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False Alerts

On Tuesday, June 3, 1980, at 1:26 a.m., the display system at the
command post of the Strategic Air Command (SAC) near Omaha,
Nebraska, indicated that two submarine-launched ballistic missiles
(SLBMs) were headed toward the United States. (1) Eighteen seconds later,
the system showed an increased number of SLBM launches. SAC
personnel called the North American Aerospace Defense Command
(NORAD), who stated that they had no indication of attack.

After a brief period, the SAC screens cleared. But, shortly thereafter, the
warning display at SAC indicated that Soviet ICBMs had been launched
toward the United States. Then the display at the National Military
Command Center in the Pentagon showed that SLBMs had been launched.
The SAC duty controller directed all alert crews to move to their B-52
bombers and to start their engines, so that the planes could take off quickly
and not be destroyed on the ground by a nuclear attack. Land-based missile
crews were put on a higher state of alert, and battle-control aircraft prepared
for flight. In Hawaii, the airborne command post of the Pacific Command
took off, ready to pass messages to US warships if necessary.



2  /  Inevitability

Fortunately, there were a number of factors which made those involved
in the assessment doubt that an actual attack was underway. Three minutes
and twelve seconds into the alert, it was canceled. It was a false alert.

NORAD left the system in the same configuration in the hope that the
error would repeat itself. The mistake recurred three days later, on June 6 at
3:38 p.m., with SAC again receiving indications of an ICBM attack. Again,
SAC crews were sent to their aircraft and ordered to start their engines.

The cause of these incidents was eventually traced to the failure of a
single integrated circuit chip in a computer which was part of a
communication system. To ensure that the communication system was
working, it was constantly tested by sending filler messages which had the
same form as attack messages, but with a zero filled in for the number of
missiles detected. When the chip failed, the system started filling in random
numbers for the “missiles detected” field. (1)

The Question

Due to the short warning times involved - measured at best in minutes –
today’s nuclear forces could not function without high-speed computers to
automate the warning process, control communications, and, should it be
deemed necessary, guide missiles to their targets. How reliable are the
computers used in the command and control of nuclear weapons? Can they
be made adequately reliable? These are the questions addressed in this
paper.

The concept of “reliability” extends beyond merely keeping a system
running. It invades the realm of system intention or even of what we should
have intended, had we only known. To what extent are we able to state and
codify our intentions in computer systems so that all circumstances are
covered?

“The SAC duty controller directed all alert crews to move
their B-52 bombers and to start their engines … Three
minutes and twelve seconds into the alert, it was cancelled.”

Is it responsible for the USSR or the US to adopt policies which could
result in an accidental nuclear war, should a computer system fail? As
outlined below, I argue that it is not. The standard of reliability required of
military computer systems whose failure could precipitate a thermonuclear
war must be higher than that of any other computer system, since the
magnitude of possible disaster is so great.
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Sources of Failures

Computer systems can fail because of incorrect or incomplete syst-em
specifications, hardware failure, hardware design errors, software coding
errors, software design errors, and human error such as incor-rect
equipment operation or maintenance. Particularly with complex, normally
highly reliable systems, a failure may be caused by some unusual
combination of problems from several of these categories.

Hardware failures are perhaps the most familiar cause of system failures,
as in the June 1980 NORAD false alerts. Individual components can be
made very reliable by strict quality control and testing, but in a large system
it is unreasonable to expect that no component will ever fail, and other
techniques that allow for individual component failures must be used.
However, when one builds very complex systems – and a command and
control system in its entirety is certainly an exam-ple of a complex system
– one becomes less certain that one has antici-pated all the possible failure
modes, that all the assumptions about independence are correct. (2, 3, 4) A
serious complicating factor is that the redundancy techniques that allow for
individual component failures themselves add additional complexity and
possible sources of error to the system.

Another potential cause of failure is a hardware design error. Again, the
main source of problems is not the operation of the system under the usual,
expected set of events, but its operation when unexpected events occur. For
example, timing problems due to an unanticipated set of asynchronous
events that seldom occur are particularly hard to find.

“We can have confidence in complex systems only after they
have been tested for a considerable time under conditions of
actual use … The untstability of the [nuclear] warning and
control system under highly stressed conditions is grounds
for considerable concern.”

It is in the nature of computer systems that much of the system design is
embodied in the computer’s software. The cost and complexity of the
software typically dominate that of the hardware. It is generally accepted
that reliability cannot be “tested into” a software system; it is necessary to
plan for reliability at all points in the devel-opment process. As with high-
reliability hardware, there are codified standards for how critical software is
to be specified, designed, written, and tested. Even so, errors may be
introduced at any of the steps in software production: requirements
specification, design, implementation, testing and debugging, or
maintenance. (5, 6, 7)
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Errors in the system requirements specification, for both hardware and
software, are perhaps the most pernicious. We must anticipate all the circu-
mstances under which the system might be used and describe what action it
should take in each situation. For a complex system, one cannot foresee all
of these circumstances. We can have confidence in complex systems only
after they have been tested for a considerable time under conditions of
actual use. Short of having many periods of great international tension and
high military alert – clearly an unacceptably dangerous proposition – the
nuclear weapons command and control systems cannot be tested under
conditions of actual use. Testing under the most extreme conditions in
which these systems are expected to function – that of limited or protracted
nuclear war – is an impossibility. The untestability of the warning and cont-
rol systems under highly stressed conditions is grounds for considerable
concern.

Errors may also be introduced when the requirements are translated into
a system design, as well as when the design is translated into an actual
computer program. Again, the sheer complexity of the system is a basic
cause of problems. Anyone who has worked on a large computer system
knows how difficult it is to manage the development process. Usually, no
one person understands the entire system completely.

Program maintenance, either to fix bugs or to satisfy new system
requirements, has itself a high probability (typically from 20 to 50 percent)
of introducing a new error into the program.

Another source of failure is human operator error. People do make mista-
kes, despite elaborate training and precautions, especially in time of stress
and crisis. On November 9, 1979, a test tape containing simulated attack
data, used to test the missile warning system, was fed into a NORAD comp-
uter, which through human error was connected to the operational missile
alert system. During the ensuing six-minute alert, ten tactical fighter aircraft
were launched from bases in the northern United States and Canada. (1)

“On October 5, 1960, the warning system at NORAD
indicated that the United States was under massive attack by
Soviet missiles whith a certainty of 99.9 percent. It … had
spotted the rising moon.”

Human error becomes more likely under the influence of alcohol or
drugs. Dumas cites some worrying statistics about alcohol, drug abuse,
and aberrant behavior among American military personnel with access
to nuclear weapons. (8) Alcoholism is a health problem in the Soviet
Union and may be a problem among Soviet military personnel as well.
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Some Instructive Failures

It is instructive to look at a few of the impressive failures of systems
designed to be highly reliable. Most examples concern US systems, since
this is the data available to the author. One would expect similar failures in
the USSR or any other industrialized nation.

The June 1980 NORAD false alert described in the opening of this paper
is an example of a hardware failure. However, this false alert also illustrates
hardware design error. It was a grave oversight that such critical data,
reporting a nuclear attack, was sent without using standard, well-known
error-detection techniques. (1)

“Incidents such as Three Mile Island and Chernobyl, the
tragic explosion of the space shuttle Challenger in 1986,
and the 1965 Northeast power blackout are sobering re-
minders of the limitations of technology.”

Another example of hardware failure was the total collapse of a
Department of Defense computer communications network in October
1980. This failure was due to an unusual hardware malfunction that caused
a high-priority process to run wild and devour resources needed by other
processes. This communications network was designed to be highly
available - the intent being that it should prevent a single hardware
malfunction from being able to bring down the whole network. It was only
after several years of operation that this problem manifested itself.

The launch of the first space shuttle was delayed at the last minute by a
software problem. For reliability, the shuttle used four redundant primary
avionics computers, each running the same software, along with a fifth
backup computer running a different system. A patch to correct a previous
timing bug created a 1 in 67 chance that, when the system was turned on,
the computers would not be properly synchronized. There are a number of
noteworthy features of this incident. First, despite great attention to
reliability in the shuttle avionics, there was still a software failure. Second,
this failure arose from the additional complexity introduced by redundancy
in an attempt to achieve reliability. And third, the bug was introduced
during maintenance to fix a previous problem.

There are many examples of errors arising from incorrect or incomplete
specifications. On October 5, 1960, the warning system at NORAD indi-
cated that the United States was under massive attack by Soviet missiles
with a certainty of 99.9 percent. It turned out that the Ballistic Missile Early
Warning System radar in Thule, Greenland, had spotted the rising moon.
Nobody had thought about the moon when specifying how the system
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should act. Gemini V splashed down one hundred miles from its intended
landing point because a programmer had implicitly ignored the motion of
the earth around the sun - in other words, he had used an incorrect model.
In 1979, five nuclear reactors were shut down after the discovery of an
error in the program used to predict how well the reactors would survive in
earthquakes. One subroutine, instead of taking the sum of the absolute
values of a set of numbers, took their arithmetic sum instead.

In hindsight, the blame for each of the above incidents can be assigned to
individual component failures, faulty design, or specific human errors, as is
almost always the case with such incidents. But the real culprit is simply
the complexity of the systems, and our inability to anticipate and plan for
all of the things that can go wrong.

What about similar failures in the Soviet warning systems? I have been
unable to ascertain whether or not such failures have occurred, and to date
the Soviet government has not revealed them if they existed. However, the
Korean Airlines Flight 007 incident, in which a civilian aircraft was shot
down by the Soviet Union more than two hours after it had entered Soviet
airspace and just before it was back over international waters, would seem
to indicate that the Soviet command and control system has problems. The
fatality rates for American astronauts and Soviet cosmonauts and the
nuclear power plant failures at Three Mile Island and Chernobyl also
indicate comparable failure rates of high reliability systems in both
countries.

Incidents such as Three Mile Island (7) and Chernobyl, the tragic
explosion of the space shuttle Challenger in 1986, and the 1965 Northeast
power blackout are sobering reminders of the limitations of technology.

Prospects for Future Improvements

What are the prospects for improving the reliability of military computer
systems in the future? Substantial progress is possible simply by using
state-of-the-art hardware and software engineering techniques. (5, 6, 9) A
system, like NORAD’s, that in 1980 used 1960s vintage computers or
transmitted critical data without error detection is not state-of-the-art.

State-of-the-art techniques can help, but what are the practical and
theoretical limits of reliability, now and in the next decade? The
Department of Defense is engaged in several efforts to develop new
technology for software production and to make it widely available to
military contractors. The Software Technology for Adaptable, Reliable
Systems program, and the Software Engineering Institute at Carnegie-
Mellon University are examples. Use of these techniques should decrease,
but not eliminate, errors in moving from the specification to the program.
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In the long term, formal techniques such as proofs of program
correctness (program verification), automatic programming, and proofs of
design consistency have been advocated as tools for improving computer
system reliability. (5) In a proof of program correctness, either a human or a
computer proves mathematically that a program meets a formal
specification of what it should do. In automatic programming, the program
is written automatically from the specification. In a proof of design
consistency, the proof must show that a formal specification satisfies a set
of requirements, for example, for security or fault tolerance.

But program verification and automatic programming techniques can
offer no help with the hardest and most intractable problem in the
construction of software for complex tasks, such as command and control
systems: specifying what the system should do. How does one know that
the specification itself is correct, that it describes what one intends? Are
there events that may occur that were simply not anticipated when the
specification was written?

“Both the practical and theoretical limits of reliability bumb
up against this problem of specification. It constitutes the
major long-term practical barrier to constructing reliable
complex systems.”

A proof of correctness, for example, only shows that one formal
description (the specification) is equivalent to another formal description
(the program). It does not say that the specification meets the perhaps
unarticulated desires of the user, nor does it say anything about how well
the system will perform in situations never imagined when the specification
was written.

For example, in the 1960 false alert, proving that the system met its
specifications would not have helped since no one thought about the rising
moon when writing the specifications. The term “proof of correctness” is
thus a misnomer - a better term might be “proof of relative consistency.”

Both the practical and theoretical limits of reliability bump up against this
problem of specification. It constitutes the major long-term practical barrier
to constructing reliable complex systems. The answers to such critical
questions as, “Will the system do what we reasonably expect it to do?” or
“Are there external events that we just didn’t think of?” lie inherently
outside the realm of formal systems. Computer systems (including current
artificial intelligence systems) are notoriously lacking in common sense:
The system itself will typically not indicate that something has gone amiss
and that the limits of its capabilities have been exceeded.
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Conclusions

How much reliance is it safe to place on life-critical computer systems, in
particular, on nuclear weapons command and control systems? At present,
a nuclear war caused by an isolated computer or operator error is probably
not a significant risk, at least in comparison with other dangers. The most
significant risk of nuclear war at present seems to come from the possibility
of a combination of such events as international crises, mutually reinforcing
alerts, computer system misdesign, computer failure, or human error.

A continuing trend in the arms race has been the deployment of missiles
with greater and greater accuracies. This trend is creating increasing
pressure to consider a launch-on-warning strategy. Such a strategy would
leave very little time to evaluate the warning and determine whether it was
real or due to a computer or human error. We would be forced to put still
greater reliance on the correct operation of the warning and command
systems of the US and the USSR. Deployment of very accurate missiles
close to an opponent’s territory exacerbates the problem.

More exotic weapons systems, such as envisioned in the Strategic
Defense Initiative, equipped with extremely fast computers and using
artificial intelligence techniques may result in battles (including nuclear
ones) that must be largely controlled by computer. (9)

Where then does that leave us? There is clearly room for technical
improvements in nuclear weapons computer systems. I have argued,
however, that adding more and more such improvements cannot ensure
that they will always function correctly. The problems are fundamental
ones due to untestability, limits of human decision making during high
tension and crisis, and our inability to think through all the things that might
happen in a complex and unfamiliar situation. We must recognize the limits
of technology. The threat of nuclear war is a political problem, and it is in
the political, human realm that solutions must be sought.
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