over all m-state deterministic rules, it has been 
shown [5] that problems exist for which Pd*(m)/P*(2) is ar- 
bitrarily large. Thus for the model advanced in [l ] there can be 
a great difference between the performance of randomized and 
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deterministic rules. There has been some question as to whether 
or not randomized rules require additional memory. 

Here we present a model very similar to that just discussed, 
yet for which randomization is not needed. By so doing we hope 
to achieve two goals. First, in those practical situations where 
the new model is applicable, there is no need for randomization. 
Secondly, the new model demonstrates the incidental manner in 
which randomization is required by the optimal rules of [l 1. 

In this new model the rule for updating memory is unchanged. 
However, the output function d now maps the memory state 
space S = {1,2,. . . ,m} into {H,,H,} x Rt, where R’ denotes 
the nonnegative reals. Thus the new model is characterized by 
algorithms of the form 

d, = d(T,) E {H,,H,} x R+. (4) 

One interpretation is that if d, = (H,,r,), then r, units are bet 
on Ho being the true hypothesis, whereas if d,, = (H,,r,,) then r, 
units are bet on HI. Thus r,, is a measure of confidence in the 
nth decision. We define the cumulative fractional loss up to time 
N as 

LN = 2 r,e, Ii r,, 
n=1 ll=l 

(5) 

where, as before, e, = 1 or 0 accordingly as the nth choice of 
hypothesis is in error or correct. Our goal is to find the m-state 
algorithm that minimizes the expected asymptotic loss 

L(f,d) = E{ lim LN}. 
N-CO 

(6) 

To better understand the reason for considering this new model 
let us examine the optimal solutions of [l 1. Letting 

K4 = POW/Pi(X) 
denote the likelihood ratio and 

(7) 

1 max = ess sup I(x) 

1 min = ess inf Z(x) 

then the parameter y in (3) is 

(8) 

Y = Lxl4n*n~ (9) 

Note that for “nice” problems I,,, and Zmin are merely the 
maximum and minimum of l(x). Further let 

ZA = {x: Z(x) r [(l/Z,,,) + A]-‘} 

TA = {x: Z(x) 2 Zmin + A}. (10) 

It has been shown that the state transition function with 

i + 1, 

i. 

i<m-landxoZA 
f(W = i- 1, i 2 2andxEJrA (11) 

1, otherwise 

yields a maximum “spread” [l ] between the two hypotheses as 
A + 0. This is intuitively pleasing since if x E &?A then x yields 
close to maximal evidence in favor of He, whereas if x E YA then 
x yields close to maximal information in favor of HI. Thus rules 
that obey (11) throw away all but the best observations, and even 

on the best observations change memory by only one state. This 
is a conservative strategy, but for an unlimited sequence of 
observations. it yields an unlimited number of state transitions, 
which “skim the cream” off the data. 

Although this state transition function yields maximal spread 
it does not yield minimum error probability for two reasons, 
which are best illustrated by example. Consider a problem where 
the observations are binary valued, so that 

POW = 40 &d + PO 6(x - 1) 

Pled = 41 w + Pl 6(x - I>, (12) 

where qi = 1 - pi. Here, as with all discrete distributions, we 
may take A = 0. Thus, for example, if p. > p1 then Y?a = 
Z. = {X = 1 } and YA = Y. = {X = 0). Then the rule spec- 
ified by (11) moves up one state when X = 1 (unless memory is 
in state m, in which case it stays there), and moves down one 
state when X = 0 (unless memory is in state 1, in which case it 
stays there). 

Now consider a two-state memory to be used in this hy- 
pothesis-testing problem. If the problem is symmetrical (i.e., 
p. = 1 - p1 and no = n,), then using the state transition rule 
specified by (11) and deciding Ho in state 2 and HI in state 1 
results in an optimal rule, P(f,d) = P*(2). If, on the other hand, 
p. # 1 - p1 this rule can be far from optimal. For example, if 
p. = 10e6 and p1 = 10-i’ then this rule has P(f,d) zz +. It 
moves from state 1 to state 2 on X = 1, which occurs with low 
probability under either hypothesis (10e6 and 10-l’), while it 
moves from state 2 to state 1 on X = 0, which occurs almost 
certainly under both hypotheses. Therefore this rule results in a 
high occupation probability for state 1 and a low occupation 
probability for state 2 under either hypothesis, and its prob- 
ability of error is high. By exhaustion all deterministic 2-state 
rules can be shown to have P(f,d) FZ 3. 

Now consider the state transition function 

fU,x) = 2, XESO 
few = ( ; 

with probability 10eg, x E To 
3 with probability 1 - lo-‘, x E F. 

f(i,x) = i, otherwise. (13) 

Rule (11) had a strong drift into state 1 under both hypotheses, 
but Rule (13) cancels that drift under Ho and has P(f,d) z 
P*(2). It is seen that if no # x1 a similar asymmetry results, 
which also requires randomization. Thus the first reason for 
using randomization is to offset the effects of asymmetries in the 
problem. 

Now consider a symmetric problem, say p. = 3, p1 = +, and 
no = 7r1 = 3. For this problem the optimal 2-state algorithm 
has the deterministic state transition rule (11). However, using 
(11) for m 2 3 is not optimal since decisions made in states 1 
and m have the least probability of being in error, while decisions 
made in states near m/2 have the highest [l 1. Thus, the following 
modifications to the deterministic state transition rule (11) lower 
WY) : 

with probability 6, x E %‘* 
with probability 1 - 6, x E &‘A 

fh.4 = 
with probability 6, x E YA 
with probability 1 - 6, x E YA. (14) 



813 

If 6 is close to zero then this algorithm stays in states 1 and m 
a much larger proportion of time than the unmodified algorithm. 
However, as long as 6 > 0 the relative proportion of time spent 
in state 1 as opposed to state m is unchanged. Thus [l] as 
6 + 0 this algorithm has P(f,d) + P*(m). Note, however, that 
when 6 = 0, P(f,d) > P*(m). P*(m) is an unachievable, but 
approachable lower bound. 

Returning to the general hypothesis-testing problem, if m > 2 
and asymmetries exist, then both types of randomization are 
necessary and P*(m) is approached by state transition rules of 
the form 

f(i,x) = i + 1, 2<i<m-landxEPA 

f(i,x) = i - 1, 21i1m-landx~Y~ 

fL4 = 2, with probability 6, x E Z* 

f(m,x) = m - 1, with probability k6, x E FA 

f(i,x) = i, otherwise. (15) 

The optimal value of k is given by k* in [l, eq. (57)]. 
At this point let us see how the flexibility allowed by the new 

model may be used to eliminate the need for randomization. 
First note that if bets of size l/6 and l/k6 are made in states 1 
and m, respectively, with bets of size one in other states, then the 
algorithm with the deterministic state transition function (11) 
has the same L(f,d) as the algorithm that bets unity in all states 
(i.e., has probability-of-error loss criterion), and has a random- 
ized state transition function of the form (15). But as A, 6 + 0 
with k = k*, the second algorithm, and therefore the first, has 
L(f,d) --f P*(m), Next, note that the same effect is achieved by 
betting 1 unit in state 1, 6 units in states 2 through m - 1, and 
l/k units in state m. 

Now let 

L*(m) = inf L(f,d), 
f,d 

(16) 

where the infimum is over all randomized and deterministic 
m-state algorithms of the form (4). 

From the preceding construction we see that for any E > 0 
there is a deterministic rule for which L(J;d) I P*(m) + E. 
Thus, 

L*(m) I P*(m). (17) 

Therefore, the following theorem establishes the. optimality of 
deterministic rules for the new model. 

Theorem: For any m-state algorithm of the form (4) 

L(M) 2 P*(m), (18) 

where P*(m) is given by (3). 
Proof: Let Q’ and $ denote the stationary distributions 

under Ho and H, on S, the state space for memory. Let So and 
S, denote the sets of states in which Ho and H, are chosen, and 
let pi be the amount bet on the decision made in state i. Then 

and 

U = C PiOPilC PPPi 
is.71 ieS 

is the asymptotic fractional loss under Ho and 

is the asymptotic fractional loss under Hl. Therefore 

L(f,d) = zocc + nlP. (21) 

From [l, theorem 21 we know that for any rule, randomized or 
deterministic, there exists 0 < c < 1 such that 

c 2 ,LLiO/,ui’ 2 q-l, 15 i I m. (22) 

Letting 

sj = c /lijpi, j = 0,l (23) 
is.7 

we have 

M = c pipio/Yo 2 c(sl/sO)C pilpip 
Sl si 

= (cs’/sO)(l - p) (24) 

(19) 

w 

= (sO/s’cy”-‘)(l - a). (25) 

Multiplying (24) and (25) we obtain 

aB/[U - a)(1 - 81 2 (l/v”-l>. (26) 

Minimizing L(f,d) as given by (21) subject to the constraint (26) 
yields a lower bound on L(f,d). This problem is equivalent to 
that treated in [l, th. 31 and results in the bound 

L(f,d) 2 P*(m). (18) 

Q.E.D. 

Combining (17) and (18) yields the desired result 

L*(m) = P*(m). (27) 

II. DISCUSSION 

It is interesting to note that when the observation space is 
finite, L,*(m) is achieved by setting A = 0 and 6 = 0. This is in 
contrast to the original model, where P*(m) is generally not 
achievable by any rule unless m = 2. Further, note that for 
symmetric problems k* = 1 and the resultant algorithm is 
particularly simple, with bets of zero and unity only. 
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