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Prologue

This book is devoted to the theory of probabilistic information measures and
their application to coding theorems for information sources and noisy channels.
The eventual goal is a general development of Shannon’s mathematical theory
of communication, but much of the space is devoted to the tools and methods
required to prove the Shannon coding theorems. These tools form an area com-
mon to ergodic theory and information theory and comprise several quantitative
notions of the information in random variables, random processes, and dynam-
ical systems. Examples are entropy, mutual information, conditional entropy,
conditional information, and relative entropy (discrimination, Kullback-Leibler
information), along with the limiting normalized versions of these quantities
such as entropy rate and information rate. When considering multiple random
objects, in addition to information we will be concerned with the distance or
distortion between the random objects, that is, the accuracy of the representa-
tion of one random object by another. Much of the book is concerned with the
properties of these quantities, especially the long term asymptotic behavior of
average information and distortion, where both sample averages and probabilis-
tic averages are of interest.

The book has been strongly influenced by M. S. Pinsker’s classic Information
and Information Stability of Random Variables and Processes and by the seminal
work of A. N. Kolmogorov, I. M. Gelfand, A. M. Yaglom, and R. L. Dobrushin on
information measures for abstract alphabets and their convergence properties.
Many of the results herein are extensions of their generalizations of Shannon’s
original results. The mathematical models of this treatment are more general
than traditional treatments in that nonstationary and nonergodic information
processes are treated. The models are somewhat less general than those of the
Soviet school of information theory in the sense that standard alphabets rather
than completely abstract alphabets are considered. This restriction, however,
permits many stronger results as well as the extension to nonergodic processes.
In addition, the assumption of standard spaces simplifies many proofs and such
spaces include as examples virtually all examples of engineering interest.

The information convergence results are combined with ergodic theorems
to prove general Shannon coding theorems for sources and channels. The re-
sults are not the most general known and the converses are not the strongest
available, but they are sufficently general to cover most systems encountered
in applications and they provide an introduction to recent extensions requiring

xi



xii PROLOGUE

significant additional mathematical machinery. Several of the generalizations
have not previously been treated in book form. Examples of novel topics for an
information theory text include asymptotic mean stationary sources, one-sided
sources as well as two-sided sources, nonergodic sources, d̄-continuous channels,
and sliding block or stationary codes . Another novel aspect is the use of recent
proofs of general Shannon-McMillan-Breiman theorems which do not use mar-
tingale theory — a coding proof of Ornstein and Weiss [118] is used to prove
the almost everywhere convergence of sample entropy for discrete alphabet pro-
cesses and a variation on the sandwich approach of Algoet and Cover [7] is used
to prove the convergence of relative entropy densities for general standard al-
phabet processes. Both results are proved for asymptotically mean stationary
processes which need not be ergodic.

This material can be considered as a sequel to my book Probability, Random
Processes, and Ergodic Properties [51] wherein the prerequisite results on prob-
ability, standard spaces, and ordinary ergodic properties may be found. This
book is self contained with the exception of common (and a few less common)
results which may be found in the first book.

It is my hope that the book will interest engineers in some of the mathemat-
ical aspects and general models of the theory and mathematicians in some of
the important engineering applications of performance bounds and code design
for communication systems.

Information theory, the mathematical theory of communication, has two
primary goals: The first is the development of the fundamental theoretical lim-
its on the achievable performance when communicating a given information
source over a given communications channel using coding schemes from within
a prescribed class. The second goal is the development of coding schemes that
provide performance that is reasonably good in comparison with the optimal
performance given by the theory. Information theory was born in a surpris-
ingly rich state in the classic papers of Claude E. Shannon [131] [132] which
contained the basic results for simple memoryless sources and channels and in-
troduced more general communication systems models, including finite state
sources and channels. The key tools used to prove the original results and many
of those that followed were special cases of the ergodic theorem and a new vari-
ation of the ergodic theorem which considered sample averages of a measure of
the entropy or self information in a process.

Information theory can be viewed as simply a branch of applied probability
theory. Because of its dependence on ergodic theorems, however, it can also be
viewed as a branch of ergodic theory, the theory of invariant transformations
and transformations related to invariant transformations. In order to develop
the ergodic theory example of principal interest to information theory, suppose
that one has a random process, which for the moment we consider as a sam-
ple space or ensemble of possible output sequences together with a probability
measure on events composed of collections of such sequences. The shift is the
transformation on this space of sequences that takes a sequence and produces a
new sequence by shifting the first sequence a single time unit to the left. In other
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words, the shift transformation is a mathematical model for the effect of time
on a data sequence. If the probability of any sequence event is unchanged by
shifting the event, that is, by shifting all of the sequences in the event, then the
shift transformation is said to be invariant and the random process is said to be
stationary. Thus the theory of stationary random processes can be considered as
a subset of ergodic theory. Transformations that are not actually invariant (ran-
dom processes which are not actually stationary) can be considered using similar
techniques by studying transformations which are almost invariant, which are
invariant in an asymptotic sense, or which are dominated or asymptotically
dominated in some sense by an invariant transformation. This generality can
be important as many real processes are not well modeled as being stationary.
Examples are processes with transients, processes that have been parsed into
blocks and coded, processes that have been encoded using variable-length codes
or finite state codes and channels with arbitrary starting states.

Ergodic theory was originally developed for the study of statistical mechanics
as a means of quantifying the trajectories of physical or dynamical systems.
Hence, in the language of random processes, the early focus was on ergodic
theorems: theorems relating the time or sample average behavior of a random
process to its ensemble or expected behavior. The work of Hoph [65], von
Neumann [148] and others culminated in the pointwise or almost everywhere
ergodic theorem of Birkhoff [16].

In the 1940’s and 1950’s Shannon made use of the ergodic theorem in the
simple special case of memoryless processes to characterize the optimal perfor-
mance theoretically achievable when communicating information sources over
constrained random media called channels. The ergodic theorem was applied
in a direct fashion to study the asymptotic behavior of error frequency and
time average distortion in a communication system, but a new variation was
introduced by defining a mathematical measure of the entropy or information
in a random process and characterizing its asymptotic behavior. These results
are known as coding theorems. Results describing performance that is actually
achievable, at least in the limit of unbounded complexity and time, are known as
positive coding theorems. Results providing unbeatable bounds on performance
are known as converse coding theorems or negative coding theorems. When the
same quantity is given by both positive and negative coding theorems, one has
exactly the optimal performance theoretically achievable by the given commu-
nication systems model.

While mathematical notions of information had existed before, it was Shan-
non who coupled the notion with the ergodic theorem and an ingenious idea
known as “random coding” in order to develop the coding theorems and to
thereby give operational significance to such information measures. The name
“random coding” is a bit misleading since it refers to the random selection of
a deterministic code and not a coding system that operates in a random or
stochastic manner. The basic approach to proving positive coding theorems
was to analyze the average performance over a random selection of codes. If
the average is good, then there must be at least one code in the ensemble of
codes with performance as good as the average. The ergodic theorem is cru-
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cial to this argument for determining such average behavior. Unfortunately,
such proofs promise the existence of good codes but give little insight into their
construction.

Shannon’s original work focused on memoryless sources whose probability
distribution did not change with time and whose outputs were drawn from a fi-
nite alphabet or the real line. In this simple case the well-known ergodic theorem
immediately provided the required result concerning the asymptotic behavior of
information. He observed that the basic ideas extended in a relatively straight-
forward manner to more complicated Markov sources. Even this generalization,
however, was a far cry from the general stationary sources considered in the
ergodic theorem.

To continue the story requires a few additional words about measures of
information. Shannon really made use of two different but related measures.
The first was entropy, an idea inherited from thermodynamics and previously
proposed as a measure of the information in a random signal by Hartley [64].
Shannon defined the entropy of a discrete time discrete alphabet random pro-
cess {Xn}, which we denote by H(X) while deferring its definition, and made
rigorous the idea that the the entropy of a process is the amount of informa-
tion in the process. He did this by proving a coding theorem showing that
if one wishes to code the given process into a sequence of binary symbols so
that a receiver viewing the binary sequence can reconstruct the original process
perfectly (or nearly so), then one needs at least H(X) binary symbols or bits
(converse theorem) and one can accomplish the task with very close to H(X)
bits (positive theorem). This coding theorem is known as the noiseless source
coding theorem.

The second notion of information used by Shannon was mutual information.
Entropy is really a notion of self information–the information provided by a
random process about itself. Mutual information is a measure of the information
contained in one process about another process. While entropy is sufficient to
study the reproduction of a single process through a noiseless environment, more
often one has two or more distinct random processes, e.g., one random process
representing an information source and another representing the output of a
communication medium wherein the coded source has been corrupted by another
random process called noise. In such cases observations are made on one process
in order to make decisions on another. Suppose that {Xn, Yn} is a random
process with a discrete alphabet, that is, taking on values in a discrete set. The
coordinate random processes {Xn} and {Yn} might correspond, for example,
to the input and output of a communication system. Shannon introduced the
notion of the average mutual information between the two processes:

I(X,Y ) = H(X) +H(Y )−H(X,Y ), (1)

the sum of the two self entropies minus the entropy of the pair. This proved to
be the relevant quantity in coding theorems involving more than one distinct
random process: the channel coding theorem describing reliable communication
through a noisy channel, and the general source coding theorem describing the
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coding of a source for a user subject to a fidelity criterion. The first theorem
focuses on error detection and correction and the second on analog-to-digital
conversion and data compression. Special cases of both of these coding theorems
were given in Shannon’s original work.

Average mutual information can also be defined in terms of conditional en-
tropy (or equivocation) H(X|Y ) = H(X,Y )−H(Y ) and hence

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(X|Y ). (2)

In this form the mutual information can be interpreted as the information con-
tained in one process minus the information contained in the process when the
other process is known. While elementary texts on information theory abound
with such intuitive descriptions of information measures, we will minimize such
discussion because of the potential pitfall of using the interpretations to apply
such measures to problems where they are not appropriate. ( See, e.g., P. Elias’
“Information theory, photosynthesis, and religion” in his “Two famous papers”
[36].) Information measures are important because coding theorems exist im-
buing them with operational significance and not because of intuitively pleasing
aspects of their definitions.

We focus on the definition (1) of mutual information since it does not require
any explanation of what conditional entropy means and since it has a more
symmetric form than the conditional definitions. It turns out that H(X,X) =
H(X) (the entropy of a random variable is not changed by repeating it) and
hence from (1)

I(X,X) = H(X) (3)

so that entropy can be considered as a special case of average mutual informa-
tion.

To return to the story, Shannon’s work spawned the new field of information
theory and also had a profound effect on the older field of ergodic theory.

Information theorists, both mathematicians and engineers, extended Shan-
non’s basic approach to ever more general models of information sources, coding
structures, and performance measures. The fundamental ergodic theorem for
entropy was extended to the same generality as the ordinary ergodic theorems by
McMillan [104] and Breiman [19] and the result is now known as the Shannon-
McMillan-Breiman theorem. (Other names are the asymptotic equipartition
theorem or AEP, the ergodic theorem of information theory, and the entropy
theorem.) A variety of detailed proofs of the basic coding theorems and stronger
versions of the theorems for memoryless, Markov, and other special cases of ran-
dom processes were developed, notable examples being the work of Feinstein [38]
[39] and Wolfowitz (see, e.g., Wolfowitz [153].) The ideas of measures of infor-
mation, channels, codes, and communications systems were rigorously extended
to more general random processes with abstract alphabets and discrete and
continuous time by Khinchine [73], [74] and by Kolmogorov and his colleagues,
especially Gelfand, Yaglom, Dobrushin, and Pinsker [45], [91], [88], [32], [126].
(See, for example, “Kolmogorov’s contributions to information theory and algo-
rithmic complexity” [23].) In almost all of the early Soviet work, it was average
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mutual information that played the fundamental role. It was the more natu-
ral quantity when more than one process were being considered. In addition,
the notion of entropy was not useful when dealing with processes with contin-
uous alphabets since it is generally infinite in such cases. A generalization of
the idea of entropy called discrimination was developed by Kullback (see, e.g.,
Kullback [93]) and was further studied by the Soviet school. This form of infor-
mation measure is now more commonly referred to as relative entropy or cross
entropy (or Kullback-Leibler number) and it is better interpreted as a measure
of similarity between probability distributions than as a measure of information
between random variables. Many results for mutual information and entropy
can be viewed as special cases of results for relative entropy and the formula for
relative entropy arises naturally in some proofs.

It is the mathematical aspects of information theory and hence the descen-
dants of the above results that are the focus of this book, but the developments
in the engineering community have had as significant an impact on the founda-
tions of information theory as they have had on applications. Simpler proofs of
the basic coding theorems were developed for special cases and, as a natural off-
shoot, the rate of convergence to the optimal performance bounds characterized
in a variety of important cases. See, e.g., the texts by Gallager [43], Berger [11],
and Csiszàr and Körner [26]. Numerous practicable coding techniques were de-
veloped which provided performance reasonably close to the optimum in many
cases: from the simple linear error correcting and detecting codes of Slepian
[139] to the huge variety of algebraic codes currently being implemented (see,
e.g., [13], [150],[96], [98], [18]) and the various forms of convolutional, tree, and
trellis codes for error correction and data compression (see, e.g., [147], [69]).
Clustering techniques have been used to develop good nonlinear codes (called
“vector quantizers”) for data compression applications such as speech and image
coding [49], [46], [100], [69], [119]. These clustering and trellis search techniques
have been combined to form single codes that combine the data compression
and reliable communication operations into a single coding system [8].

The engineering side of information theory through the middle 1970’s has
been well chronicled by two IEEE collections: Key Papers in the Development
of Information Theory, edited by D. Slepian [140], and Key Papers in the Devel-
opment of Coding Theory, edited by E. Berlekamp [14]. In addition there have
been several survey papers describing the history of information theory during
each decade of its existence published in the IEEE Transactions on Information
Theory.

The influence on ergodic theory of Shannon’s work was equally great but in
a different direction. After the development of quite general ergodic theorems,
one of the principal issues of ergodic theory was the isomorphism problem, the
characterization of conditions under which two dynamical systems are really the
same in the sense that each could be obtained from the other in an invertible
way by coding. Here, however, the coding was not of the variety considered by
Shannon — Shannon considered block codes, codes that parsed the data into
nonoverlapping blocks or windows of finite length and separately mapped each
input block into an output block. The more natural construct in ergodic theory
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can be called a sliding block code — here the encoder views a block of possibly
infinite length and produces a single symbol of the output sequence using some
mapping (or code or filter). The input sequence is then shifted one time unit to
the left, and the same mapping applied to produce the next output symbol, and
so on. This is a smoother operation than the block coding structure since the
outputs are produced based on overlapping windows of data instead of on a com-
pletely different set of data each time. Unlike the Shannon codes, these codes
will produce stationary output processes if given stationary input processes. It
should be mentioned that examples of such sliding block codes often occurred
in the information theory literature: time-invariant convolutional codes or, sim-
ply, time-invariant linear filters are sliding block codes. It is perhaps odd that
virtually all of the theory for such codes in the information theory literature
was developed by effectively considering the sliding block codes as very long
block codes. Recently sliding block codes have proved a useful structure for the
design of noiseless codes for constrained alphabet channels such as magnetic
recording devices, and techniques from symbolic dynamics have been applied to
the design of such codes. See, for example [3], [101].

Shannon’s noiseless source coding theorem suggested a solution to the iso-
morphism problem: If we assume for the moment that one of the two processes
is binary, then perfect coding of a process into a binary process and back into
the original process requires that the original process and the binary process
have the same entropy. Thus a natural conjecture is that two processes are iso-
morphic if and only if they have the same entropy. A major difficulty was the
fact that two different kinds of coding were being considered: stationary sliding
block codes with zero error by the ergodic theorists and either fixed length block
codes with small error or variable length (and hence nonstationary) block codes
with zero error by the Shannon theorists. While it was plausible that the former
codes might be developed as some sort of limit of the latter, this proved to be
an extremely difficult problem. It was Kolmogorov [89], [90] who first reasoned
along these lines and proved that in fact equal entropy (appropriately defined)
was a necessary condition for isomorphism.

Kolmogorov’s seminal work initiated a new branch of ergodic theory devoted
to the study of entropy of dynamical systems and its application to the isomor-
phism problem. Most of the original work was done by Soviet mathematicians;
notable papers are those by Sinai [136] [137] (in ergodic theory entropy is also
known as the Kolmogorov-Sinai invariant), Pinsker [126], and Rohlin and Sinai
[128]. An actual construction of a perfectly noiseless sliding block code for a spe-
cial case was provided by Meshalkin [105]. While much insight was gained into
the behavior of entropy and progress was made on several simplified versions of
the isomorphism problem, it was several years before Ornstein [115] proved a
result that has since come to be known as the Ornstein isomorphism theorem or
the Kolmogorov-Ornstein or Kolmogorov-Sinai-Ornstein isomorphism theorem.

Ornstein showed that if one focused on a class of random processes which
we shall call B-processes, then two processes are indeed isomorphic if and only
if they have the same entropy. B-process are also called Bernoulli processes
in the ergodic theory literature, but this is potentially confusing because of



xviii PROLOGUE

the usage of “Bernoulli process” as a synonym of an independent identically
distributed (iid) process in information theory and random process theory. B-
processes have several equivalent definitions, perhaps the simplest is that they
are processes which can be obtained by encoding a memoryless process using a
sliding block code. This class remains the most general class known for which
the isomorphism conjecture holds. In the course of his proof, Ornstein developed
intricate connections between block coding and sliding block coding. He used
Shannon-like techniques on the block codes, then imbedded the block codes
into sliding block codes, and then used the stationary structure of the sliding
block codes to advantage in limiting arguments to obtain the required zero error
codes. Several other useful techniques and results were introduced in the proof:
notions of the distance between processes and relations between the goodness of
approximation and the difference of entropy. Ornstein expanded these results
into a book [117] and gave a tutorial discussion in the premier issue of the Annals
of Probability [116]. Several correspondence items by other ergodic theorists
discussing the paper accompanied the article.

The origins of this book lie in the tools developed by Ornstein for the proof
of the isomorphism theorem rather than with the result itself. During the early
1970’s I first become interested in ergodic theory because of joint work with Lee
D. Davisson on source coding theorems for stationary nonergodic processes. The
ergodic decomposition theorem discussed in Ornstein [116] provided a needed
missing link and led to an intense campaign on my part to learn the funda-
mentals of ergodic theory and perhaps find other useful tools. This effort was
greatly eased by Paul Shields’ book The Theory of Bernoulli Shifts [133] and by
discussions with Paul on topics in both ergodic theory and information theory.
This in turn led to a variety of other applications of ergodic theoretic techniques
and results to information theory, mostly in the area of source coding theory:
proving source coding theorems for sliding block codes and using process dis-
tance measures to prove universal source coding theorems and to provide new
characterizations of Shannon distortion-rate functions. The work was done with
Dave Neuhoff, like me then an apprentice ergodic theorist, and Paul Shields.

With the departure of Dave and Paul from Stanford, my increasing inter-
est led me to discussions with Don Ornstein on possible applications of his
techniques to channel coding problems. The interchange often consisted of my
describing a problem, his generation of possible avenues of solution, and then
my going off to work for a few weeks to understand his suggestions and work
them through.

One problem resisted our best efforts–how to synchronize block codes over
channels with memory, a prerequisite for constructing sliding block codes for
such channels. In 1975 I had the good fortune to meet and talk with Roland Do-
brushin at the 1975 IEEE/USSR Workshop on Information Theory in Moscow.
He observed that some of his techniques for handling synchronization in memo-
ryless channels should immediately generalize to our case and therefore should
provide the missing link. The key elements were all there, but it took seven
years for the paper by Ornstein, Dobrushin and me to evolve and appear [59].

Early in the course of the channel coding paper, I decided that having the
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solution to the sliding block channel coding result in sight was sufficient excuse
to write a book on the overlap of ergodic theory and information theory. The
intent was to develop the tools of ergodic theory of potential use to information
theory and to demonstrate their use by proving Shannon coding theorems for
the most general known information sources, channels, and code structures.
Progress on the book was disappointingly slow, however, for a number of reasons.
As delays mounted, I saw many of the general coding theorems extended and
improved by others (often by J. C. Kieffer) and new applications of ergodic
theory to information theory developed, such as the channel modeling work
of Neuhoff and Shields [111], [114], [113], [112] and design methods for sliding
block codes for input restricted noiseless channels by Adler, Coppersmith, and
Hasner [3] and Marcus [101]. Although I continued to work in some aspects of
the area, especially with nonstationary and nonergodic processes and processes
with standard alphabets, the area remained for me a relatively minor one and
I had little time to write. Work and writing came in bursts during sabbaticals
and occasional advanced topic seminars. I abandoned the idea of providing the
most general possible coding theorems and decided instead to settle for coding
theorems that were sufficiently general to cover most applications and which
possessed proofs I liked and could understand.

Only one third of this book is actually devoted to Shannon source and chan-
nel coding theorems; the remainder can be viewed as a monograph on infor-
mation and distortion measures and their properties, especially their ergodic
properties.

Because of delays in the original project, the book was split into two smaller
books and the first, Probability, Random Processes, and Ergodic Properties,
was published by Springer-Verlag in 1988 [50] and is currently available online
at http://ee.stanford.edu/∼gray/arp.html. It treats advanced probability
and random processes with an emphasis on processes with standard alphabets,
on nonergodic and nonstationary processes, and on necessary and sufficient
conditions for the convergence of long term sample averages. Asymptotically
mean stationary sources and the ergodic decomposition are there treated in
depth and recent simplified proofs of the ergodic theorem due to Ornstein and
Weiss [118] and others were incorporated. That book provides the background
material and introduction to this book, the split naturally falling before the
introduction of entropy. The first chapter of this book reviews some of the basic
notation of the first one in information theoretic terms, but results are often
simply quoted as needed from the first book without any attempt to derive
them. The two books together are self-contained in that all supporting results
from probability theory and ergodic theory needed here may be found in the
first book. This book is self-contained so far as its information theory content,
but it should be considered as an advanced text on the subject and not as an
introductory treatise to the reader only wishing an intuitive overview.

Here the Shannon-McMillan-Breiman theorem is proved using the coding
approach of Ornstein and Weiss [118] (see also Shield’s tutorial paper [134])
and hence the treatments of ordinary ergodic theorems in the first book and the
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ergodic theorems for information measures in this book are consistent. The ex-
tension of the Shannon-McMillan-Breiman theorem to densities is proved using
the “sandwich” approach of Algoet and Cover [7], which depends strongly on
the usual pointwise or Birkhoff ergodic theorem: sample entropy is asymptot-
ically sandwiched between two functions whose limits can be determined from
the ergodic theorem. These results are the most general yet published in book
form and differ from traditional developments in that martingale theory is not
required in the proofs.

A few words are in order regarding topics that are not contained in this
book. I have not included multiuser information theory for two reasons: First,
after including the material that I wanted most, there was no room left. Second,
my experience in the area is slight and I believe this topic can be better handled
by others. Results as general as the single user systems described here have not
yet been developed. Good surveys of the multiuser area may be found in El
Gamal and Cover [44] van der Meulen [144] and Berger [12]

Traditional noiseless coding theorems and actual codes such as the Huffman
codes are not considered in depth because quite good treatments exist in the
literature, e.g., [43], [1], [103]. The corresponding ergodic theory result–Ornstein
isomorphism theorem–is also not proved, because its proof is difficult and the
result is not needed for the Shannon coding theorems. Many techniques used
in its proof, however, are used here for similar and other purposes.

The actual computation of channel capacity and distortion rate functions
has not been included because existing treatments [43], [17], [11], [52] are quite
adequate.

This book does not treat code design techniques. Algebraic coding is well
developed in existing texts on the subject [13], [150], [96], [18]. Allen Gersho
and I wrote a book on the theory and design of nonlinear coding techniques
such as vector quantizers and trellis codes for analog-to-digital conversion and
for source coding (data compression) and combined source and channel coding
applications [47].

Universal codes, codes which work well for an unknown source, and variable
rate codes, codes producing a variable number of bits for each input vector, are
not considered. The interested reader is referred to [110] [97] [78] [79] [28] and
the references therein.

An active research area that has made good use of the ideas of relative en-
tropy to characterize exponential growth is that of large deviations theory[145][31].
These techniques have been used to provide new proofs of the basic source cod-
ing theorems[22]. These topics are not treated here.

Lastly, J. C. Kieffer developed a powerful new ergodic theorem that can be
used to prove both traditional ergodic theorems and the extended Shannon-
McMillan-Brieman theorem [84]. He has used this theorem to prove new strong
(almost everywhere) versions of the souce coding theorem and its converse, that
is, results showing that sample average distortion is with probability one no
smaller than the distortion-rate function and that there exist codes with sam-
ple average distortion arbitrarily close to the distortion-rate function [85] [83].
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These results should have a profound impact on the future development of the
theoretical tools and results of information theory. Their imminent publication
provide a strong motivation for the completion of this monograph, which is
devoted to the traditional methods. Tradition has its place, however, and the
methods and results treated here should retain much of their role at the core of
the theory of entropy and information. It is hoped that this collection of topics
and methods will find a niche in the literature.

19 November 2000 Revision The original edition went out of print in
2000. Hence I took the opportunity to fix more typos which have been brought
to my attention (thanks in particular to Yariv Ephraim) and to prepare the book
for Web posting. This is done with the permission of the original publisher and
copyright-holder, Springer-Verlag. I hope someday to do some more serious
revising, but for the moment I am content to fix the known errors and make the
manuscript available.

20 August 2008 Revision In the summer of 2008 the numerous minor
tweaks and corrections were made in the manuscript while reviewing it while
considering a possible second edition.

16 July 2009 Revision Some typos corrected. This summer I will begin a
major revision for a Second Edition, to be published by Springer. The current
form will be fixed as the final version of the First Edition (but I will continue
to fix any typos found by me or readers).

17 February 2013 Corrections Typos corrected and the proof simplified
for the proof of the variational description of relative entropy.

3 June 2023 Revision This revision includes a collection of fixes of minor
typos collected through the years along with corrected versions of two proofs.
The most important is that of the entropy ergodic theorem for the basic case
of discrete stationary and ergodic sources, Lemma 3.2.1. My proof was inspired
by discussions with Paul Shields regarding his variation of an approach by Orn-
stein and Weiss. I made a mistake, however, in the counting argument which
propagated to the Second Edition of this book. A corrected proof is presented
here and in the Errata for the Second Edition. The other major fix is a cor-
rection to the variational description of relative entropy. Repaired proofs are
provided in Chapters 5 and 7 along with some history and acknowledgements
for the discovery and repair of my errors.
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Chapter 1

Information Sources

1.1 Introduction

An information source or source is a mathematical model for a physical entity
that produces a succession of symbols called “outputs” in a random manner.
The symbols produced may be real numbers such as voltage measurements from
a transducer, binary numbers as in computer data, two dimensional intensity
fields as in a sequence of images, continuous or discontinuous waveforms, and
so on. The space containing all of the possible output symbols is called the
alphabet of the source and a source is essentially an assignment of a probability
measure to events consisting of sets of sequences of symbols from the alphabet.
It is useful, however, to explicitly treat the notion of time as a transformation
of sequences produced by the source. Thus in addition to the common random
process model we shall also consider modeling sources by dynamical systems as
considered in ergodic theory.

The material in this chapter is a distillation of [50] and is intended to estab-
lish notation.

1.2 Probability Spaces and Random Variables

A measurable space (Ω,B) is a pair consisting of a sample space Ω together with
a σ-field B of subsets of Ω (also called the event space). A σ-field or σ-algebra
B is a nonempty collection of subsets of Ω with the following properties:

Ω ∈ B. (1.1)

If F ∈ B, then F c = {ω : ω 6∈ F} ∈ B. (1.2)

If Fi ∈ B; i = 1, 2, . . . , then
⋃
i

Fi ∈ B. (1.3)

1
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From de Morgan’s “laws” of elementary set theory it follows that also

∞⋂
i=1

Fi = (

∞⋃
i=1

F ci )c ∈ B.

An event space is a collection of subsets of a sample space (called events by
virtue of belonging to the event space) such that any countable sequence of set
theoretic operations (union, intersection, complementation) on events produces
other events. Note that there are two extremes: the largest possible σ-field of
Ω is the collection of all subsets of Ω (sometimes called the power set) and the
smallest possible σ-field is {Ω, ∅}, the entire space together with the null set
∅ = Ωc (called the trivial space).

If instead of the closure under countable unions required by (1.3), we only
require that the collection of subsets be closed under finite unions, then we say
that the collection of subsets is a field.

While the concept of a field is simpler to work with, a σ-field possesses the
additional important property that it contains all of the limits of sequences of
sets in the collection. That is, if Fn, n = 1, 2, · · · is an increasing sequence of
sets in a σ-field, that is, if Fn−1 ⊂ Fn and if F =

⋃∞
n=1 Fn (in which case we

write Fn ↑ F or limn→∞ Fn = F ), then also F is contained in the σ-field. In
a similar fashion we can define decreasing sequences of sets: If Fn decreases to
F in the sense that Fn+1 ⊂ Fn and F =

⋂∞
n=1 Fn, then we write Fn ↓ F . If

Fn ∈ B for all n, then F ∈ B.
A probability space (Ω,B, P ) is a triple consisting of a sample space Ω , a σ-

field B of subsets of Ω , and a probability measure P which assigns a real number
P (F ) to every member F of the σ-field B so that the following conditions are
satisfied:

• Nonnegativity:
P (F ) ≥ 0, all F ∈ B; (1.4)

• Normalization:
P (Ω) = 1; (1.5)

• Countable Additivity:

If Fi ∈ B, i = 1, 2, · · · are disjoint, then

P (

∞⋃
i=1

Fi) =

∞∑
i=1

P (Fi). (1.6)

A set function P satisfying only (1.4) and (1.6) but not necessarily (1.5) is
called a measure and the triple (Ω,B, P ) is called a measure space. Since the
probability measure is defined on a σ-field, such countable unions of subsets of
Ω in the σ-field are also events in the σ-field.

A standard result of basic probability theory is that if Gn ↓ ∅ (the empty or
null set), that is, if Gn+1 ⊂ Gn for all n and

⋂∞
n=1Gn = ∅ , then we have
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• Continuity at ∅:
lim
n→∞

P (Gn) = 0. (1.7)

similarly it follows that we have

• Continuity from Below:

If Fn ↑ F, then lim
n→∞

P (Fn) = P (F ), (1.8)

and

• Continuity from Above:

If Fn ↓ F, then lim
n→∞

P (Fn) = P (F ). (1.9)

Given a measurable space (Ω,B), a collection G of members of B is said to
generate B and we write σ(G) = B if B is the smallest σ-field that contains G;
that is, if a σ-field contains all of the members of G, then it must also contain all
of the members of B. The following is a fundamental approximation theorem of
probability theory. A proof may be found in Corollary 1.5.3 of [50]. The result
is most easily stated in terms of the symmetric difference ∆ defined by

F∆G ≡ (F ∩Gc) ∪ (F c ∩G).

Theorem 1.2.1 Given a probability space (Ω,B, P ) and a generating field F ,
that is, F is a field and B = σ(F), then given F ∈ B and ε > 0, there exists an
F0 ∈ F such that P (F∆F0) ≤ ε.

Let (A,BA) denote another measurable space. A random variable or mea-
surable function defined on (Ω,B) and taking values in (A,BA) is a mapping or
function f : Ω→ A with the property that

if F ∈ BA, then f−1(F ) = {ω : f(ω) ∈ F} ∈ B. (1.10)

The name “random variable” is commonly associated with the special case where
A is the real line and B the Borel field, the smallest σ-field containing all the
intervals. Occasionally a more general sounding name such as “random object”
is used for a measurable function to implicitly include random variables (A the
real line), random vectors (A a Euclidean space), and random processes (A a
sequence or waveform space). We will use the terms “random variable” in the
more general sense.

A random variable is just a function or mapping with the property that
inverse images of “output events” determined by the random variable are events
in the original measurable space. This simple property ensures that the output
of the random variable will inherit its own probability measure. For example,
with the probability measure Pf defined by

Pf (B) = P (f−1(B)) = P (ω : f(ω) ∈ B); B ∈ BA,
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(A,BA, Pf ) becomes a probability space since measurability of f and elemen-
tary set theory ensure that Pf is indeed a probability measure. The induced
probability measure Pf is called the distribution of the random variable f . The
measurable space (A,BA) or, simply, the sample space A, is called the alphabet
of the random variable f . We shall occasionally also use the notation Pf−1

which is a mnemonic for the relation Pf−1(F ) = P (f−1(F )) and which is less
awkward when f itself is a function with a complicated name, e.g., ΠI→M.

If the alphabet A of a random variable f is not clear from context, then we
shall refer to f as an A-valued random variable. . If f is a measurable function
from (Ω,B) to (A,BA), we will say that f is B/BA-measurable if the σ-fields
might not be clear from context.

Given a probability space (Ω,B, P ), a collection of subsets G is a sub-σ-field
if it is a σ-field and all its members are in B. A random variable f : Ω → A
is said to be measurable with respect to a sub-σ-field G if f−1(H) ∈ G for all
H ∈ BA.

Given a probability space (Ω,B, P ) and a sub-σ-field G, for any event H ∈ B
the conditional probability m(H|G) is defined as any function, say g, which
satisfies the two properties

g is measurable with respect to G (1.11)

∫
G

gdP = m(G
⋂
H); all G ∈ G. (1.12)

An important special case of conditional probability occurs when studying
the distributions of random variables defined on an underlying probability space.
Suppose that X : Ω → AX and Y : Ω → AY are two random variables defined
on (Ω,B, P ) with alphabets AX and AY and σ-fields BAX and BAY , respectively.
Let PXY denote the induced distribution on (AX × AY ,BAX × BAY ), that is,
PXY (F × G) = P (X ∈ F, Y ∈ G) = P (X−1(F )

⋂
Y −1(G)). Let σ(Y ) denote

the sub-σ-field of B generated by Y , that is, Y −1(BAY ). Since the conditional
probability P (F |σ(Y )) is real-valued and measurable with respect to σ(Y ), it
can be written as g(Y (ω)), ω ∈ Ω, for some function g(y). (See, for example,
Lemma 5.2.1 of [50].) Define P (F |y) = g(y). For a fixed F ∈ BAX define the
conditional distribution of F given Y = y by

PX|Y (F |y) = P (X−1(F )|y); y ∈ BAY .

From the properties of conditional probability,

PXY (F ×G) =

∫
G

PX|Y (F |y)dPY (y);F ∈ BAX , G ∈ BAY . (1.13)

It is tempting to think that for a fixed y, the set function defined by
PX|Y (F |y); F ∈ BAX is actually a probability measure. This is not the case in
general. When it does hold for a conditional probability measure, the condi-
tional probability measure is said to be regular. As will be emphasized later, this
text will focus on standard alphabets for which regular conditional probabilites
always exist.
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1.3 Random Processes and Dynamical Systems

We now consider two mathematical models for a source: A random process
and a dynamical system. The first is the familiar one in elementary courses, a
source is just a random process or sequence of random variables. The second
model is possibly less familiar; a random process can also be constructed from
an abstract dynamical system consisting of a probability space together with a
transformation on the space. The two models are connected by considering a
time shift to be a transformation.

A discrete time random process or for our purposes simply a random process
is a sequence of random variables {Xn}n∈T or {Xn;n ∈ T }, where T is an
index set, defined on a common probability space (Ω,B, P ). We define a source
as a random process, although we could also use the alternative definition of
a dynamical system to be introduced shortly. We usually assume that all of
the random variables share a common alphabet, say A. The two most common
index sets of interest are the set of all integers Z = {· · · ,−2,−1, 0, 1, 2, · · · },
in which case the random process is referred to as a two-sided random process,
and the set of all nonnegative integers Z+ = {0, 1, 2, · · · }, in which case the
random process is said to be one-sided. One-sided random processes will often
prove to be far more difficult in theory, but they provide better models for
physical random processes that must be “turned on” at some time or which
have transient behavior.

Observe that since the alphabet A is general, we could also model continuous
time random processes in the above fashion by letting A consist of a family of
waveforms defined on an interval, e.g., the random variable Xn could in fact be
a continuous time waveform X(t) for t ∈ [nT, (n+ 1)T ), where T is some fixed
positive real number.

The above definition does not specify any structural properties of the index
set T . In particular, it does not exclude the possibility that T be a finite set, in
which case “random vector” would be a better name than “random process.” In
fact, the two cases of T = Z and T = Z+ will be the only important examples
for our purposes. Nonetheless, the general notation of T will be retained in
order to avoid having to state separate results for these two cases.

An abstract dynamical system consists of a probability space (Ω,B, P ) to-
gether with a measurable transformation T : Ω → Ω of Ω into itself. Measura-
bility means that if F ∈ B, then also T−1F = {ω : Tω ∈ F}∈ B. The quadruple
(Ω,B,P ,T ) is called a dynamical system in ergodic theory. The interested reader
can find excellent introductions to classical ergodic theory and dynamical system
theory in the books of Halmos [62] and Sinai [138]. More complete treatments
may be found in [15], [133], [125], [30], [149], [117], [42]. The term “dynamical
systems” comes from the focus of the theory on the long term “dynamics” or
“dynamical behavior” of repeated applications of the transformation T on the
underlying measure space.

An alternative to modeling a random process as a sequence or family of
random variables defined on a common probability space is to consider a sin-
gle random variable together with a transformation defined on the underlying
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probability space. The outputs of the random process will then be values of the
random variable taken on transformed points in the original space. The trans-
formation will usually be related to shifting in time and hence this viewpoint will
focus on the action of time itself. Suppose now that T is a measurable mapping
of points of the sample space Ω into itself. It is easy to see that the cascade or
composition of measurable functions is also measurable. Hence the transforma-
tion Tn defined as T 2ω = T (Tω) and so on (Tnω = T (Tn−1ω)) is a measurable
function for all positive integers n. If f is an A-valued random variable defined
on (Ω, B), then the functions fTn : Ω → A defined by fTn(ω) = f(Tnω) for
ω ∈ Ω will also be random variables for all n in Z+. Thus a dynamical system
together with a random variable or measurable function f defines a one-sided
random process {Xn}n∈Z+ by Xn(ω) = f(Tnω). If it should be true that T is
invertible, that is, T is one-to-one and its inverse T−1 is measurable, then one
can define a two-sided random process by Xn(ω) = f(Tnω), all n in Z.

The most common dynamical system for modeling random processes is that
consisting of a sequence space Ω containing all one- or two-sided A-valued se-
quences together with the shift transformation T , that is, the transformation
that maps a sequence {xn} into the sequence {xn+1} wherein each coordinate
has been shifted to the left by one time unit. Thus, for example, let Ω = AZ+

= {all x = (x0, x1, · · · ) with xi ∈ A for all i} and define T : Ω → Ω by
T (x0, x1, x2, · · · ) = (x1, x2, x3, · · · ). T is called the shift or left shift transforma-
tion on the one-sided sequence space. The shift for two-sided spaces is defined
similarly.

The different models provide equivalent models for a given process: one
emphasizing the sequence of outputs and the other emphasising the action of a
transformation on the underlying space in producing these outputs. In order to
demonstrate in what sense the models are equivalent for given random processes,
we next turn to the notion of the distribution of a random process.

1.4 Distributions

While in principle all probabilistic quantities associated with a random process
can be determined from the underlying probability space, it is often more con-
venient to deal with the induced probability measures or distributions on the
space of possible outputs of the random process. In particular, this allows us to
compare different random processes without regard to the underlying probabil-
ity spaces and thereby permits us to reasonably equate two random processes
if their outputs have the same probabilistic structure, even if the underlying
probability spaces are quite different.

We have already seen that each random variable Xn of the random process
{Xn} inherits a distribution because it is measurable. To describe a process,
however, we need more than simply probability measures on output values of
separate single random variables; we require probability measures on collections
of random variables, that is, on sequences of outputs. In order to place prob-
ability measures on sequences of outputs of a random process, we first must
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construct the appropriate measurable spaces. A convenient technique for ac-
complishing this is to consider product spaces, spaces for sequences formed by
concatenating spaces for individual outputs.

Let T denote any finite or infinite set of integers. In particular, T = Z(n) =
{0, 1, 2, · · · , n − 1}, T = Z, or T = Z+. Define xT = {xi}i∈T . For example,
xZ = (· · · , x−1, x0, x1, · · · ) is a two-sided infinite sequence. When T = Z(n) we
abbreviate xZ(n) to simply xn . Given alphabets Ai, i ∈ T , define the cartesian
product space

×
i∈T

Ai = { all xT : xi,∈ Ai all i in T }.

In most cases all of the Ai will be replicas of a single alphabet A and the above
product will be denoted simply by AT . Thus, for example, A{m,m+1,··· ,n} is
the space of all possible outputs of the process from time m to time n; AZ

is the sequence space of all possible outputs of a two-sided process. We shall
abbreviate the notation for the space AZ(n), the space of all n dimensional
vectors with coordinates in A, by An .

To obtain useful σ-fields of the above product spaces, we introduce the idea of
a rectangle in a product space. A rectangle in AT taking values in the coordinate
σ-fields Bi, i ∈ J , is defined as any set of the form

B = {xT ∈ AT : xi ∈ Bi; all i in J }, (1.14)

where J is a finite subset of the index set T and Bi ∈ Bi for all i ∈ J .
(Hence rectangles are sometimes referred to as finite dimensional rectangles.) A
rectangle as in (1.14) can be written as a finite intersection of one-dimensional
rectangles as

B =
⋂
i∈J
{xT ∈ AT : xi ∈ Bi} =

⋂
i∈J

Xi
−1(Bi) (1.15)

where here we consider Xi as the coordinate functions Xi : AT → A defined by
Xi(x

T ) = xi.
As rectangles in AT are clearly fundamental events, they should be members

of any useful σ-field of subsets of AT . Define the product σ-field BAT as the
smallest σ-field containing all of the rectangles, that is, the collection of sets that
contains the clearly important class of rectangles and the minimum amount of
other stuff required to make the collection a σ-field. To be more precise, given
an index set T of integers, let RECT (Bi, i ∈ T ) denote the set of all rectangles
in AT taking coordinate values in sets in Bi, i ∈ T . We then define the product
σ-field of AT by

BAT = σ(RECT (Bi, i ∈ T )). (1.16)

Consider an index set T and an A-valued random process {Xn}n∈T defined
on an underlying probability space (Ω,B, P ). Given any index set J ⊂ T ,
measurability of the individual random variables Xn implies that of the random
vectors XJ = {Xn;n ∈ J }. Thus the measurable space (AJ ,BAJ ) inherits a
probability measure from the underlying space through the random variables
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XJ . Thus in particular the measurable space (AT ,BAT ) inherits a probability
measure from the underlying probability space and thereby determines a new
probability space (AT ,BAT , PXT ), where the induced probability measure is
defined by

PXT (F ) = P ((XT )−1(F )) = P (ω : XT (ω) ∈ F ); F ∈ BAT . (1.17)

Such probability measures induced on the outputs of random variables are re-
ferred to as distributions for the random variables, exactly as in the simpler case
first treated. When T = {m,m+ 1, · · · ,m+ n− 1}, e.g., when we are treating
Xn
m = (Xn, · · · , Xm+n−1) taking values in An, the distribution is referred to

as an n-dimensional or nth order distribution and it describes the behavior of
an n-dimensional random variable. If T is the entire process index set, e.g., if
T = Z for a two-sided process or T = Z+ for a one-sided process, then the
induced probability measure is defined to be the distribution of the process.
Thus, for example, a probability space (Ω,B, P ) together with a doubly infi-
nite sequence of random variables {Xn}n∈Z induces a new probability space
(AZ ,BAZ , PXZ ) and PXZ is the distribution of the process. For simplicity, let
us now denote the process distribution simply by m. We shall call the proba-
bility space (AT ,BAT ,m) induced in this way by a random process {Xn}n∈Z
the output space or sequence space of the random process.

Since the sequence space (AT ,BAT ,m) of a random process {Xn}n∈Z is a
probability space, we can define random variables and hence also random pro-
cesses on this space. One simple and useful such definition is that of a sampling
or coordinate or projection function defined as follows: Given a product space
AT , define the sampling functions Πn : AT → A by

Πn(xT ) = xn, x
T ∈ AT ; n ∈ T . (1.18)

The sampling function is named Π since it is also a projection. Observe that the
distribution of the random process {Πn}n∈T defined on the probability space
(AT ,BAT ,m) is exactly the same as the distribution of the random process
{Xn}n∈T defined on the probability space (Ω,B, P ). In fact, so far they are the
same process since the {Πn} simply read off the values of the {Xn}.

What happens, however, if we no longer build the Πn on the Xn, that is, we
no longer first select ω from Ω according to P , then form the sequence xT =
XT (ω) = {Xn(ω)}n∈T , and then define Πn(xT ) = Xn(ω)? Instead we directly
choose an x in AT using the probability measure m and then view the sequence
of coordinate values. In other words, we are considering two completely separate
experiments, one described by the probability space (Ω,B, P ) and the random
variables {Xn} and the other described by the probability space (AT ,BAT ,m)
and the random variables {Πn}. In these two separate experiments, the actual
sequences selected may be completely different. Yet intuitively the processes
should be the “same” in the sense that their statistical structures are identical,
that is, they have the same distribution. We make this intuition formal by
defining two processes to be equivalent if their process distributions are identical,
that is, if the probability measures on the output sequence spaces are the same,
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regardless of the functional form of the random variables of the underlying
probability spaces. In the same way, we consider two random variables to be
equivalent if their distributions are identical.

We have described above two equivalent processes or two equivalent models
for the same random process, one defined as a sequence of random variables
on a perhaps very complicated underlying probability space, the other defined
as a probability measure directly on the measurable space of possible output
sequences. The second model will be referred to as a directly given random
process or a the Kolmogorov model for the random process.

Which model is “better” depends on the application. For example, a directly
given model for a random process may focus on the random process itself and not
its origin and hence may be simpler to deal with. If the random process is then
coded or measurements are taken on the random process, then it may be better
to model the encoded random process in terms of random variables defined on
the original random process and not as a directly given random process. This
model will then focus on the input process and the coding operation. We shall
let convenience determine the most appropriate model.

We can now describe yet another model for the above random process, that
is, another means of describing a random process with the same distribution.
This time the model is in terms of a dynamical system. Given the probability
space (AT ,BAT ,m), define the (left) shift transformation T : AT → AT by

T (xT ) = T ({xn}n∈T ) = yT = {yn}n∈T ,

where
yn = xn+1, n ∈ T .

Thus the nth coordinate of yT is simply the (n + 1)st coordinate of xT . (We
assume that T is closed under addition and hence if n and 1 are in T , then so
is (n + 1).) If the alphabet of such a shift is not clear from context, we will
occasionally denote the shift by TA or TAT . The shift can easily be shown to
be measurable.

Consider next the dynamical system (AT ,BAT , P, T ) and the random pro-
cess formed by combining the dynamical system with the zero time sampling
function Π0 (we assume that 0 is a member of T ). If we define Yn(x) = Π0(Tnx)
for x = xT ∈ AT , or, in abbreviated form, Yn = Π0T

n, then the random pro-
cess {Yn}n∈T is equivalent to the processes developed above. Thus we have
developed three different, but equivalent, means of producing the same random
process. Each will be seen to have its uses.

The above development shows that a dynamical system is a more fundamen-
tal entity than a random process since we can always construct an equivalent
model for a random process in terms of a dynamical system–use the directly
given representation, shift transformation, and zero time sampling function.

The shift transformation on a sequence space introduced above is the most
important transformation that we shall encounter. It is not, however, the only
important transformation. When dealing with transformations we will usually
use the notation T to reflect the fact that it is often related to the action of a
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simple left shift of a sequence, yet it should be kept in mind that occasionally
other operators will be considered and the theory to be developed will remain
valid, even if T is not required to be a simple time shift. For example, we will
also consider block shifts.

Most texts on ergodic theory deal with the case of an invertible transforma-
tion, that is, where T is a one-to-one transformation and the inverse mapping
T−1 is measurable. This is the case for the shift on AZ , the two-sided shift. It is
not the case, however, for the one-sided shift defined on AZ+ and hence we will
avoid use of this assumption. We will, however, often point out in the discussion
what simplifications or special properties arise for invertible transformations.

Since random processes are considered equivalent if their distributions are
the same, we shall adopt the notation [A,m,X] for a random process {Xn;n ∈
T } with alphabet A and process distribution m, the index set T usually being
clear from context. We will occasionally abbreviate this to the more common
notation [A,m], but it is often convenient to note the name of the output ran-
dom variables as there may be several, e.g., a random process may have an
input X and output Y . By “the associated probability space” of a random
process [A,m,X] we shall mean the sequence probability space (AT ,BAT ,m).
It will often be convenient to consider the random process as a directly given
random process, that is, to view Xn as the coordinate functions Πn on the se-
quence space AT rather than as being defined on some other abstract space.
This will not always be the case, however, as often processes will be formed by
coding or communicating other random processes. Context should render such
bookkeeping details clear.

1.5 Standard Alphabets

A measurable space (A,BA) is a standard space if there exists a sequence of
finite fields Fn; n = 1, 2, · · · with the following properties:

(1) Fn ⊂ Fn+1 (the fields are increasing).

(2) BA is the smallest σ-field containing all of the Fn (the Fn generate BA or
BA = σ(

⋃∞
n=1 Fn)).

(3) An event Gn ∈ Fn is called an atom of the field if it is nonempty and and
its only subsets which are also field members are itself and the empty set.
If Gn ∈ Fn; n = 1, 2, · · · are atoms and Gn+1 ⊂ Gn for all n, then

∞⋂
n=1

Gn 6= ∅.

Standard spaces are important for several reasons: First, they are a general class
of spaces for which two of the key results of probability hold: (1) the Kolmogorov
extension theorem showing that a random process is completely described by its
finite order distributions, and (2) the existence of regular conditional probability
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measures. Thus, in particular, the conditional probability measure PX|Y (F |y)
of (1.13) is regular if the alphabets AX and AY are standard and hence for each
fixed y ∈ AY the set function PX|Y (F |y); F ∈ BAX is a probability measure.
In this case we can interpret PX|Y (F |y) as P (X ∈ F |Y = y). Second, the
ergodic decomposition theorem of ergodic theory holds for such spaces. Third,
the class is sufficiently general to include virtually all examples arising in ap-
plications, e.g., discrete spaces, the real line, Euclidean vector spaces, Polish
spaces (complete separable metric spaces), etc. The reader is referred to [50]
and the references cited therein for a detailed development of these properties
and examples of standard spaces.

Standard spaces are not the most general space for which the Kolmogorov
extension theorem, the existence of conditional probability, and the ergodic
decomposition theorem hold. These results also hold for perfect spaces which
include standard spaces as a special case. (See, e.g., [130],[141],[127], [99].) We
limit discussion to standard spaces, however, as they are easier to characterize
and work with and they are sufficiently general to handle most cases encountered
in applications. Although standard spaces are not the most general for which the
required probability theory results hold, they are the most general for which all
finitely additive normalized measures extend to countably additive probability
measures, a property which greatly eases the proof of many of the desired results.

Throughout this book we shall assume that the alphabetA of the information
source is a standard space.

1.6 Expectation

Let (Ω,B,m) be a probability space, e.g., the probability space of a directly
given random process with alphabet A, (AT , BA

T ,m). A real-valued random
variable f : Ω → R will also be called a measurement since it is often formed
by taking a mapping or function of some other set of more general random
variables, e.g., the outputs of some random process which might not have real-
valued outputs. Measurements made on such processes, however, will always be
assumed to be real.

Suppose next we have a measurement f whose range space or alphabet
f(Ω) ⊂ R of possible values is finite. Then f is called a discrete random
variable or discrete measurement or digital measurement or, in the common
mathematical terminology, a simple function.

Given a discrete measurement f , suppose that its range space is f(Ω) =
{bi, i = 1, · · · , N}, where the bi are distinct. Define the sets Fi = f−1(bi) =
{x : f(x) = bi}, i = 1, · · · , N . Since f is measurable, the Fi are all members
of B. Since the bi are distinct, the Fi are disjoint. Since every input point in
Ω must map into some bi, the union of the Fi equals Ω. Thus the collection
{Fi; i = 1, 2, · · · , N} forms a partition of Ω. We have therefore shown that any
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discrete measurement f can be expressed in the form

f(x) =

M∑
i=1

bi1Fi(x), (1.19)

where bi ∈ R, the Fi ∈ B form a partition of Ω, and 1Fi is the indicator function
of Fi, i = 1, · · · ,M . Every simple function has a unique representation in this
form with distinct bi and {Fi} a partition.

The expectation or ensemble average or probabilistic average or mean of a
discrete measurement f : Ω → R as in (1.19) with respect to a probability
measure m is defined by

Emf =

M∑
i=0

bim(Fi). (1.20)

An immediate consequence of the definition of expectation is the simple but
useful fact that for any event F in the original probability space,

Em1F = m(F ),

that is, probabilities can be found from expectations of indicator functions.
Again let (Ω,B,m) be a probability space and f : Ω → R a measurement,

that is, a real-valued random variable or measurable real-valued function. Define
the sequence of quantizers qn : R → R, n = 1, 2, · · · , as follows:

qn(r) =


n n ≤ r
(k − 1)2−n (k − 1)2−n ≤ r < k2−n, k = 1, 2, · · · , n2n

−(k − 1)2−n −k2−n ≤ r < −(k − 1)2−n; k = 1, 2, · · · , n2n

−n r < −n.

We now define expectation for general measurements in two steps. If f ≥ 0,
then define

Emf = lim
n→∞

Em(qn(f)). (1.21)

Since the qn are discrete measurements on f , the qn(f) are discrete measure-
ments on Ω (qn(f)(x) = qn(f(x)) is a simple function) and hence the individual
expectations are well defined. Since the qn(f) are nondecreasing, so are the
Em(qn(f)) and this sequence must either converge to a finite limit or grow
without bound, in which case we say it converges to ∞. In both cases the
expectation Emf is well defined, although it may be infinite.

If f is an arbitrary real random variable, define its positive and negative parts
f+(x) = max(f(x), 0) and f−(x) = −min(f(x), 0) so that f(x) = f+(x)−f−(x)
and set

Emf = Emf
+ − Emf− (1.22)

provided this does not have the form +∞−∞, in which case the expectation
does not exist. It can be shown that the expectation can also be evaluated for
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nonnegative measurements by the formula

Emf = sup
discrete g: g≤f

Emg.

The expectation is also called an integral and is denoted by any of the fol-
lowing:

Emf =

∫
fdm =

∫
f(x)dm(x) =

∫
f(x)m(dx).

The subscript m denoting the measure with respect to which the expectation is
taken will occasionally be omitted if it is clear from context.

A measurement f is said to be integrable or m-integrable if Emf exists and
is finite. A function is integrable if and only if its absolute value is integrable.
Define L1(m) to be the space of all m-integrable functions. Given any m-
integrable f and an event B, define∫

B

fdm =

∫
f(x)1B(x) dm(x).

Two random variables f and g are said to be equal m-almost-everywhere
or equal m-a.e. or equal with m-probability one if m(f = g) = m({x : f(x) =
g(x)}) = 1. The m- is dropped if it is clear from context.

Given a probability space (Ω,B,m), suppose that G is a sub-σ-field of B,
that is, it is a σ-field of subsets of Ω and all those subsets are in B (G ⊂ B).
Let f : Ω→ R be an integrable measurement. Then the conditional expectation
E(f |G) is described as any function, say h(ω), that satisfies the following two
properties:

h(ω) is measurable with respect to G (1.23)∫
G

h dm =

∫
G

f dm; all G ∈ G. (1.24)

If a regular conditional probability distribution given G exists, e.g., if the
space is standard, then one has a constructive definition of conditional expecta-
tion: E(f |G)(ω) is simply the expectation of f with respect to the conditional
probability measure m(.|G)(ω). Applying this to the example of two random
variables X and Y with standard alphabets described in Section 1.2 we have
from (1.24) that for integrable f : AX ×AY → R

E(f) =

∫
f(x, y)dPXY (x, y) =

∫
(

∫
f(x, y)dPX|Y (x|y))dPY (y). (1.25)

In particular, for fixed y, f(x, y) is an integrable (and measurable) function of
x.

Equation (1.25) provides a generalization of (1.13) from rectangles to arbi-
trary events. For an arbitrary F ∈ BAX×AY we have that

PXY (F ) =

∫ ∫
(1F (x, y)dPX|Y (x|y))dPY (y) =

∫
PX|Y (Fy|y)dPY (y), (1.26)
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where Fy = {x : (x, y) ∈ F} is called the section of F at y. If F is measurable,
then so is Fy for all y. Alternatively, since 1F (x, y) is measurable with respect
to x for each fixed y, Fy ∈ BAX . The inner integral is just∫

x:(x,y)∈F
dPX|Y (x|y) = PX|Y (Fy|y),

1.7 Asymptotic Mean Stationarity

A dynamical system (or the associated source) (Ω,B, P, T ) is said to be station-
ary if

P (T−1G) = P (G)

for all G ∈ B. It is said to be asymptotically mean stationary or, simply, AMS
if the limit

P̄ (G) = lim
n→∞

1

n

n−1∑
k=0

P (T−kG) (1.27)

exists for all G ∈ B. The following theorems summarize several important
properties of AMS sources. Details may be found in Chapter 6 of [50].

Theorem 1.7.1 If a dynamical system (Ω,B, P, T ) is AMS, then P̄ defined in
(1.27) is a probability measure and (Ω,B, P̄ , T ) is stationary. (P̄ is called the
stationary mean of P .) If an event G is invariant in the sense that T−1G = G,
then

P (G) = P̄ (G).

If a random variable g is invariant in the sense that g(Tx) = g(x) with P
probability 1, then

EP g = EP̄ g.

The stationary mean P̄ asymptotically dominates P in the sense that if P̄ (G)
= 0, then

lim sup
n→∞

P (T−nG) = 0.

Theorem 1.7.2 Given an AMS source {Xn} let σ(Xn, Xn+1, · · · ) denote the
σ-field generated by the random variables Xn, · · · , that is, the smallest σ-field
with respect to which all these random variables are measurable. Define the tail
σ-field F∞ by

F∞ =

∞⋂
n=0

σ(Xn, · · · ).

If G ∈ F∞ and P̄ (G) = 0, then also P (G) = 0.

The tail σ-field can be thought of as events that are determinable by looking
only at samples of the sequence in the arbitrarily distant future. The theorem
states that the stationary mean dominates the original measure on such tail
events in the sense that zero probability under the stationary mean implies zero
probability under the original source.
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1.8 Ergodic Properties

Two of the basic results of ergodic theory that will be called upon extensively
are the pointwise or almost-everywhere ergodic theorem and the ergodic decom-
position theorem We quote these results along with some relevant notation for
reference. Detailed developments may be found in Chapters 6-8 of [50]. The
ergodic theorem states that AMS dynamical systems (and hence also sources)
have convergent sample averages, and it characterizes the limits.

Theorem 1.8.1 If a dynamical system (Ω,B,m, T ) is AMS with stationary
mean m̄ and if f ∈ L1(m̄), then with probability one under m and m̄

lim
n→∞

1

n

n−1∑
i=0

fT i = Em̄(f |I),

where I is the sub-σ-field of invariant events, that is, events G for which T−1G =
G.

The basic idea of the ergodic decomposition is that any stationary source
which is not ergodic can be represented as a mixture of stationary ergodic com-
ponents or subsources.

Theorem 1.8.2 Given the standard sequence space (Ω,B) with shift T as pre-
viously, there exists a family of stationary ergodic measures {px; x ∈ Ω}, called
the ergodic decomposition, with the following properties:

(a) pTx = px.

(b) For any stationary measure m,

m(G) =

∫
px(G)dm(x); all G ∈ B.

(c) For any g ∈ L1(m) ∫
gdm =

∫
(

∫
gdpx)dm(x).

It is important to note that the same collection of stationary ergodic components
works for any stationary measure m. This is the strong form of the ergodic
decomposition.

The final result of this section is a variation on the ergodic decomposition
that will be useful. To describe the result, we need to digress briefly to introduce
a metric on spaces of probability measures. A thorough development can be
found in Chapter 8 of [50]. We have a standard sequence measurable space
(Ω,B) and hence we can generate the σ-field B by a countable field F = {Fn;
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n = 1, 2, · · · }. Given such a countable generating field, a distributional distance
between two probability measures p and m on (Ω,B) is defined by

d(p,m) =

∞∑
n=1

2−n|p(Fn)−m(Fn)|.

Any choice of a countable generating field yields a distributional distance. Such
a distance or metric yields a measurable space of probability measures as follows:
Let Λ denote the space of all probability measures on the original measurable
space (Ω,B). Let B(Λ) denote the σ-field of subsets of Λ generated by all
open spheres using the distributional distance, that is, all sets of the form {p :
d(p,m) ≤ ε} for some m ∈ Λ and some ε > 0. We can now consider properties of
functions that carry sequences in our original space into probability measures.
The following is Theorem 8.5.1 of [50].

Theorem 1.8.3 Fix a standard measurable space (Ω,B) and a transformation
T : Ω → Ω. Then there are a standard measurable space (Λ,L), a family of
stationary ergodic measures {mλ;λ ∈ Λ} on (Ω,B), and a measurable mapping
ψ : Ω→ Λ such that

(a) ψ is invariant (ψ(Tx) = ψ(x) all x);

(b) if m is a stationary measure on (Ω,B) and Pψ is the induced distribution;
that is, Pψ(G) = m(ψ−1(G)) for G ∈ Λ (which is well defined from (a)),
then

m(F ) =

∫
dm(x)mψ(x)(F ) =

∫
dPψ(λ)mλ(F ), all F ∈ B,

and if f ∈ L1(m), then so is
∫
fdmλ Pψ-a.e. and

Emf =

∫
dm(x)Emψ(x)

f =

∫
dPψ(λ)Emλf.

Finally, for any event F , mψ(F ) = m(F |ψ), that is, given the ergodic
decomposition and a stationary measure m , the ergodic component λ is a
version of the conditional probability under m given ψ = λ.

The following corollary to the ergodic decomposition is Lemma 8.6.2 of [50].
It states that the conditional probability of a future event given the entire past
is unchanged by knowing the ergodic component in effect. This is because the
infinite past determines the ergodic component in effect.

Corollary 1.8.1 Suppose that {Xn} is a two-sided stationary process with dis-
tribution m and that {mλ;λ ∈ Λ} is the ergodic decomposition and ψ the er-
godic component function. Then the mapping ψ is measurable with respect to
σ(X−1, X−2, · · · ) and

m((X0, X1, · · · ) ∈ F |X−1, X−2, · · · ) =

mψ((X0, X1, · · · ) ∈ F |X−1, X−2, · · · ); m− a.e.



Chapter 2

Entropy and Information

2.1 Introduction

The development of the idea of entropy of random variables and processes by
Claude Shannon provided the beginnings of information theory and of the mod-
ern age of ergodic theory. We shall see that entropy and related information
measures provide useful descriptions of the long term behavior of random pro-
cesses and that this behavior is a key factor in developing the coding theorems
of information theory. We now introduce the various notions of entropy for ran-
dom variables, vectors, processes, and dynamical systems and we develop many
of the fundamental properties of entropy.

In this chapter we emphasize the case of finite alphabet random processes
for simplicity, reflecting the historical development of the subject. Occasionally
we consider more general cases when it will ease later developments.

2.2 Entropy and Entropy Rate

There are several ways to introduce the notion of entropy and entropy rate. We
take some care at the beginning in order to avoid redefining things later. We also
try to use definitions resembling the usual definitions of elementary information
theory where possible. Let (Ω,B, P, T ) be a dynamical system. Let f be a finite
alphabet measurement (a simple function) defined on Ω and define the one-
sided random process fn = fTn; n = 0, 1, 2, . . .. This process can be viewed
as a coding of the original space, that is, one produces successive coded values
by transforming (e.g., shifting) the points of the space, each time producing
an output symbol using the same rule or mapping. In the usual way we can
construct an equivalent directly given or Kolmogorov model of this process. Let

A = {a1, a2, . . . , a‖A‖} denote the finite alphabet of f and let (AZ+ ,BZ+

A ) be the
resulting one-sided sequence space, where BA is the power set. We abbreviate
the notation for this sequence space to (A∞,B∞A ). Let TA denote the shift
on this space and let X denote the time zero sampling or coordinate function

17
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and define Xn(x) = X(TnAx) = xn. Let m denote the process distribution
induced by the original space and the fTn, i.e., m = Pf̄ = P f̄−1 where f̄(ω) =
(f(ω), f(Tω), f(T 2ω), . . .).

Observe that by construction, shifting the input point yields an output se-
quence that is also shifted, that is,

f̄(Tω) = TAf̄(ω).

Sequence-valued measurements of this form are called stationary or invariant
codings (or time invariant or shift invariant codings in the case of the shift)
since the coding commutes with the transformations.

The entropy and entropy rates of a finite alphabet measurement depend
only on the process distributions and hence are usually more easily stated in
terms of the induced directly given model and the process distribution. For the
moment, however, we point out that the definition can be stated in terms of
either system. Later we will see that the entropy of the underlying system is
defined as a supremum of the entropy rates of all finite alphabet codings of the
system.

The entropy of a discrete alphabet random variable f defined on the proba-
bility space (Ω,B, P ) is defined by

HP (f) = −
∑
a∈A

P (f = a) lnP (f = a). (2.1)

We define 0ln0 to be 0 in the above formula. We shall often use logarithms
to the base 2 instead of natural logarithms. The units for entropy are “nats”
when the natural logarithm is used and “bits” for base 2 logarithms. The
natural logarithms are usually more convenient for mathematics while the base 2
logarithms provide more intuitive descriptions. The subscript P can be omitted
if the measure is clear from context. Be forewarned that the measure will
often not be clear from context since more than one measure may be under
consideration and hence the subscripts will be required. A discrete alphabet
random variable f has a probability mass function (pmf), say pf , defined by
pf (a) = P (f = a) = P ({ω : f(ω) = a}) and hence we can also write

H(f) = −
∑
a∈A

pf (a) ln pf (a).

It is often convenient to consider the entropy not as a function of the par-
ticular outputs of f but as a function of the partition that f induces on Ω. In
particular, suppose that the alphabet of f is A = {a1, a2, . . . , a‖A‖} and define
the partition Q = {Qi; i = 1, 2, . . . , ‖A‖} by Qi = {ω : f(ω) = ai} = f−1({ai}).
In other words, Q consists of disjoint sets which group the points in Ω together
according to what output the measurement f produces. We can consider the
entropy as a function of the partition and write

HP (Q) = −
‖A‖∑
i=1

P (Qi) lnP (Qi). (2.2)
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Clearly different mappings with different alphabets can have the same entropy
if they induce the same partition. Both notations will be used according to the
desired emphasis. We have not yet defined entropy for random variables that
do not have discrete alphabets; we shall do that later.

Return to the notation emphasizing the mapping f rather than the partition.
Defining the random variable P (f) by P (f)(ω) = P (λ : f(λ) = f(ω)) we can
also write the entropy as

HP (f) = EP (− lnP (f)).

Using the equivalent directly given model we have immediately that

HP (f) = HP (Q) = Hm(X0) = Em(− lnm(X0)). (2.3)

At this point one might ask why we are carrying the baggage of notations
for entropy in both the original space and in the sequence space. If we were
dealing with only one measurement f (or Xn), we could confine interest to the
simpler directly-given form. More generally, however, we will be interested in
different measurements or codings on a common system. In this case we will
require the notation using the original system. Hence for the moment we keep
both forms, but we shall often focus on the second where possible and the first
only when necessary.

The nth order entropy of a discrete alphabet measurement f with respect to
T is defined as

H
(n)
P (f) = n−1HP (fn)

where fn = (f, fT, fT 2, . . . , fTn−1) or, equivalently, we define the discrete
alphabet random process Xn(ω) = f(Tnω), then

fn = Xn = X0, X1, . . . , Xn−1.

As previously, this is given by

H(n)
m (X) = n−1Hm(Xn) = n−1Em(− lnm(Xn)).

This is also called the entropy (per-coordinate or per-sample) of the random
vector fn or Xn. We can also use the partition notation here. The partition
corresponding to fn has a particular form: Suppose that we have two partitions,
Q = {Qi} and P = {Pi}. Define their join Q

∨
P as the partition containing

all nonempty intersection sets of the form Qi
⋂
Pj . Define also T−1Q as the

partition containing the atoms T−1Qi. Then fn induces the partition

n−1∨
i=0

T−iQ

and we can write

H
(n)
P (f) = H

(n)
P (Q) = n−1HP (

n−1∨
i=0

T−iQ).
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As before, which notation is preferable depends on whether we wish to emphasize
the mapping f or the partition Q.

The entropy rate or mean entropy of a discrete alphabet measurement f with
respect to the transformation T is defined by

H̄P (f) = lim sup
n→∞

H
(n)
P (f)

= H̄P (Q) = lim sup
n→∞

H
(n)
P (Q)

= H̄m(X) = lim sup
n→∞

H(n)
m (X).

Given a dynamical system (Ω,B, P, T ), the entropy H(P, T ) of the system
(or of the measure with respect to the transformation) is defined by

H(P, T ) = sup
f
H̄P (f) = sup

Q
H̄P (Q),

where the supremum is over all finite alphabet measurements (or codings) or,
equivalently, over all finite measurable partitions of Ω. (We emphasize that
this means alphabets of size M for all finite values of M .) The entropy of a
system is also called the Kolmogorov-Sinai invariant of the system because of
the generalization by Kolmogorov [89] and Sinai [136] of Shannon’s entropy rate
concept to dynamical systems and the demonstration that equal entropy was a
necessary condition for two dynamical systems to be isomorphic.

Suppose that we have a dynamical system corresponding to a finite alphabet
random process {Xn}, then one possible finite alphabet measurement on the
process is f(x) = x0, that is, the time 0 output. In this case clearly H̄P (f) =
H̄P (X) and hence, since the system entropy is defined as the supremum over
all simple measurements,

H(P, T ) ≥ H̄P (X). (2.4)

We shall later see that (2.4) holds with equality for finite alphabet random
processes and provides a generalization of entropy rate for processes that do not
have finite alphabets.

2.3 Basic Properties of Entropy

For simplicity we focus on the entropy rate of a directly given finite alphabet
random process {Xn}. We also will emphasize stationary measures, but we will
try to clarify those results that require stationarity and those that are more
general.

Let A be a finite set. Let Ω = AZ+ and let B be the sigma-field of subsets of
Ω generated by the rectangles. Since A is finite, (A,BA) is standard, where BA is
the power set of A. Thus (Ω,B) is also standard by Lemma 2.4.1 of [50]. In fact,
from the proof that cartesian products of standard spaces are standard, we can
take as a basis for B the fields Fn generated by the finite dimensional rectangles
having the form {x : Xn(x) = xn = an} for all an ∈ An and all positive integers
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n. (Members of this class of rectangles are called thin cylinders.) The union of
all such fields, say F , is then a generating field.

Many of the basic properties of entropy follow from the following simple
inequality.

Lemma 2.3.1 Given two probability mass functions {pi} and {qi}, that is, two
countable or finite sequences of nonnegative numbers that sum to one, then∑

i

pi ln
pi
qi
≥ 0

with equality if and only if qi = pi, all i.

Proof: The lemma follows easily from the elementary inequality for real numbers

lnx ≤ x− 1 (2.5)

(with equality if and only if x = 1) since∑
i

pi ln
qi
pi
≤
∑
i

pi(
qi
pi
− 1) =

∑
i

qi −
∑
i

pi = 0

with equality if and only if qi/pi = 1 all i. Alternatively, the inequality follows
from Jensen’s inequality [63] since ln is a convex

⋂
function:

∑
i

pi ln
qi
pi
≤ ln

(∑
i

pi
qi
pi

)
= 0

with equality if and only if qi/pi = 1, all i. 2

The quantity used in the lemma is of such fundamental importance that we
pause to introduce another notion of information and to recast the inequality
in terms of it. As with entropy, the definition for the moment is only for finite
alphabet random variables. Also as with entropy, there are a variety of ways
to define it. Suppose that we have an underlying measurable space (Ω,B) and
two measures on this space, say P and M , and we have a random variable f
with finite alphabet A defined on the space and that Q is the induced partition
{f−1(a); a ∈ A}. Let Pf and Mf be the induced distributions and let p and m be
the corresponding probability mass functions, e.g., p(a) = Pf ({a}) = P (f = a).
Define the relative entropy of a measurement f with measure P with respect to
the measure M by

HP‖M (f) = HP‖M (Q) =
∑
a∈A

p(a) ln
p(a)

m(a)
=

‖A‖∑
i=1

P (Qi) ln
P (Qi)

M(Qi)
.

Observe that this only makes sense if p(a) is 0 whenever m(a) is, that is, if Pf is
absolutely continuous with respect to Mf or Mf � Pf . Define HP‖M (f) = ∞
if Pf is not absolutely continuous with respect to Mf . The measure M is re-
ferred to as the reference measure. Relative entropies will play an increasingly
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important role as general alphabets are considered. In the early chapters the
emphasis will be on ordinary entropy with similar properties for relative en-
tropies following almost as an afterthought. When considering more abstract
(nonfinite) alphabets later on, relative entropies will prove indispensible.

Analogous to entropy, given a random process {Xn} described by two process
distributions p and m, if it is true that

mXn � pXn ; n = 1, 2, . . . ,

then we can define for each n the nth order relative entropy n−1Hp‖m(Xn) and
the relative entropy rate

H̄p‖m(X) ≡ lim sup
n→∞

1

n
Hp‖m(Xn).

When dealing with relative entropies it is often the measures that are impor-
tant and not the random variable or partition. We introduce a special notation
which emphasizes this fact. Given a probability space (Ω,B, P ), with Ω a finite
space, and another measure M on the same space, we define the divergence of
P with respect to M as the relative entropy of the identity mapping with respect
to the two measures:

D(P‖M) =
∑
ω∈Ω

P (ω) ln
P (ω)

M(ω)
.

Thus, for example, given a finite alphabet measurement f on an arbitrary prob-
ability space (Ω,B, P ), if M is another measure on (Ω,B) then

HP‖M (f) = D(Pf‖Mf ).

Similarly,
Hp‖m(Xn) = D(PXn‖MXn),

where PXn and MXn are the distributions for Xn induced by process measures p
and m, respectively. The theory and properties of relative entropy are therefore
determined by those for divergence.

There are many names and notations for relative entropy and divergence
throughout the literature. The idea was introduced by Kullback for applications
of information theory to statistics (see, e.g., Kullback [93] and the references
therein) and was used to develop information theoretic results by Perez [121]
[123] [122], Dobrushin [32], and Pinsker [126]. Various names in common use for
this quantity are discrimination, discrimination information, Kullback-Leibler
number, directed divergence, and cross entropy.

The lemma can be summarized simply in terms of divergence as in the
following theorem, which is commonly referred to as the divergence inequality.

Theorem 2.3.1 Given any two probability measures P and M on a common
finite alphabet probability space, then

D(P‖M) ≥ 0 (2.6)

with equality if and only if P = M .
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In this form the result is known as the divergence inequality. The fact that
the divergence of one probability measure with respect to another is nonnegative
and zero only when the two measures are the same suggest the interpretation
of divergence as a “distance” between the two probability measures, that is, a
measure of how different the two measures are. It is not a true distance or metric
in the usual sense since it is not a symmetric function of the two measures and
it does not satisfy the triangle inequality. The interpretation is, however, quite
useful for adding insight into results characterizing the behavior of divergence
and it will later be seen to have implications for ordinary distance measures
between probability measures.

The divergence plays a basic role in the family of information measures all
of the information measures that we will encounter–entropy, relative entropy,
mutual information, and the conditional forms of these information measures–
can be expressed as a divergence.

There are three ways to view entropy as a special case of divergence. The
first is to permit M to be a general measure instead of requiring it to be a
probability measure and have total mass 1. In this case entropy is minus the
divergence if M is the counting measure, i.e., assigns measure 1 to every point
in the discrete alphabet. If M is not a probability measure, then the divergence
inequality (2.6) need not hold. Second, if the alphabet of f is Af and has ‖Af‖
elements, then letting M be a uniform pmf assigning probability 1/‖A‖ to all
symbols in A yields

D(P‖M) = ln ‖Af‖ −HP (f) ≥ 0

and hence the entropy is the log of the alphabet size minus the divergence with
respect to the uniform distribution. Third, we can also consider entropy a special
case of divergence while still requiring that M be a probability measure by using
product measures and a bit of a trick. Say we have two measures P and Q on
a common probability space (Ω,B). Define two measures on the product space
(Ω×Ω,B(Ω×Ω)) as follows: Let P×Q denote the usual product measure, that is,
the measure specified by its values on rectangles as P ×Q(F ×G) = P (F )Q(G).
Thus, for example, if P and Q are discrete distributions with pmf’s p and q,
then the pmf for P ×Q is just p(a)q(b). Let P ′ denote the “diagonal” measure
defined by its values on rectangles as P ′(F × G) = P (F

⋂
G). In the discrete

case P ′ has pmf p′(a, b) = p(a) if a = b and 0 otherwise. Then

HP (f) = D(P ′‖P × P ).

Note that if we let X and Y be the coordinate random variables on our product
space, then both P ′ and P × P give the same marginal probabilities to X and
Y , that is, PX = PY = P . P ′ is an extreme distribution on (X,Y ) in the sense
that with probability one X = Y ; the two coordinates are deterministically
dependent on one another. P × P , however, is the opposite extreme in that it
makes the two random variables X and Y independent of one another. Thus
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the entropy of a distribution P can be viewed as the relative entropy between
these two extreme joint distributions having marginals P .

We now return to the general development for entropy. For the moment fix
a probability measure m on a measurable space (Ω,B) and let X and Y be two
finite alphabet random variables defined on that space. Let AX and AY denote
the corresponding alphabets. Let PXY , PX , and PY denote the distributions of
(X,Y ), X, and Y , respectively.

First observe that since PX(a) ≤ 1, all a, − lnPX(a) is positive and hence

H(X) = −
∑
a∈A

PX(a) lnPX(a) ≥ 0. (2.7)

From (2.6) with M uniform as in the second interpretation of entropy above,
if X is a random variable with alphabet AX , then

H(X) ≤ ln ‖AX‖.

Since for any a ∈ AX and b ∈ AY we have that PX(a) ≥ PXY (a, b), it follows
that

H(X,Y ) = −
∑
a,b

PXY (a, b) lnPXY (a, b)

≥ −
∑
a,b

PXY (a, b) lnPX(a) = H(X).

Using Lemma 2.3.1 we have that since PXY and PXPY are probability mass
functions,

H(X,Y )− (H(X) +H(Y )) =
∑
a,b

PXY (a, b) ln
PX(a)PY (b)

PXY (a, b)
≤ 0.

This proves the following result.

Lemma 2.3.2 Given two discrete alphabet random variables X and Y defined
on a common probability space, we have

0 ≤ H(X) (2.8)

and
max(H(X), H(Y )) ≤ H(X,Y ) ≤ H(X) +H(Y ) (2.9)

where the right hand inequality holds with equality if and only if X and Y are
independent. If the alphabet of X has ‖AX‖ symbols, then

HX(X) ≤ ln ‖AX‖. (2.10)

There is another proof of the left hand inequality in (2.9) that uses an
inequality for relative entropy that will be useful later when considering codes.
The following lemma gives the inequality. First we introduce a definition. A
partition R is said to refine a partion Q if every atom in Q is a union of atoms
of R, in which case we write Q < R.
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Lemma 2.3.3 Suppose that P and M are two measures defined on a common
measurable space (Ω,B) and that we are given a finite partitions Q < R. Then

HP‖M (Q) ≤ HP‖M (R)

and
HP (Q) ≤ HP (R)

Comments: The lemma can also be stated in terms of random variables and
mappings in an intuitive way: Suppose that U is a random variable with finite
alphabet A and f : A → B is a mapping from A into another finite alphabet
B. Then the composite random variable f(U) defined by f(U)(ω) = f(U(ω)) is
also a finite random variable. If U induces a partition R and f(U) a partition
Q, then Q < R (since knowing the value of U implies the value of f(U)). Thus
the lemma immediately gives the following corollary.

Corollary 2.3.1 If M � P are two measures describing a random variable U
with alphabet A and if f : A→ B, then

HP‖M (f(U)) ≤ HP‖M (U)

and
HP (f(U)) ≤ HP (U).

Since D(Pf‖Mf ) = HP‖M (f), we have also the following corollary which we
state for future reference.

Corollary 2.3.2 Suppose that P and M are two probability measures on a dis-
crete space and that f is a random variable defined on that space, then

D(Pf‖Mf ) ≤ D(P‖M).

The lemma, discussion, and corollaries can all be interpreted as saying that
taking a measurement on a finite alphabet random variable lowers the entropy
and the relative entropy of that random variable. By choosing U as (X,Y ) and
f(X,Y ) = X or Y , the lemma yields the promised inequality of the previous
lemma.
Proof of Lemma: If HP‖M (R) = +∞, the result is immediate. If HP‖M (Q) =
+∞, that is, if there exists at least one Qj such that M(Qj) = 0 but P (Qj) 6= 0,
then there exists an Ri ⊂ Qj such that M(Ri) = 0 and P (Ri) > 0 and hence
HP‖M (R) = +∞. Lastly assume that both HP‖M (R) and HP‖M (Q) are finite
and consider the difference

HP‖M (R)−HP‖M (Q) =
∑
i

P (Ri) ln
P (Ri)

M(Ri)
−
∑
j

P (Qj) ln
P (Qj)

M(Qj)

=
∑
j

[
∑

i:Ri⊂Qj

P (Ri) ln
P (Ri)

M(Ri)
− P (Qj) ln

P (Qj)

M(Qj)
].
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We shall show that each of the bracketed terms is nonnegative, which will prove
the first inequality. Fix j. If P (Qj) is 0 we are done since then also P (Ri) is 0
for all i in the inner sum since these Ri all belong to Qj . If P (Qj) is not 0, we
can divide by it to rewrite the bracketed term as

P (Qj)

 ∑
i:Ri⊂Qj

P (Ri)

P (Qj)
ln

P (Ri)/P (Qj)

M(Ri)/M(Qj)

 ,

where we also used the fact that M(Qj) cannot be 0 since then P (Qj) would
also have to be zero. Since Ri ⊂ Qj , P (Ri)/P (Qj) = P (Ri

⋂
Qj)/P (Qj) =

P (Ri|Qj) is an elementary conditional probability. Applying a similar argument
to M and dividing by P (Qj), the above expression becomes

∑
i:Ri⊂Qj

P (Ri|Qj) ln
P (Ri|Qj)
M(Ri|Qj)

which is nonnegative from Lemma 2.3.1, which proves the first inequality. The
second inequality follows similarly. Consider the difference

HP (R)−HP (Q) =
∑
j

[
∑

i:Ri⊂Qj

P (Ri) ln
P (Qj)

P (Ri)
]

=
∑
j

P (Qj)[−
∑

i:Ri⊂Qj

P (Ri|Qj) lnP (Ri|Qj)]

and the result follows since the bracketed term is nonnegative since it is an
entropy for each value of j(Lemma 2.3.2). 2

The next result provides useful inequalities for entropy considered as a func-
tion of the underlying distribution. In particular, it shows that entropy is a
concave (or convex

⋂
) function of the underlying distribution. Define the bi-

nary entropy function (the entropy of a binary random variable with probability
mass function (λ, 1− λ)) by

h2(λ) = −λ lnλ− (1− λ) ln(1− λ).

Lemma 2.3.4 Let m and p denote two distributions for a discrete alphabet
random variable X and let λ ∈ (0, 1). Then for any λ ∈ (0, 1)

λHm(X) + (1− λ)Hp(X) ≤ Hλm+(1−λ)p(X)

≤ λHm(X) + (1− λ)Hp(X) + h2(λ). (2.11)

Proof: We do a little extra here to save work in a later result. Define the
quantities

I = −
∑
x

m(x) ln(λm(x) + (1− λ)p(x))
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and

J = Hλm+(1−λ)p(X) =

−λ
∑
x

m(x) ln(λm(x)+(1−λ)p(x))−(1−λ)
∑
x

p(x) ln(λm(x)+(1−λ)p(x)).

First observe that
λm(x) + (1− λ)p(x) ≥ λm(x)

and therefore applying this bound to both m and p

I ≤ −lnλ−
∑
x

m(x) lnm(x) = − lnλ+Hm(X)

J ≤ −λ
∑
x

m(x) lnm(x)− (1− λ)
∑
x

p(x) ln p(x) + h2(λ)

= λHm(X) + (1− λ)Hp(X) + h2(λ). (2.12)

To obtain the lower bounds of the lemma observe that

I = −
∑
x

m(x) lnm(x)(λ+ (1− λ)
p(x)

m(x)
)

= −
∑
x

m(x) lnm(x)−
∑
x

m(x) ln(λ+ (1− λ)
p(x)

m(x)
).

Using (2.5) the rightmost term is bound below by

−
∑
x

m(x)((λ+ (1− λ)
p(x)

m(x)
− 1) = −λ− 1 + λ

∑
a∈A

p(X = a) + 1 = 0.

Thus for all n
I ≥ −

∑
x

m(x) lnm(x) = Hm(X). (2.13)

and hence also

J ≥ −λ
∑
x

m(x) lnm(x)− (1− λ)
∑
x

p(x) ln p(x)

= λHm(X) + (1− λ)Hp(X).

2

The next result presents an interesting connection between combinatorics
and binomial sums with a particular entropy. We require the familiar definition
of the binomial coefficient: (

n

k

)
=

n!

k!(n− k)!
.
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Lemma 2.3.5 Given δ ∈ (0, 1
2 ] and a positive integer M , we have

∑
i≤δM

(
M

i

)
≤ eMh2(δ). (2.14)

If 0 < δ ≤ p ≤ 1, then∑
i≤δM

(
M

i

)
pi(1− p)M−i ≤ e−Mh2(δ‖p), (2.15)

where

h2(δ‖p) = δ ln
δ

p
+ (1− δ) ln

1− δ
1− p

.

Proof: We have after some simple algebra that

e−h2(δ)M = δδM (1− δ)(1−δ)M .

If δ < 1/2, then δk(1−δ)M−k increases as k decreases (since we are having more
large terms and fewer small terms in the product) and hence if i ≤Mδ,

δδM (1− δ)(1−δ)M ≤ δi(1− δ)M−i.

Thus we have the inequalities

1 =

M∑
i=0

(
M

i

)
δi(1− δ)M−i ≥

∑
i≤δM

(
M

i

)
δi(1− δ)M−i

≥ e−h2(δ)M
∑
i≤δM

(
M

i

)
which completes the proof of (2.14). In a similar fashion we have that

eMh2(δ‖p) = (
δ

p
)δM (

1− δ
1− p

)(1−δ)M .

Since δ ≤ p, we have as in the first argument that for i ≤Mδ

(
δ

p
)δM (

1− δ
1− p

)(1−δ)M ≤ (
δ

p
)i(

1− δ
1− p

)M−i

and therefore after some algebra we have that if i ≤Mδ then

pi(1− p)M−i ≤ δi(1− δ)M−ie−Mh2(δ‖p)

and hence∑
i≤δM

(
M

i

)
pi(1− p)M−i ≤ e−Mh2(δ‖p)

∑
i≤δM

(
M

i

)
δi(1− δ)M−i
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≤ e−nh2(δ‖p)
M∑
i=0

(
M

i

)
δi(1− δ)M−i = e−Mh2(δ‖p),

which proves (2.15). 2

The following is a technical but useful property of sample entropies. The
proof follows Billingsley [15].

Lemma 2.3.6 Given a finite alphabet process {Xn} (not necessarily station-
ary) with distribution m, let Xn

k = (Xk, Xk+1, . . . , Xk+n−1) denote the random
vectors giving a block of samples of dimension n starting at time k. Then the
random variables n−1 lnm(Xn

k ) are m-uniformly integrable (uniform in k and
n).

Proof: For each nonnegative integer r define the sets

Er(k, n) = {x : − 1

n
lnm(xnk ) ∈ [r, r + 1)}

and hence if x ∈ Er(k, n) then

r ≤ − 1

n
lnm(xnk ) < r + 1

or
e−nr ≥ m(xnk ) > e−n(r+1).

Thus for any r∫
Er(k,n)

(
− 1

n
lnm(Xn

k )

)
dm < (r + 1)m(Er(k, n))

= (r + 1)
∑

xnk∈Er(k,n)

m(xnk ) ≤ (r + 1)
∑
xnk

e−nr

= (r + 1)e−nr‖A‖n ≤ (r + 1)e−nr,

where the final step follows since there are at most ‖A‖n possible n-tuples corre-
sponding to thin cylinders in Er(k, n) and by construction each has probability
less than e−nr.

To prove uniform integrability we must show uniform convergence to 0 as
r →∞ of the integral

γr(k, n) =

∫
x:− 1

n lnm(xnk )≥r
(− 1

n
lnm(Xn

k )) dm

=

∞∑
i=0

∫
Er+i(k,n)

(− 1

n
lnm(Xn

k )) dm

≤
∞∑
i=0

(r + i+ 1)e−n(r+i)‖A‖n

≤
∞∑
i=0

(r + i+ 1)e−n(r+i−ln ‖A‖).
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Taking r large enough so that r > ln ‖A‖, then the exponential term is bound
above by the special case n = 1 and we have the bound

γr(k, n) ≤
∞∑
i=0

(r + i+ 1)e−(r+i−ln ‖A‖)

a bound which is finite and independent of k and n. The sum can easily be
shown to go to zero as r → ∞ using standard summation formulas. (The
exponential terms shrink faster than the linear terms grow.) 2

Variational Description of Divergence

Divergence has a variational characterization that is a fundamental property
for its applications to large deviations theory [145] [31]. Although this theory
will not be treated here, the basic result of this section provides an alternative
description of divergence and hence of relative entropy that has intrinsic interest.
The basic result is originally due to Donsker and Varadhan [34].

Suppose now that P and M are two probability measures on a common
discrete probability space, say (Ω,B). Given any real-valued random variable Φ
defined on the probability space, we will be interested in the quantity

EMe
Φ. (2.16)

which is called the cumulant generating function of Φ with respect to M and
is related to the characteristic function of the random variable Φ as well as to
the moment generating function and the operational transform of the random
variable. The following theorem provides a variational description of divergence
in terms of the cumulant generating function.

Theorem 2.3.2

D(P‖M) = sup
Φ

(
EPΦ− ln(EM (eΦ))

)
. (2.17)

Proof: First consider the random variable Φ defined by

Φ(ω) = ln(P (ω)/M(ω))

and observe that

EPΦ− ln(EM (eΦ)) =
∑
ω

P (ω) ln
P (ω)

M(ω)
− ln(

∑
ω

M(ω)
P (ω)

M(ω)
)

= D(P‖M)− ln 1 = D(P‖M).

This proves that the supremum over all Φ is no smaller than the divergence.
To prove the other half observe that for any bounded random variable Φ,

EPΦ− lnEM (eΦ) = EP

(
ln

eΦ

EM (eΦ)

)
=
∑
ω

P (ω)

(
ln
MΦ(ω)

M(ω)

)
,
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where the probability measure MΦ is defined by

MΦ(ω) =
M(ω)eΦ(ω)∑
xM(x)eΦ(x)

.

We now have for any Φ that

D(P‖Q)−
(
EPΦ− ln(EM (eΦ))

)
=∑

ω

P (ω)

(
ln
P (ω)

M(ω)

)
−
∑
ω

P (ω)

(
ln
MΦ(ω)

M(ω)

)
=
∑
ω

P (ω)

(
ln

P (ω)

MΦ(ω)

)
≥ 0

using the divergence inequality. Since this is true for any Φ, it is also true for
the supremum over Φ and the theorem is proved. 2

2.4 Entropy Rate

Again let {Xn;n = 0, 1, . . .} denote a finite alphabet random process and apply
Lemma 2.3.2 to vectors and obtain

H(X0, X1, . . . , Xn−1) ≤
H(X0, X1, . . . , Xm−1) +H(Xm, Xm+1, . . . , Xn−1); 0 < m < n. (2.18)

Define as usual the random vectors Xn
k = (Xk, Xk+1, . . . , Xk+n−1), that

is, Xn
k is a vector of dimension n consisting of the samples of X from k to

k + n − 1. If the underlying measure is stationary, then the distributions of
the random vectors Xn

k do not depend on k. Hence if we define the sequence
h(n) = H(Xn) = H(X0, . . . , Xn−1), then the above equation becomes

h(k + n) ≤ h(k) + h(n); all k, n > 0.

Thus h(n) is a subadditive sequence as treated in Section 7.5 of [50]. A basic
property of subadditive sequences is that the limit h(n)/n as n→∞ exists and
equals the infimum of h(n)/n over n. (See, e.g., Lemma 7.5.1 of [50].) This
immediately yields the following result.

Lemma 2.4.1 If the distribution m of a finite alphabet random process {Xn}
is stationary, then

H̄m(X) ≡ lim
n→∞

1

n
Hm(Xn) = inf

n≥1

1

n
Hm(Xn).

Thus the limit exists and equals the infimum.

The next two properties of entropy rate are primarily of interest because
they imply a third property, the ergodic decomposition of entropy rate, which
will be described in Theorem 2.4.1. They are also of some independent interest.
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The first result is a continuity result for entropy rate when considered as a func-
tion or functional on the underlying process distribution. The second property
demonstrates that entropy rate is actually an affine functional (both convex

⋃
and convex

⋂
) of the underlying distribution, even though finite order entropy

was only convex
⋂

and not affine.
We apply the distributional distance described in Section 1.8 to the standard

sequence measurable space (Ω,B) = (AZ+ ,BZ+

A ) with a σ-field generated by the
countable field F = {Fn; n = 1, 2, . . .} generated by all thin rectangles.

Corollary 2.4.1 The entropy rate H̄m(X) of a discrete alphabet random pro-
cess considered as a functional of stationary measures is upper semicontinuous;
that is, if probability measures m and mn, n = 1, 2, . . . have the property that
d(m,mn)→ 0 as n→∞, then

H̄m(X) ≥ lim sup
n→∞

H̄mn(X).

Proof: For each fixed n

Hm(Xn) = −
∑

an∈An
m(Xn = an) lnm(Xn = an)

is a continuous function ofm since for the distance to go to zero, the probabilities
of all thin rectangles must go to zero and the entropy is the sum of continuous
real-valued functions of the probabilities of thin rectangles. Thus we have from
Lemma 2.4.1 that if d(mk,m)→ 0, then

H̄m(X) = inf
n

1

n
Hm(Xn) = inf

n

1

n
lim
k→∞

Hmk(Xn)

≥ lim sup
k→∞

(
inf
n

1

n
Hmk(Xn)

)
= lim sup

k→∞
H̄mk(X).

2

The next lemma uses Lemma 2.3.4 to show that entropy rates are affine
functions of the underlying probability measures.

Lemma 2.4.2 Let m and p denote two distributions for a discrete alphabet
random process {Xn}. Then for any λ ∈ (0, 1),

λHm(Xn) + (1− λ)Hp(X
n)

≤ Hλm+(1−λ)p(X
n)

≤ λHm(Xn) + (1− λ)Hp(X
n) + h2(λ), (2.19)

and

lim sup
n→∞

(−
∫
dm(x)

1

n
ln(λm(Xn(x)) + (1− λ)p(Xn(x))))

= lim sup
n→∞

−
∫
dm(x)

1

n
lnm(Xn(x)) = H̄m(X). (2.20)
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If m and p are stationary then

H̄λm+(1−λ)p(X) = λH̄m(X) + (1− λ)H̄p(X) (2.21)

and hence the entropy rate of a stationary discrete alphabet random process is
an affine function of the process distribution.

Comment: Eq. (2.19) is simply Lemma 2.3.4 applied to the random vectors Xn

stated in terms of the process distributions. Eq. (2.20) states that if we look
at the limit of the normalized log of a mixture of a pair of measures when one
of the measures governs the process, then the limit of the expectation does not
depend on the other measure at all and is simply the entropy rate of the driving
source. Thus in a sense the sequences produced by a measure are able to select
the true measure from a mixture.
Proof: Eq. (2.19) is just Lemma 2.3.4. Dividing by n and taking the limit as
n → ∞ proves that entropy rate is affine. Similarly, take the limit supremum
in expressions (2.12) and (2.13) and the lemma is proved. 2

We are now prepared to prove one of the fundamental properties of entropy
rate, the fact that it has an ergodic decomposition formula similar to property
(c) of Theorem 1.8.2 when it is considered as a functional on the underlying
distribution. In other words, the entropy rate of a stationary source is given by
an integral of the entropy rates of the stationary ergodic components. This is a
far more complicated result than property (c) of the ordinary ergodic decompo-
sition because the entropy rate depends on the distribution; it is not a simple
function of the underlying sequence. The result is due to Jacobs [68].

Theorem 2.4.1 The Ergodic Decomposition of Entropy Rate
Let (AZ+ ,B(A)Z+ ,m, T ) be a stationary dynamical system corresponding to

a stationary finite alphabet source {Xn}. Let {px} denote the ergodic decompo-
sition of m. If H̄px(X) is m-integrable, then

H̄m(X) =

∫
dm(x)H̄px(X).

Proof: The theorem follows immediately from Corollary 2.4.1 and Lemma 2.4.2
and the ergodic decomposition of semi-continuous affine funtionals as in Theo-
rem 8.9.1 of [50]. 2

Relative Entropy Rate

The properties of relative entropy rate are more difficult to demonstrate. In
particular, the obvious analog to (2.18) does not hold for relative entropy rate
without the requirement that the reference measure by memoryless, and hence
one cannot immediately infer that the relative entropy rate is given by a limit
for stationary sources. The following lemma provides a condition under which
the relative entropy rate is given by a limit. The condition, that the dominating
measure be a kth order (or k-step) Markov source will occur repeatedly when
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dealing with relative entropy rates. A source is kth order Markov or k-step
Markov (or simply Markov if k is clear from context) if for any n and any
N ≥ k

P (Xn = xn|Xn−1 = xn−1, . . . , Xn−N = xn−N )

= P (Xn = xn|Xn−1 = xn−1, . . . , Xn−k = xn−k);

that is, conditional probabilities given the infinite past depend only on the most
recent k symbols. A 0-step Markov source is a memoryless source. A Markov
source is said to have stationary transitions if the above conditional probabilities
do not depend on n, that is, if for any n

P (Xn = xn|Xn−1 = xn−1, . . . , Xn−N = xn−N )

= P (Xk = xn|Xk−1 = xn−1, . . . , X0 = xn−k).

Lemma 2.4.3 If p is a stationary process and m is a k-step Markov process
with stationary transitions, then

H̄p‖m(X) = lim
n→∞

1

n
Hp‖m(Xn) = −H̄p(X)− Ep[lnm(Xk|Xk)],

where Ep[lnm(Xk|Xk)] is an abbreviation for

Ep[lnm(Xk|Xk)] =
∑
xk+1

pXk+1(xk+1) lnmXk|Xk(xk|xk).

Proof: If for any n it is not true that mXn � pXn , then Hp‖m(Xn) = ∞ for
that and all larger n and both sides of the formula are infinite, hence we assume
that all of the finite dimensional distributions satisfy the absolute continuity
relation. Since m is Markov,

mXn(xn) =

n−1∏
l=k

mXl|Xl(xl|x
l)mXk(xk).

Thus

1

n
Hp‖m(Xn) = − 1

n
Hp(X

n)− 1

n

∑
xn

pXn(xn) lnmXn(xn)

= − 1

n
Hp(X

n)− 1

n

∑
xk

pXk(xk) lnmXk(xk)

− n− k
n

∑
xk+1

pXk+1(xk+1) lnmXk|Xk(xk|xk).

Taking limits then yields

H̄p‖m(X) = −H̄p −
∑
xk+1

pXk+1(xk+1) lnmXk|Xk(xk|xk),
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where the sum is well defined because if mXk|Xk(xk|xk) = 0, then so must

pXk+1(xk+1) = 0 from absolute continuity. 2

Combining the previous lemma with the ergodic decomposition of entropy
rate yields the following corollary.

Corollary 2.4.2 The Ergodic Decomposition of Relative Entropy Rate
Let (AZ+ ,B(A)Z+ , p, T ) be a stationary dynamical system corresponding to

a stationary finite alphabet source {Xn}. Let m be a kth order Markov process
for which mXn � pXn for all n. Let {px} denote the ergodic decomposition of
p. If H̄px‖m(X) is p-integrable, then

H̄p‖m(X) =

∫
dp(x)H̄px‖m(X).

2.5 Conditional Entropy and Information

We now turn to other notions of information. While we could do without these
if we confined interest to finite alphabet processes, they will be essential for
later generalizations and provide additional intuition and results even in the
finite alphabet case. We begin by adding a second finite alphabet measurement
to the setup of the previous sections. To conform more to information theory
tradition, we consider the measurements as finite alphabet random variables X
and Y rather than f and g. This has the advantage of releasing f and g for use
as functions defined on the random variables: f(X) and g(Y ). Let (Ω,B, P, T )
be a dynamical system. Let X and Y be finite alphabet measurements defined
on Ω with alphabets AX and AY . Define the conditional entropy of X given Y
by

H(X|Y ) ≡ H(X,Y )−H(Y ).

The name conditional entropy comes from the fact that

H(X|Y ) = −
∑
x,y

P (X = a, Y = b) lnP (X = a|Y = b)

= −
∑
x,y

pX,Y (x, y) ln pX|Y (x|y),

where pX,Y (x, y) is the joint pmf for (X,Y ) and pX|Y (x|y) = pX,Y (x, y)/pY (y)
is the conditional pmf. Defining

H(X|Y = y) = −
∑
x

pX|Y (x|y) ln pX|Y (x|y)

we can also write

H(X|Y ) =
∑
y

pY (y)H(X|Y = y).
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Thus conditional entropy is an average of entropies with respect to conditional
pmf’s. We have immediately from Lemma 2.3.2 and the definition of conditional
entropy that

0 ≤ H(X|Y ) ≤ H(X). (2.22)

The inequalities could also be written in terms of the partitions induced by X
and Y . Recall that according to Lemma 2.3.2 the right hand inequality will be
an equality if and only if X and Y are independent.

Define the average mutual information between X and Y by

I(X;Y ) = H(X) +H(Y )−H(X,Y )

= H(X)−H(X|Y ) = H(Y )−H(Y |X).

In terms of distributions and pmf’s we have that

I(X;Y ) =
∑
x,y

P (X = x, Y = y) ln
P (X = x, Y = y)

P (X = x)P (Y = y)

=
∑
x,y

pX,Y (x, y) ln
pX,Y (x, y)

pX(x)pY (y)
=
∑
x,y

pX,Y (x, y) ln
pX|Y (x|y)

pX(x)

=
∑
x,y

pX,Y (x, y) ln
pY |X(y|x)

pY (y)
.

Note also that mutual information can be expressed as a divergence by

I(X;Y ) = D(PX,Y ‖PX × PY ),

where PX × PY is the product measure on X,Y , that is, a probability measure
which gives X and Y the same marginal distributions as PXY , but under which
X and Y are independent. Entropy is a special case of mutual information since

H(X) = I(X;X).

We can collect several of the properties of entropy and relative entropy and
produce corresponding properties of mutual information. We state these in the
form using measurements, but they can equally well be expressed in terms of
partitions.

Lemma 2.5.1 Suppose that X and Y are two finite alphabet random variables
defined on a common probability space. Then

0 ≤ I(X;Y ) ≤ min(H(X), H(Y )).

Suppose that f : AX → A and g : AY → B are two measurements. Then

I(f(X); g(Y )) ≤ I(X;Y ).
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Proof: The first result follows immediately from the properties of entropy. The
second follows from Lemma 2.3.3 applied to the measurement (f, g) since mutual
information is a special case of relative entropy. 2

The next lemma collects some additional, similar properties.

Lemma 2.5.2 Given the assumptions of the previous lemma,

H(f(X)|X) = 0,

H(X, f(X)) = H(X),

H(X) = H(f(X)) +H(X|f(X),

I(X; f(X)) = H(f(X)),

H(X|g(Y )) ≥ H(X|Y ),

I(f(X); g(Y )) ≤ I(X;Y ),

H(X|Y ) = H(X, f(X,Y )|Y ),

and, if Z is a third finite alphabet random variable defined on the same proba-
bility space,

H(X|Y ) ≥ H(X|Y,Z).

Comments: The first relation has the interpretation that given a random vari-
able, there is no additional information in a measurement made on the random
variable. The second and third relationships follow from the first and the def-
initions. The third relation is a form of chain rule and it implies that given a
measurement on a random variable, the entropy of the random variable is given
by that of the measurement plus the conditional entropy of the random variable
given the measurement. This provides an alternative proof of the second result
of Lemma 2.3.3. The fifth relation says that conditioning on a measurement of
a random variable is less informative than conditioning on the random variable
itself. The sixth relation states that coding reduces mutual information as well
as entropy. The seventh relation is a conditional extension of the second. The
eighth relation says that conditional entropy is nonincreasing when conditioning
on more information.

Proof: Since g(X) is a deterministic function of X, the conditional pmf is trivial
(a Kronecker delta) and hence H(g(X)|X = x) is 0 for all x, hence the first
relation holds. The second and third relations follow from the first and the
definition of conditional entropy. The fourth relation follows from the first since
I(X;Y ) = H(Y )−H(Y |X). The fifth relation follows from the previous lemma
since

H(X)−H(X|g(Y )) = I(X; g(Y )) ≤ I(X;Y ) = H(X)−H(X|Y ).

The sixth relation follows from Corollary 2.3.2 and the fact that

I(X;Y ) = D(PX,Y ‖PX × PY ).
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The seventh relation follows since

H(X, f(X,Y )|Y ) = H(X, f(X,Y ), Y )−H(Y )

= H(X,Y )−H(Y ) = H(X|Y ).

The final relation follows from the second by replacing Y by Y,Z and setting
g(Y, Z) = Y . 2

In a similar fashion we can consider conditional relative entropies. Suppose
now that M and P are two probability measures on a common space, that X
and Y are two random variables defined on that space, and that MXY � PXY
(and hence also MX � PY ). Analagous to the definition of the conditional
entropy we can define

HP‖M (X|Y ) ≡ HP‖M (X,Y )−HP‖M (Y ).

Some algebra shows that this is equivalent to

HP‖M (X|Y ) =
∑
x,y

pX,Y (x, y) ln
pX|Y (x|y)

mX|Y (x|y)

=
∑
x

pX(x)

(
pX|Y (x|y) ln

pX|Y (x|y)

mX|Y (x|y)

)
. (2.23)

This can be written as

HP‖M (X|Y ) =
∑
y

pY (y)D(pX|Y (·|y)‖mX|Y (·|y)),

an average of divergences of conditional pmf’s, each of which is well defined
because of the original absolute continuity of the joint measure. Manipulations
similar to those for entropy can now be used to prove the following properties
of conditional relative entropies.

Lemma 2.5.3 Given two probability measures M and P on a common space,
and two random variables X and Y defined on that space with the property that
MXY � PXY , then the following properties hold:

HP‖M (f(X)|X) = 0,

HP‖M (X, f(X)) = HP‖M (X),

HP‖M (X) = HP‖M (f(X)) +HP‖M (X|f(X)), (2.24)

If MXY = MX ×MY (that is, if the pmfs satisfy mX,Y (x, y) = mX(x)mY (y)),
then

HP‖M (X,Y ) ≥ HP‖M (X) +HP‖M (Y )

and

HP‖M (X|Y ) ≥ HP‖M (X).
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Eq. (2.24) is a chain rule for relative entropy which provides as a corollary an
immediate proof of Lemma 2.3.3. The final two inequalities resemble inequalities
for entropy (with a sign reversal), but they do not hold for all reference measures.

The above lemmas along with Lemma 2.3.3 show that all of the informa-
tion measures thus far considered are reduced by taking measurements or by
coding. This property is the key to generalizing these quantities to nondiscrete
alphabets.

We saw in Lemma 2.3.4 that entropy was a convex
⋂

function of the under-
lying distribution. The following lemma provides similar properties of mutual
information considered as a function of either a marginal or a conditional dis-
tribution.

Lemma 2.5.4 Let µ denote a pmf on a discrete space AX , µ(x) = Pr(X = x),
and let q be a conditional pmf, q(y|x) = Pr(Y = y|X = x). Let µq denote the
resulting joint pmf µq(x, y) = µ(x)q(y|x). Let Iµq = Iµq(X;Y ) be the average
mutual information. Then Iµq is a convex

⋃
function of q; that is, given two

conditional pmf’s q1 and q2, a λ ∈ [0, 1], and q̄ = λq1 + (1− λ)q2, then

Iµq̄ ≤ λIµq1 + (1− λ)Iµq2 ,

and Iµq is a convex
⋂

function of µ, that is, given two pmf’s µ1 and µ2, λ ∈
[0, 1], and µ̄ = λµ1 + (1− λ)µ2,

Iµ̄q ≥ λIµ1q + (1− λ)Iµ2q.

Proof: Let r (respectively, r1, r2, r̄) denote the pmf for Y resulting from q
(respectively q1, q2, q̄), that is, r(y) = Pr(Y = y) =

∑
x µ(x)q(y|x). From (2.5)

Iµq̄ = λ
∑
x,y

µ(x)q1(x, y) log

(
µ(x)q̄(x, y)

µ(x)r̄(y)

µ(x)r1(y)

µ(x)q1(x, y)

µ(x)q1(x, y)

µ(x)r1(y)

)

+(1− λ)
∑
x,y

µ(x)q2(x, y) log

(
µ(x)q̄(x, y)

µ(x)r̄(y)

µ(x)r2(y)

µ(x)q2(x, y)

µ(x)q2(x, y)

µ(x)r2(y)

)

≤ λIµq1 + λ
∑
x,y

µq1(x, y)

(
µ(x)q̄(x, y)

µ(x)r̄(y)

µ(x)r1(y)

µ(x)q1(x, y)
− 1

)

+(1− λ)Iµq2 + (1− λ)
∑
x,y

µ(x)q2(x, y)

(
µ(x)q̄(x, y)

µ(x)r̄(y)

µ(x)r2(y)

µ(x)q2(x, y)
− 1

)

= λIµq1 + (1− λ)Iµq2 + λ(−1 +
∑
x,y

µq̄(x, y)

r̄(y)
r1(y))

+(1− λ)(−1 +
∑
x,y

µ(x)q̄(x, y)

r̄(y)
r2(y)) = λIµq1 + (1− λ)Iµq2 .
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Similarly, let µ̄ = λµ1 + (1 − λ)µ2 and let r1, r2, and r̄ denote the induced
output pmf’s. Then

Iµ̄q = λ
∑
x,y

µ1(x)q(y|x) log

(
q(y|x)

r̄(y)

r1(y)

q(y|x)

q(y|x)

r1(y)

)
+ (1− λ)

∑
x,y

µ2(x)q(y|x) log

(
q(y|x)

r̄(y)

r2(y)

q(y|x)

q(y|x)

r2(y)

)
= λIµ1q + (1− λ)Iµ2q − λ

∑
x,y

µ1(x)q(y|x) log
r̄(y)

r1(y)

− (1− λ)
∑
x,y

µ2(x)q(y|x) log
r̄(y)

r2(y)

≥ λIµ1q + (1− λ)Iµ2q

from another application of (2.5). 2

We consider one other notion of information: Given three finite alphabet
random variables X,Y, Z, define the conditional mutual information between X
and Y given Z by

I(X;Y |Z) = D(PXY Z‖PX×Y |Z) (2.25)

where PX×Y |Z is the distribution defined by its values on rectangles as

PX×Y |Z(F ×G×D) =
∑
z∈D

P (X ∈ F |Z = z)P (Y ∈ G|Z = z)P (Z = z). (2.26)

PX×Y |Z has the same conditional distributions for X given Z and for Y given
Z as does PXY Z , but now X and Y are conditionally independent given Z. Al-
ternatively, the conditional distribution for X,Y given Z under the distribution
PX×Y |Z is the product distribution PX |Z × PY |Z. Thus

I(X;Y |Z) =
∑
x,y,z

pXY Z(x, y, z) ln
pXY Z(x, y, z)

pX|Z(x|z)pY |Z(y|z)pZ(z)
(2.27)

=
∑
x,y,z

pXY Z(x, y, z) ln
pXY |Z(x, y|z)

pX|Z(x|z)pY |Z(y|z)
. (2.28)

Since
pXY Z

pX|ZpY |ZpZ
=

pXY Z
pXpY Z

× pX
pX|Z

=
pXY Z
pXZpY

× pY
pY |Z

we have the first statement in the following lemma.

Lemma 2.5.5
I(X;Y |Z) + I(Y ;Z) = I(Y ; (X,Z)), (2.29)

I(X;Y |Z) ≥ 0, (2.30)

with equality if and only if X and Y are conditionally independent given Z, that
is, pXY |Z = pX|ZpY |Z . Given finite valued measurements f and g,

I(f(X); g(Y )|Z) ≤ I(X;Y |Z).
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Proof: The second inequality follows from the divergence inequality (2.6) with
P = PXY Z and M = PX×Y |Z , i.e., the pmf’s pXY Z and pX|ZpY |ZpZ . The
third inequality follows from Lemma 2.3.3 or its corollary applied to the same
measures. 2

Comments: Eq. (2.29) is called Kolmogorov’s formula. If X and Y are con-
ditionally independent given Z in the above sense, then we also have that
pX|Y Z = pXY |Z/pY |Z = pX|Z , in which case we say that Y → Z → X is a
Markov chain and note that given Z, X does not depend on Y . (Note that if
Y → Z → X is a Markov chain, then so is X → Z → Y .) Thus the conditional
mutual information is 0 if and only if the variables form a Markov chain with
the conditioning variable in the middle. One might be tempted to infer from
Lemma 2.3.3 that given finite valued measurements f , g, and r

I(f(X); g(Y )|r(Z))
(?)

≤
I(X;Y |Z).

This does not follow, however, since it is not true that if Q is the partition
corresponding to the three quantizers, then D(Pf(X),g(Y ),r(Z)‖Pf(X)×g(Y )|r(Z))
is HPX,Y,Z‖PX×Y |Z (f(X), g(Y ), r(Z)) because of the way that PX×Y |Z is con-
structed; e.g., the fact that X and Y are conditionally independent given Z
implies that f(X) and g(Y ) are conditionally independent given Z, but it does
not imply that f(X) and g(Y ) are conditionally independent given r(Z). Al-
ternatively, if M is PX×Z|Y , then it is not true that Pf(X)×g(Y )|r(Z) equals
M(fgr)−1. Note that if this inequality were true, choosing r(z) to be trivial
(say 1 for all z) would result in I(X;Y |Z) ≥ I(X;Y |r(Z)) = I(X;Y ). This
cannot be true in general since, for example, choosing Z as (X,Y ) would give
I(X;Y |Z) = 0. Thus one must be careful when applying Lemma 2.3.3 if the
measures and random variables are related as they are in the case of conditional
mutual information.

We close this section with an easy corollary of the previous lemma and of the
definition of conditional entropy. Results of this type are referred to as chain
rules for information and entropy.

Corollary 2.5.1 Given finite alphabet random variables Y , X1, X2, . . ., Xn,

H(X1, X2, . . . , Xn) =

n∑
i=1

H(Xi|X1, . . . , Xi−1)

Hp‖m(X1, X2, . . . , Xn) =

n∑
i=1

Hp‖m(Xi|X1, . . . , Xi−1)

I(Y ; (X1, X2, . . . , Xn)) =

n∑
i=1

I(Y ;Xi|X1, . . . , Xi−1).
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2.6 Entropy Rate Revisited

The chain rule of Corollary 2.5.1 provides a means of computing entropy rates
for stationary processes. We have that

1

n
H(Xn) =

1

n

n−1∑
i=0

H(Xi|Xi).

First suppose that the source is a stationary kth order Markov process, that
is, for any m > k

Pr(Xn = xn|Xi = xi; i = 0, 1, . . . , n− 1)

= Pr(Xn = xn|Xi = xi; i = n− k, . . . , n− 1).

For such a process we have for all n ≥ k that

H(Xn|Xn) = H(Xn|Xk
n−k) = H(Xk|Xk),

where Xm
i = Xi, . . . , Xi+m−1. Thus taking the limit as n→∞ of the nth order

entropy, all but a finite number of terms in the sum are identical and hence the
Cesàro (or arithmetic) mean is given by the conditional expectation. We have
therefore proved the following lemma.

Lemma 2.6.1 If {Xn} is a stationary kth order Markov source, then

H̄(X) = H(Xk|Xk).

If we have a two-sided stationary process {Xn}, then all of the previous defi-
nitions for entropies of vectors extend in an obvious fashion and a generalization
of the Markov result follows if we use stationarity and the chain rule to write

1

n
H(Xn) =

1

n

n−1∑
i=0

H(X0|X−1, . . . , X−i).

Since conditional entropy is nonincreasing with more conditioning variables
((2.22) or Lemma 2.5.2), H(X0|X−1, . . . , X−i) has a limit. Again using the fact
that a Cesàro mean of terms all converging to a common limit also converges
to the same limit we have the following result.

Lemma 2.6.2 If {Xn} is a two-sided stationary source, then

H̄(X) = lim
n→∞

H(X0|X−1, . . . , X−n).

It is tempting to identify the above limit as the conditional entropy given
the infinite past, H(X0|X−1, . . .). Since the conditioning variable is a sequence
and does not have a finite alphabet, such a conditional entropy is not included
in any of the definitions yet introduced. We shall later demonstrate that this
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interpretation is indeed valid when the notion of conditional entropy has been
suitably generalized.

The natural generalization of Lemma 2.6.2 to relative entropy rates unfor-
tunately does not work because conditional relative entropies are not in general
monotonic with increased conditioning and hence the chain rule does not imme-
diately yield a limiting argument analogous to that for entropy. The argument
does work if the reference measure is a kth order Markov, as considered in the
following lemma.

Lemma 2.6.3 If {Xn} is a source described by process distributions p and m
and if p is stationary and m is kth order Markov with stationary transitions,
then for n ≥ k Hp‖m(X0|X−1, . . . , X−n) is nondecreasing in n and

H̄p‖m(X) = lim
n→∞

Hp‖m(X0|X−1, . . . , X−n)

= −H̄p(X)− Ep[lnm(Xk|Xk)].

Proof: For n ≥ k we have that

Hp‖m(X0|X−1, . . . , X−n) =

−Hp(X0|X−1, . . . , X−n)−
∑
xk+1

pXk+1(xk+1) lnmXk|Xk(xk|xk).

Since the conditional entropy is nonincreasing with n and the remaining term
does not depend on n, the combination is nondecreasing with n. The remainder
of the proof then parallels the entropy rate result. 2

It is important to note that the relative entropy analogs to entropy properties
often require kth order Markov assumptions on the reference measure (but not
on the original measure).

Markov Approximations

Recall that the relative entropy rate H̄p‖m(X) can be thought of as a distance
between the process with distribution p and that with distribution m and that
the rate is given by a limit if the reference measure m is Markov. A particular
Markov measure relevant to p is the distribution p(k) which is the kth order
Markov approximation to p in the sense that it is a kth order Markov source
and it has the same kth order transition probabilities as p. To be more precise,
the process distribution p(k) is specified by its finite dimensional distributions

p
(k)

Xk
(xk) = pXk(xk)

p
(k)
Xn(xn) = pXk(xk)

n−1∏
l=k

pXl|Xkl−k(xl|xkl−k); n = k, k + 1, . . .

so that
p

(k)

Xk|Xk = pXk|Xk .

It is natural to ask how good this approximation is, especially in the limit, that
is, to study the behavior of the relative entropy rate H̄p‖p(k)(X) as k →∞.
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Theorem 2.6.1 Given a stationary process p, let p(k) denote the kth order
Markov approximations to p. Then

lim
k→∞

H̄p‖p(k)(X) = inf
k
H̄p‖p(k)(X) = 0.

Thus the Markov approximations are asymptotically accurate in the sense that
the relative entropy rate between the source and approximation can be made
arbitrarily small (zero if the original source itself happens to be Markov).

Proof: As in the proof of Lemma 2.6.3 we can write for n ≥ k that

Hp‖p(k)(X0|X−1, . . . , X−n)

= −Hp(X0|X−1, . . . , X−n)−
∑
xk+1

pXk+1(xk+1) ln pXk|Xk(xk|xk)

= Hp(X0|X−1, . . . , X−k)−Hp(X0|X−1, . . . , X−n).

Note that this implies that p
(k)
Xn � pXn for all n since the entropies are finite.

This automatic domination of the finite dimensional distributions of a measure
by those of its Markov approximation will not hold in the general case to be
encountered later, it is specific to the finite alphabet case. Taking the limit as
n→∞ gives

H̄p‖p(k)(X) = lim
n→∞

Hp‖p(k)(X0|X−1, . . . , X−n)

= Hp(X0|X−1, . . . , X−k)− H̄p(X).

The corollary then follows immediately from Lemma 2.6.2. 2

Markov approximations will play a fundamental role when considering rela-
tive entropies for general (nonfinite alphabet) processes. The basic result above
will generalize to that case, but the proof will be much more involved.

2.7 Relative Entropy Densities

Many of the convergence results to come will be given and stated in terms
of relative entropy densities. In this section we present a simple but important
result describing the asymptotic behavior of relative entropy densities. Although
the result of this section is only for finite alphabet processes, it is stated and
proved in a manner that will extend naturally to more general processes later
on. The result will play a fundamental role in the basic ergodic theorems to
come.

Throughout this section we will assume that M and P are two process
distributions describing a random process {Xn}. Denote as before the sample
vector Xn = (X0, X1, . . . , Xn−1), that is, the vector beginning at time 0 having
length n. The distributions on Xn induced by M and P will be denoted by
Mn and Pn, respectively. The corresponding pmf’s are mXn and pXn . The
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key assumption in this section is that for all n if mXn(xn) = 0, then also
pXn(xn) = 0, that is,

Mn � Pn for all n. (2.31)

If this is the case, we can define the relative entropy density

hn(x) ≡ ln
pXn(xn)

mXn(xn)
= ln fn(x), (2.32)

where

fn(x) ≡

{
pXn (xn)
mXn (xn) if mXn(xn) 6= 0

0 otherwise
(2.33)

Observe that the relative entropy is found by integrating the relative entropy
density:

HP‖M (Xn) = D(Pn‖Mn) =
∑
xn

pXn(xn) ln
pXn(xn)

mXn(xn)

=

∫
ln

pXn(Xn)

mXn(Xn)
dP (2.34)

Thus, for example, if we assume that

HP‖M (Xn) <∞, all n, (2.35)

then (2.31) holds.

The following lemma will prove to be useful when comparing the asymptotic
behavior of relative entropy densities for different probability measures. It is the
first almost everywhere result for relative entropy densities that we consider. It
is somewhat narrow in the sense that it only compares limiting densities to zero
and not to expectations. We shall later see that essentially the same argument
implies the same result for the general case (Theorem 5.4.1), only the interim
steps involving pmf’s need be dropped. Note that the lemma requires neither
stationarity nor asymptotic mean stationarity.

Lemma 2.7.1 Given a finite alphabet process {Xn} with process measures P,M
satisfying (2.31), Then

lim sup
n→∞

1

n
hn ≤ 0, M − a.e. (2.36)

and

lim inf
n→∞

1

n
hn ≥ 0, P − a.e.. (2.37)

If in addition M � P , then

lim
n→∞

1

n
hn = 0, P − a.e.. (2.38)
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Proof: First consider the probability

M(
1

n
hn ≥ ε) = M(fn ≥ enε) ≤

EM (fn)

enε
,

where the final inequality is Markov’s inequality. But

EM (fn) =

∫
dMfn =

∑
xn: mXn (xn)6=0

mXn(xn)
pXn(xn)

mXn(xn)

=
∑

xn: mXn (xn)6=0

pXn(xn) ≤ 1

and therefore

M(
1

n
hn ≥ ε) ≤ 2−nε

and hence
∞∑
n=1

M(
1

n
hn > ε) ≤

∞∑
n=1

e−nε <∞.

From the Borel-Cantelli Lemma (e.g., Lemma 4.6.3 of [50]) this implies that
M(n−1hn ≥ ε i.o.) = 0 which implies the first equation of the lemma.

Next consider

P (− 1

n
hn > ε) =

∑
xn:− 1

n ln pXn (xn)/mXn (xn)>ε

pXn(xn)

=
∑

xn:− 1
n ln pXn (xn)/mXn (xn)>ε and mXn (xn)6=0

pXn(xn)

where the last statement follows since if mXn(xn) = 0, then also pXn(xn) = 0
and hence nothing would be contributed to the sum. In other words, terms
violating this condition add zero to the sum and hence adding this condition to
the sum does not change the sum’s value. Thus

P (− 1

n
hn > ε) =

∑
xn:− 1

n ln pXn (xn)/mXn (xn)>ε and mXn (xn)6=0

pXn(xn)

mXn(xn)
mXn(xn)

=

∫
fn<e−nε

dMfn ≤
∫
fn<e−nε

dMe−nε

= e−nεM(fn < e−nε) ≤ e−nε.

Thus as before we have that P (n−1hn > ε) ≤ e−nε and hence that P (n−1hn ≤
−ε i.o.) = 0 which proves the second claim. If also M � P , then the first
equation of the lemma is also true P -a.e., which when coupled with the second
equation proves the third. 2



Chapter 3

The Entropy Ergodic
Theorem

3.1 Introduction

The goal of this chapter is to prove an ergodic theorem for sample entropy
of finite alphabet random processes. The result is sometimes called the ergodic
theorem of information theory or the asymptotic equipartition theorem, but it is
best known as the Shannon-McMillan-Breiman theorem. It provides a common
foundation to many of the results of both ergodic theory and information the-
ory. Shannon [131] first developed the result for convergence in probability for
stationary ergodic Markov sources. McMillan [104] proved L1 convergence for
stationary ergodic sources and Breiman [19] [20] proved almost everywhere con-
vergence for stationary and ergodic sources. Billingsley [15] extended the result
to stationary nonergodic sources. Jacobs [67] [66] extended it to processes dom-
inated by a stationary measure and hence to two-sided AMS processes. Gray
and Kieffer [54] extended it to processes asymptotically dominated by a sta-
tionary measure and hence to all AMS processes. The generalizations to AMS
processes build on the Billingsley theorem for the stationary mean. Follow-
ing generalizations of the definitions of entropy and information, corresponding
generalizations of the entropy ergodic theorem will be considered in Chapter 8.

Breiman’s and Billingsley’s approach requires the martingale convergence
theorem and embeds the possibly one-sided stationary process into a two-sided
process. Ornstein and Weiss [118] recently developed a proof for the stationary
and ergodic case that does not require any martingale theory and considers
only positive time and hence does not require any embedding into two-sided
processes. The technique was described for both the ordinary ergodic theorem
and the entropy ergodic theorem by Shields [134]. In addition, it uses a form
of coding argument that is both more direct and more information theoretic in
flavor than the traditional martingale proofs. We here follow the Ornstein and
Weiss approach for the stationary ergodic result. We also use some modifications

47
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similar to those of Katznelson and Weiss for the proof of the ergodic theorem.
We then generalize the result first to nonergodic processes using the “sandwich”
technique of Algoet and Cover [7] and then to AMS processes using a variation
on a result of [54].

We next state the theorem to serve as a guide through the various steps. We
also prove the result for the simple special case of a Markov source, for which
the result follows from the usual ergodic theorem.

We consider a directly given finite alphabet source {Xn} described by a
distribution m on the sequence measurable space (Ω,B). Define as previously
Xn
k = (Xk, Xk+1, · · · , Xk+n−1). The subscript is omitted when it is zero. For

any random variable Y defined on the sequence space (such as Xn
k ) we define

the random variable m(Y ) by m(Y )(x) = m(Y = Y (x)).

Theorem 3.1.1 The Entropy Ergodic Theorem
Given a finite alphabet AMS source {Xn} with process distribution m and

stationary mean m̄, let {m̄x;x ∈ Ω} be the ergodic decomposition of the station-
ary mean m̄. Then

lim
n→∞

− lnm(Xn)

n
= h; m− a.e. and in L1(m), (3.1)

where h(x) is the invariant function defined by

h(x) = H̄m̄x(X). (3.2)

Furthermore,

Emh = lim
n→∞

1

n
Hm(Xn) = H̄m(X); (3.3)

that is, the entropy rate of an AMS process is given by the limit, and

H̄m̄(X) = H̄m(X). (3.4)

Comments: The theorem states that the sample entropy using the AMS
measure m converges to the entropy rate of the underlying ergodic component
of the stationary mean. Thus, for example, if m is itself stationary and er-
godic, then the sample entropy converges to the entropy rate of the process
m-a.e. and in L1(m). The L1(m) convergence follows immediately from the
almost everywhere convergence and the fact that sample entropy is uniformly
integrable (Lemma 2.3.6). L1 convergence in turn immediately implies the left-
hand equality of (3.3). Since the limit exists, it is the entropy rate. The final
equality states that the entropy rates of an AMS process and its stationary mean
are the same. This result follows from (3.2)-(3.3) by the following argument:
We have that H̄m(X) = Emh and H̄m̄(X) = Em̄h, but h is invariant and hence
the two expectations are equal (see, e.g., Lemma 6.3.1 of [50]). Thus we need
only prove almost everywhere convergence in (3.1) to prove the theorem.

In this section we limit ourselves to the following special case of the theo-
rem that can be proved using the ordinary ergodic theorem without any new
techniques.
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Lemma 3.1.1 Given a finite alphabet stationary kth order Markov source {Xn},
then there is an invariant function h such that

lim
n→∞

− lnm(Xn)

n
= h; m− a.e. and in L1(m),

where h is defined by

h(x) = −Em̄x lnm(Xk|Xk), (3.5)

where {m̄x} is the ergodic decomposition of the stationary mean m̄. Further-
more,

h(x) = H̄m̄x(X) = Hm̄x(Xk|Xk). (3.6)

Proof of Lemma: We have that

− 1

n
lnm(Xn) = − 1

n

n−1∑
i=0

lnm(Xi|Xi).

Since the process is kth order Markov with stationary transition probabilites,
for i > k we have that

m(Xi|Xi) = m(Xi|Xi−k, · · · , Xi−1) = m(Xk|Xk)T i−k.

The terms − lnm(Xi|Xi), i = 0, 1, · · · , k − 1 have finite expectation and hence
are finite m-a.e. so that the ergodic theorem can be applied to deduce

− lnm(Xn)(x)

n
= − 1

n

k−1∑
i=0

lnm(Xi|Xi)(x)− 1

n

n−1∑
i=k

lnm(Xk|Xk)(T i−kx)

= − 1

n

k−1∑
i=0

lnm(Xi|Xi)(x)− 1

n

n−k−1∑
i=0

lnm(Xk|Xk)(T ix)

→
n→∞

Em̄x(− lnm(Xk|Xk)),

proving the first statement of the lemma. It follows from the ergodic decom-
position of Markov sources (see Lemma 8.6.3) of [50]) that with probability 1,
m̄x(Xk|Xk) = m(Xk|ψ(x), Xk) = m(Xk|Xk), where ψ is the ergodic component
function. This completes the proof. 2

We prove the theorem in three steps: The first step considers stationary
and ergodic sources and uses the approach of Ornstein and Weiss [118] (see also
Shields [134]). The second step removes the requirement for ergodicity. This
result will later be seen to provide an information theoretic interpretation of
the ergodic decomposition. The third step extends the result to AMS processes
by showing that such processes inherit limiting sample entropies from their
stationary mean. The later extension of these results to more general relative
entropy and information densities will closely parallel the proofs of the second
and third steps for the finite case.
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3.2 Stationary Ergodic Sources

This section is devoted to proving the entropy ergodic theorem for the special
case of stationary ergodic sources. The result was originally proved by Breiman
[19]. The original proof first used the martingale convergence theorem to infer
the convergence of conditional probabilities of the formm(X0|X−1, X−2, · · · , X−k)
to m(X0|X−1, X−2, · · · ). This result was combined with an an extended form of
the ergodic theorem stating that if gk → g as k →∞ and if gk is L1-dominated
(supk |gk| is in L1), then 1/n

∑n−1
k=0 gkT

k has the same limit as 1/n
∑n−1
k=0 gT

k.
Combining these facts yields that that

1

n
lnm(Xn) =

1

n

n−1∑
k=0

lnm(Xk|Xk) =
1

n

n−1∑
k=0

lnm(X0|Xk
−k)T k

has the same limit as

1

n

n−1∑
k=0

lnm(X0|X−1, X−2, · · · )T k

which, from the usual ergodic theorem, is the expectation

E(lnm(X0|X−) ≡ E(lnm(X0|X−1, X−2, · · · )).

As suggested at the end of the preceding chapter, this should be minus the con-
ditional entropy H(X0|X−1, X−2, · · · ) which in turn should be the entropy rate
H̄X . This approach has three shortcomings: it requires a result from martin-
gale theory which has not been proved here or in the companion volume [50],
it requires an extended ergodic theorem which has similarly not been proved
here, and it requires a more advanced definition of entropy which has not yet
been introduced. Another approach is the sandwich proof of Algoet and Cover
[7]. They show without using martingale theory or the extended ergodic theo-

rem that 1/n
∑n−1
i=0 lnm(X0|Xi

−i)T
i is asymptotically sandwiched between the

entropy rate of a kth order Markov approximation:

1

n

n−1∑
i=k

lnm(X0|Xk
−k)T i →

n→∞
Em[lnm(X0|Xk

−k)] = −H(X0|Xk
−k)

and

1

n

n−1∑
i=k

lnm(X0|X−1, X−2, · · · )T i →
n→∞

Em[lnm(X0|X1, · · · )]

= −H(X0|X−1, X−2, · · · ).

By showing that these two limits are arbitrarily close as k → ∞, the result is
proved. The drawback of this approach for present purposes is that again the
more advanced notion of conditional entropy given the infinite past is required.
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Algoet and Cover’s proof that the above two entropies are asymptotically close
involves martingale theory, but this can be avoided by using Corollary 5.2.4 as
will be seen.

The result can, however, be proved without martingale theory, the extended
ergodic theorem, or advanced notions of entropy using the approach of Ornstein
and Weiss [118], which is the approach we shall take in this chapter. In a later
chapter when the entropy ergodic theorem is generalized to nonfinite alphabets
and the convergence of entropy and information densities is proved, the sandwich
approach will be used since the appropriate general definitions of entropy will
have been developed and the necessary side results will have been proved.

Lemma 3.2.1 Given a finite alphabet source {Xn} with a stationary ergodic
distribution m, we have that

lim
n→∞

− lnm(Xn)

n
= h; m− a.e.,

where h(x) is the invariant function defined by

h(x) = H̄m(X).

2023 Notes on proof: The suggestion to use the Ornstein and Weiss approach
for the entropy ergodic theorem for discrete stationary and ergodic sources was
made to me by Paul C. Shields during the writing of the original version of the
first edition of this book during the late 1980s. The First Edition of the book
was published in 1990. My original proof however, had a critical technical error
(pointed out in these notes). Some time in the early 2000s Paul informed me
that he had noted an error in my proof, but that he knew how to fix it and
that we should discuss it. Unfortunately we never did. Paul suffered a brain
aneurism in fall 2006 and his mathematics activity diminished steadily after
that. We were in touch by email until 2008, but the error was never brought
up.

As a result, my error propagated into the second edition of the book pub-
lished in 2011. In September 2012 Wei Mao, then a Ph.D. student at Cal Tech,
wrote to me regarding a mistake in a counting argument I made in my proof as
given in the Second Edition. During our email exchange, she found that I had
omitted an important detail used by Paul in [134] in his 1987 proof of the result
for binary sources, and that the addition of two constraints on the construction
used in the proof would fix the problem she found with my proof. I had intended
in 2013 to correct the First Edition and incorporate the corrected version into
an Errata for the Second Edition. But it did not get done at that time, likely
because I retired from Stanford that year and moved twice before settling in
Rockport, Massachusetts. I forgot the corrections and Errata until in April
2023 when Dr. Jun Muramatsu of NTT pointed out several typos and mistakes
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in the Second Edition. He had earlier reported a collection of suggested correc-
tions in my earlier book, Probability, Random Processes, and Ergodic Processes
which motivated me to return to correct the online First Edition of that book
and to update the online Errata for the Probability book. So I decided to do
the same with the Entropy and Information Theory Book. Dr. Muramatsu
provided a collection of typos and errors for the Entropy book as well.

Scouring my notes, correspondence, and email for the Entropy book I realized
that I had never published the Errata for the Second Edition as intended in 2013
and I had not updated the First Edition to fix the reported mistakes and a few
I had found since its 2011 publication.. Hence I have finally in spring 2023
made an effort to update the First Edition and to post online the Errata for the
Second.

The most important error was in the entropy ergodic theorem, Lemma 3.2.1
in the First Edition, Lemma 4.2 in the second. Many other proofs of the result
exist, but the point here was to present a version of the Ornstein-Weiss approach
proof of the result consistent with the context of the book as inspired by Paul
Shields.

The following proof follows my original notation and construction reasonably
closely with some changes made for clarity based on hindsight. I missed two
key constraints, which which are now incorporated into the proof given here. I
have also tried to improve the clarity of the development which involved slight
modifications in the notation and the addition of several comments. Revisiting
the math after a decade has been a challenge, but it has been fun to rekindle
fond memories of Paul Shields.

I am indebted to Dr. Wei Mao for subsequently bringing the problem and
the corrections to my attention. I apologize for taking so long to respond and
acknowledge her contribution.

Proof: Define

hn(x) = − lnm(Xn)(x) = − lnm(xn)

and

h(x) = lim inf
n→∞

1

n
hn(x) = lim inf

n→∞

− lnm(xn)

n
.

Since m((x0, · · · , xn−1)) ≤ m((x1, · · · , xn−1)), we have that

hn(x) ≥ hn−1(Tx).

Dividing by n and taking the limit infimum of both sides shows that h(x) ≥
h(Tx). Since the n−1hn are nonnegative and uniformly integrable (Lemma 2.3.6),
we can use Fatou’s lemma to deduce that h and hence also hT are integrable
with respect to m. Integrating with respect to the stationary measure m yields∫

dm(x)h(x) =

∫
dm(x)h(Tx)
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which can only be true if

h(x) = h(Tx);m− a.e.,

that is, if h is an invariant function with m-probability one. If h is invariant
almost everywhere, however, it must be a constant with probability one since
m is ergodic (Lemma 6.7.1 of [50], Lemma 7.12 in the Second Edition). Since
it has a finite integral (bounded by H̄m(X)), h must also be finite. Henceforth
we consider h to be a finite constant.

The Lemma will be proved by demonstrating that the limit supremum of
hn/n equals the limit infimum h with probability 1. We proceed with steps that
resemble those of the proof of the ergodic theorem in Section 7.2 of [50] and
Section 8.1 of the Second Edition.

Fix ε > 0. We also choose for later use a δ > 0 small enough to have the
following properties: If A is the alphabet of X0 and ||A|| is the finite cardinality
of the alphabet, then

δ ln ||A|| < ε, (3.7)

and
− δ ln δ − (1− δ) ln(1− δ) ≡ h2(δ) < ε. (3.8)

The latter property is possible since h2(δ)→ 0 as δ → 0.

Tentatively define the random variable n(x) to be the smallest integer n ≥ 1
for which n−1hn(x) ≤ h + ε. By definition of the limit infimum there must be
infinitely many n for which this is true and hence with probability one n(x) is
everywhere finite.

For later use the definition of n(x) is modified to force a minimum value

M ≥ δ

3
;

that is, redefine

n(x) = min{n ≥M : n−1hn(x) ≤ h+ ε}

This modification does not effect the finiteness of n.
The random variable nmaps single-sided sequences of the form x = (x0, x1, · · · )

with xi ∈ A, a finite alphabet, into a collection of positive integers. Since n(x)
is finite with probability 1 and since

∑
k Pr(n = k) = 1, given δ there must be

an N = N(δ) so large that

Pr(n ≥ N) ≤ δ

2
.

Define a set of “bad” infinite sequences B = {x : n(x) ≥ N} with indicator
function

1B(x) =

{
1 x ∈ B
0 otherwise

.
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The inequality for the bad set B can be stated as

m(B) = Em(1B) ≤ δ

2
.

From the definition of n, membership of an infinite sequence x in B can be
determined from its first N samples xN since if n(x) does not find an n ≥ M
for which the inequality n−1hn(xn) ≤ ε by the time N when it sees all of
xN = (x0, . . . , xN−1), then it must be true that n(x) ≥ N and hence x ∈ B.

Define the set C of N -tuples xN which are prefixes of x ∈ B so that

IB(x) = 1C(xN )

C (and B) can be characterized by defining a set S(`) ⊂ A` of good sample
entropy `-tuples by

S(`) = {a` : m(al) ≥ e−`(h+ε) or− 1

`
lnm(al) ≤ h+ ε} (3.9)

and observing that

IB(x) = 1C(xN ) =

{
1 x` 6∈ S(`); ` = 1, 2, . . . , N − 1

0 otherwise
.

A random process {`n;n ∈ Z+} (` for “length”) with alphabet the positive
integers is defined by applying n to shifts of x; that is,

`n(x) = n(Tnx) = `(xn, xn+1, . . . );n = 0, 1, . . .

In particular `0(x) = n(x). The process `n is a sliding-block (stationary) cod-
ing of the process X = {Xn} described by a stationary and ergodic process
distribution m and hence the process `n is also stationary and ergodic.

The process `n provides a means of carving up or parsing an infinite se-
quence x into consecutive non-overlapping variable length blocks which have
good sample entropy; that is, finding a sequence of time indices ni; i ∈ Z+ and

a sequence of source sample vectors x
`ni
ni ; i = 1, 2, . . . . This parsing of the se-

quence into consecutive contiguous blocks of the source implies a partition of
the time indices Z+ into a collection of disjoint sets Ii = {ni, . . . , ni + `ni − 1}
of length `ni having good sample entropy; that is,

x
`ni
ni ∈ S(`ni)

as in (3.9):

m(x
`ni
ni ) ≥ e−`ni (h+ε) or− 1

`ni
lnm(x

`ni
ni ) ≤ h+ ε.

As a simplistic example of the partition of time indices consider

0, 1, 2, 3, 4︸ ︷︷ ︸, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14︸ ︷︷ ︸, 15, 16, 17, 18, 19, 20︸ ︷︷ ︸, 21, 22, 23︸ ︷︷ ︸ . . .
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Here the minimum length is M = 4 and only the beginning of a possibly infinite
length sequence is given. Here, also, the atoms of the partition are adjacent in
the sequence. All of the short blocks correspond to good sample entropy blocks
and there are no gaps between the blocks. Unfortunately this simple structure
is insufficient for the proof of lemma.

The overall goal of proving the entropy ergodic theorem following the Ornstein-
Weiss-Sheilds approach is based on a finite version of the above parsing of an
infinite sequence and the corresponding partition of the time indices. This can
be achieved a block decomposition of an L-dimensional sample vector XL into
good sample entropy blocks with block lengths constrained to be neither too
large or too small and by inserting gap indices following each good block and
indicating when no acceptable good blocks are available at a particular time
index.

Given δ and N , choose L so that

L ≥ N

δ/3
� N.

A long block xL ∈ AL is parsed into a sequence of non-overlapping relatively

short blocks of length no greater than N of the form x
˜̀
i
ni = (xni , . . . , xni+˜̀

i−1)
for which either

˜̀
i = `ni ≤ N, hence x

˜̀
i
ni ∈ S(˜̀) and ˜̀≥M,

or
˜̀
i = 1, hence i is a gap index and x1

ni ∈ A.

Blocks with M ≤ `i < N are called acceptable good sample entropy blocks or
simply good blocks (or good `-blocks). Blocks with `i = 1 are called a “gap
blocks.”

The parsing of xN induces a partition of the time index set ZL into sets

ZL =
⋃
i

Ii

Ii = [ni, ni + ˜̀
i − 1].

Gap indices occur in three types:

Gap type 1 ni is the first time index following a good block, that is, M ≤
˜̀
i−1 = `ni−1

< N . These blocks ensure that good blocks are separated by
at least one gap block. 1

Gap type 2 No good block is available at time ni, that is `ni ≥ N . (by
definition `n ≥M for all n). Equivalently, xNni ∈ C.

1This important constraint was missing from my original proof.
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Gap type 3 ni > L−N ; that is, xNni is no longer a sub-vector of xL so mem-
bership xNni ∈ C can not be tested.

A simplistic example of the partition of time indices for the modified con-
struction is

0, 1, 2, 3, 4︸ ︷︷ ︸ 5︸︷︷︸ 6, 7, 8, 9, 10, 11, 12︸ ︷︷ ︸ 13︸︷︷︸ 14︸︷︷︸ 15, 16, 17, 18, 19, 20︸ ︷︷ ︸ 21︸︷︷︸ 22︸︷︷︸ 23︸︷︷︸ .
In the example, the total blocklength is 23 and the remaining blocks have length
1 (gap blocks) or a length between M = 4 and N = 7. The non-gap blocks have
the good sample entropy property. In addition to the stated constraints, the
above picture and the construction show a gap index at the end of each non-gap
block. Thus good blocks are always separated by at least on unit length gap
index. Gap indices also occur when for a specified initial index no satisfactory
length meeting the constraints can be found. Indices at the end of the block are
gap indices when there are insufficient indices left to see a full N samples of the
end of the L-block.

A block decomposition of xL with the desired properties can be obtained by
induction:

Step 1 Initialize

n0 = 0

˜̀
0 =

{
`0 if M ≤ `0 ≤ N
1 otherwise, xN ∈ C

Step 2 Loop Given (ni, ˜̀
i), find (ni+1, ˜̀

i+1). ,

ni+1 =

{
ni + 1 ni + ˜̀

i = ni + 1 if ˜̀
i = 1

ni + ˜̀
i + 1 otherwise, index ni follows a good block ending at ni + ˜̀

i − 1

If ni + 1 > L−N , go to Step 3. Otherwise

˜̀
i+1 =

{
`ni+1 if M ≤ `nI+1

≤ N
1 otherwise, xNni+1

∈ C

Step 3 Finish For k = 1 . . . , L− ni set ni+k = ni + k, ˜̀
i+k = 1.

Recall that `n is stationary and ergodic and hence with probability 1 the
relative frequency of of `n ≥ N will be small.

lim
n→∞

1

n

n−1∑
k=0

1B(T ix) =
1

n

n−1∑
k=0

1C(xNk ) = m(B) ≤ δ

2
. (3.10)
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Define a set GL of “good” L-tuples

GL = {xL :
1

L−N

L−N−1∑
n=0

1C(xNn ) ≤ δ

3
}.

GL is a collection of L-tuples which have fewer than δ(L −N)/3 ≤ δL/3 time
indices n for which xNn ∈ C; that is, `n ≥ N . From (3.10) the sample average
must converge to m(B) ≤ δ/3 as L → ∞ with probability one and hence also
in probability. Thus with probability 1 there is an L0 = L0(x) such that

1

L−N

L−N−1∑
i=0

1C(xNi ) ≤ δ

3
; for all L > L0(x). (3.11)

This follows simply because if the limit is less than δ/2, there must be an L0

so large that for larger L the time average is at least no greater than 2δ/2 = δ.
We can restate (3.11) as follows: with probability 1 xL ∈ GL for all but a finite
number of L. Stating this in negative fashion, we have one of the key properties
required by the proof: If xL ∈ GL for all but a finite number of L, then xL

cannot be in the complement GcL infinitely often, that is,

m(x : xL ∈ GcL i.o.) = 0 (3.12)

Counting

The next step is to count the number ‖GL‖ of L-tuples in GL, which will allow
a specification of how large L or how small δ must be chosen to complete the
proof. This involves counting the number of possible gap indices and the number
of good (acceptable sample entropy) vectors whose location in time and length
are determined by the type 1 gap indices.

For an xL ∈ GL there can be no more than L/M good blocks in the block
decomposition and hence no more than L/M type 1 gap indices. The choice of
M ≥ 3/δ ensures that the number of type 1 gap indices is no greater than Lδ/3.

By construction, there can be no more than Lδ/3 type two gap indices.
There can be no more than N type 3 gap indices. The choice of L ≥ 3N/δ

bounds above the number of type 3 indices by Lδ/3.
Thus the the number of gap indices is bound above by Lδ. These Lδ indices

can occur in any of at most ∑
k≤δL

(
L

k

)
≤ eLh2(δ) (3.13)

where we have used Lemma 2.3.5. Eq. (3.13) provides an upper bound on the
number of ways that a sequence in GL can be parsed by the given rules.

Each pattern specifies the type two indices which in turn specify the location
of the good blocks x`ini ∈ S(`i) for which

m(x`ini) ≥ e
−`i(h+ε).
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Given `i probabilities sum to one:

1 =
∑

a`i∈A`i

m(ali) ≥
∑

a`i∈S(`i)

m(ali) ≥ ‖S(`i)‖e−`i(h+ε)

whence
‖S(`i)‖ ≤ e`i(h+ε).

Each of the fewer than eLh2(δ) patterns has no more than∏
i

‖S(`i)‖ ≤ e
∑
i `i(h+ε) ≤ eL(h+ε)

possible patterns of good blocks.
Combining the counts for the number of patterns of gap indices and the

number of possibilities for gap indices and good blocks yields

||GL|| ≤ eh2(δ)L||A||δLeL(h+ε) = eL(h2(δ)+δ ln ||A||+h+ε)

Since δ satisfies (3.7)–(3.8),

||GL|| ≤ eL(h+3ε). (3.14)

This bound provides the second key result in the proof of the lemma. We
now combine (3.14) and (3.12) to complete the proof.

Let BL denote a collection of L-tuples that are bad in the sense of having
too large a sample entropy or, equivalently, too small a probability; that is if
xL ∈ BL, then

m(xL) ≤ e−L(h+5ε)

or, equivalently, for any x with prefix xL

hL(x) ≥ h+ 5ε.

The upper bound on ||GL|| provides a bound on the probability of BL
⋂
GL:

m(BL
⋂
GL) =

∑
xL∈BL

⋂
GL

m(xL) ≤
∑

xL∈GL

e−L(h+5ε)

≤ ||GL||e−L(h+5ε) ≤ e−εL.

Recall now that the above bound is true for a fixed ε > 0 and for all L ≥ L1.
Thus

∞∑
L=1

m(BL
⋂
GL) =

L1−1∑
L=1

m(BL
⋂
GL) +

∞∑
L=L1

m(BL
⋂
GL)

≤ L1 +

∞∑
L=L1

e−εL <∞
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and hence from the Borel-Cantelli lemma (Lemma 4.6.3 of [50]) m(x : xL ∈
BL
⋂
GL i.o.) = 0. We also have from (3.12), however, that m(x : xL ∈

GcL i.o. ) = 0 and hence xL ∈ GL for all but a finite number of L. Thus
xL ∈ BL i.o. if and only if xL ∈ BL

⋂
GL i.o. As this latter event has zero

probability, we have shown that m(x : xL ∈ BL i.o.) = 0 and hence

lim sup
L→∞

hL(x) ≤ h+ 5ε.

Since ε is arbitrary we have proved that the limit supremum of the sample
entropy −n−1 lnm(Xn) is less than or equal to the limit infimum and therefore
that the limit exists and hence with m-probability 1

lim
n→∞

− lnm(Xn)

n
= h. (3.15)

Since the terms on the left in (3.15) are uniformly integrable from Lemma 2.3.6,
we can integrate to the limit and apply Lemma 2.4.1 to find that

h = lim
n→∞

∫
dm(x)

− lnm(Xn(x))

n
= H̄m(X),

which completes the proof of the lemma and hence also proves Theorem 3.1.1
for the special case of stationary ergodic measures. 2

3.3 Stationary Nonergodic Sources

Next suppose that a source is stationary with ergodic decomposition {mλ;
λ ∈ Λ} and ergodic component function ψ as in Theorem 1.8.3. The source
will produce with probability one under m an ergodic component mλ and
Lemma 3.2.1 will hold for this ergodic component. In other words, we should
have that

lim
n→∞

− 1

n
lnmψ(Xn) = H̄mψ (X); m− a.e., (3.16)

that is,
m({x : − lim

n→∞
lnmψ(x)(x

n) = H̄mψ(x)
(X)}) = 1.

This argument is made rigorous in the following lemma.

Lemma 3.3.1 Suppose that {Xn} is a stationary not necessarily ergodic source
with ergodic component function ψ. Then

m({x : − lim
n→∞

lnmψ(x)(x
n) = H̄mψ(x)

(X)}) = 1; m− a.e.. (3.17)

Proof: Let
G = {x : − lim

n→∞
lnmψ(x)(x

n) = H̄mψ(x)
(X)}

and let Gλ denote the section of G at λ, that is,

Gλ = {x : − lim
n→∞

lnmλ(xn) = H̄mλ(X)}.
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From the ergodic decomposition (e.g., Theorem 1.8.3 or [50], Theorem 8.5.1)
and (1.26)

m(G) =

∫
dPψ(λ)mλ(G),

where
mλ(G) = m(G|ψ = λ) = m(G

⋂
{x : ψ(x) = λ}|ψ = λ)

= m(Gλ|ψ = λ) = mλ(Gλ)

which is 1 for all λ from the stationary ergodic result. Thus

m(G) =

∫
dPψ(λ)mλ(Gλ) = 1.

It is straightforward to verify that all of the sets considered are in fact measur-
able. 2

Unfortunately it is not the sample entropy using the distribution of the
ergodic component that is of interest, rather it is the original sample entropy
for which we wish to prove convergence. The following lemma shows that the
two sample entropies converge to the same limit and hence Lemma 3.3.1 will also
provide the limit of the sample entropy with respect to the stationary measure.

Lemma 3.3.2 Given a stationary source {Xn}, let {mλ; λ ∈ Λ} denote the
ergodic decomposition and ψ the ergodic component function of Theorem 1.8.3.
Then

lim
n→∞

1

n
ln
mψ(Xn)

m(Xn)
= 0; m− a.e.

Proof: First observe that if m(an) is 0, then from the ergodic decomposition
with probability 1 mψ(an) will also be 0. One part is easy. For any ε > 0 we
have from the Markov inequality that

m(
1

n
ln

m(Xn)

mψ(Xn)
> ε) = m(

m(Xn)

mψ(Xn)
> enε) ≤ Em(

m(Xn)

mψ(Xn)
)e−nε.

The expectation, however, can be evaluated as follows: Let A
(λ)
n = {an :

mλ(an) > 0}. Then

Em

(
m(Xn)

mψ(Xn)

)
=

∫
dPψ(λ)

∑
an∈An

m(an)

mλ(an)
mλ(an) =

∫
dPψ(λ)m(A(λ)

n ) ≤ 1,

where Pψ is the distribution of ψ.
It was pointed out by Weiying Yang in 2017 that the evaluation above applies

the ergodic decomposition of Theorem 1.8.3 which requires thatm(Xn)/mψ(Xn)
have a finite integral (be in L1(m)), but this has not shown. The following
paragraph fills in the details and shows that f ≡ m(Xn)/mψ(Xn) ∈ L1(m) and
bounds the integral independently of n.
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Define for all M > 0 the nonegative bounded function fM by

fM = max(
m(Xn)

mψ(Xn)
,M)

or, pointwise

fM (x) = max(
m(Xn(x))

mψ(x)(Xn(x))
,M) = max(

m(xn)

mψ(x)(xn)
,M)

The truncated functions fM converge monotonically to f as M → ∞. Since
fM is a nonnegative integrable function it is in L1(m) and hence Theorem 1.8.3
(or iterated expectation by identifying expectation over mψ as a conditional
expectation given ψ) can be applied to obtain

EmfM = E[E[fM |ψ]].

The conditional expectation given ψ = λ can be bounded as

E[fM |ψ = λ] =

∫
dmλ(x) max

(
m(Xn(x))

mλXn(x))
,M

)
=

∑
an

mλ(an) max

(
m(an)

mλ(an)
,M

)
where the sums are over all possible an ∈ An, the n-tuple source alphabet. As
noted, with Pψ probability 1, mλ(an) cannot be 0 unless m(an) is, in which case
the ratio is taken to be 0. Defining the set Fn = {an : m(an)/mλ(an) ≤M}

E[fM |ψ = λ] =
∑
an∈Fn

mλ(an) max

(
m(an)

mλ(an)
,M

)
+
∑
an 6∈Fn

mλ(an) max

(
m(an)

mλ(an)
,M

)

≤
∑
an∈Fn

mλ(an)
m(an)

mλ(an)
+
∑
an 6∈Fn

mλ(an)M

= m(Fn) +Mmλ(F cn)

For an 6∈ Fn, however, mλ(an) ≤ m(an)/M , whence

mλ(F cn) =
∑
an 6∈Fn

mλ(an) ≤
∑
an 6∈Fn

1

N
m(an) =

m(F cn)

M

so that
E[fM |ψ = λ] ≤ m(Fn) +m(F cn) = 1

for all n and T . Thus from the dominated convergence theorem, the monotone
nondecreasing integrable function fT has expectations which converge to a limit
which equals the expectation of the limit of fT as T goes to infinity. Thus
f ∈ L1(m) as required and its integral is bound above by 1.

Continue the proof of Lemma 3.3.2.



62 CHAPTER 3. THE ENTROPY ERGODIC THEOREM

It has been shown that

m(
1

n
ln

m(Xn)

mψ(Xn)
> ε) ≤ e−nε.

and hence
∞∑
n=1

m(
1

n
ln

m(Xn)

mψ(Xn)
> ε) <∞

and hence from the Borel-Cantelli lemma

m(
1

n
ln

m(Xn)

mψ(Xn)
> ε i.o.) = 0

and hence with m probability 1

lim sup
n→∞

1

n
ln

m(Xn)

mψ(Xn)
≤ ε.

Since ε is arbitrary,

lim sup
n→∞

1

n
ln

m(Xn)

mψ(Xn)
≤ 0; m− a.e. (3.18)

For later use we restate this as

lim inf
n→∞

1

n
ln
mψ(Xn)

m(Xn)
≥ 0; m− a.e. (3.19)

Now turn to the converse inequality. For any positive integer k, we can
construct a stationary k-step Markov approximation to m as in Section 2.6,
that is, construct a process m(k) with the conditional probabilities

m(k)(Xn ∈ F |Xn) = m(k)(Xn ∈ F |Xk
n−k) = m(Xn ∈ F |Xk

n−k)

and the same kth order distributions m(k)(Xk ∈ F ) = m(Xk ∈ F ). Consider
the probability

m(
1

n
ln
m(k)(Xn)

m(Xn)
≥ ε) = m(

m(k)(Xn)

m(Xn)
≥ enε) ≤ Em(

m(k)(Xn)

m(Xn)
)e−nε.

The expectation is evaluated as

∑
xn

m(k)(xn)

m(xn)
m(xn) = 1

and hence we again have using Borel-Cantelli that

lim sup
n→∞

1

n
ln
m(k)(Xn)

m(Xn)
≤ 0.
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Apply the usual ergodic theorem to conclude that with probability 1 under m

lim sup
n→∞

1

n
ln

1

m(Xn)
≤ lim
n→∞

1

n
ln

1

m(k)(Xn)
= Emψ [− lnm(Xk|Xk)].

Combining this result with (3.16) and Lemma 2.4.3 yields

lim sup
n→∞

1

n
ln
mψ(Xn)

m(Xn)
≤ −H̄mψ (X)− Emψ [lnm(Xk|Xk)]. = H̄mψ||m(k)(X).

This bound holds for any integer k and hence it must also be true that m-a.e.
the following holds:

lim sup
n→∞

1

n
ln
mψ(Xn)

m(Xn)
≤ inf

k
H̄mψ||m(k)(X) ≡ ζ. (3.20)

In order to evaluate ζ we apply the ergodic decomposition of relative entropy
rate (Corollary 2.4.2) and the ordinary ergodic decomposition to write∫

dPψζ =

∫
dPψ inf

k
H̄mψ||m(k)(X)

≤ inf
k

∫
dPψH̄mψ||m(k)(X) = inf

k
H̄m||m(k)(X).

From Theorem 2.6.1, the right hand term is 0. If the integral of a nonnegative
function is 0, the integrand must itself be 0 with probability one. Thus (3.20)
becomes

lim sup
n→∞

1

n
ln
mψ(Xn)

m(Xn)
≤ 0,

which with (3.19) completes the proof of the lemma. 2

We shall later see that the quantity

in(Xn;ψ) =
1

n
ln
mψ(Xn)

m(Xn)

is the sample mutual information (in a generalized sense so that it applies to the
usually non-discrete ψ) and hence the lemma states that the normalized sample
mutual information between the process outputs and the ergodic component
function goes to 0 as the number of samples goes to infinity.

The two previous lemmas immediately yield the following result.

Corollary 3.3.1 The conclusions of Theorem 3.1.1 hold for sources that are
stationary.
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3.4 AMS Sources

The principal idea required to extend the entropy theorem from stationary
sources to AMS sources is contained in Lemma 3.4.2. It shows that an AMS
source inherits sample entropy properties from an asymptotically dominating
stationary source (just as it inherits ordinary ergodic properties from such a
source). The result is originally due to Gray and Kieffer [54], but the proof here
is somewhat different. The tough part here is handling the fact that the sample
average being considered depends on a specific measure. From Theorem 1.7.1,
the stationary mean of an AMS source dominates the original source on tail
events, that is, events in F∞. We begin by showing that certain important
events can be recast as tail events, that is, they can be determined by looking
at only samples in the arbitrarily distant future. The following result is of this
variety: It implies that sample entropy is unaffected by the starting time.

Lemma 3.4.1 Let {Xn} be a finite alphabet source with distribution m. Recall
that Xn

k = (Xk, Xk+1, · · · , Xk+n−1) and define the information density

i(Xk;Xn−k
k ) = ln

m(Xn)

m(Xk)m(Xn−k
k )

.

Then

lim
n→∞

1

n
i(Xk;Xn−k

k ) = 0; m− a.e.

Comment: The lemma states that with probability 1 the per-sample mutual
information density between the first k samples and future samples goes to zero
in the limit. Equivalently, limits of n−1 lnm(Xn) will be the same as limits of
n−1 lnm(Xn−k

k ) for any finite k. Note that the result does not require even that
the source be AMS. The lemma is a direct consequence of Lemma 2.7.1.

Proof: Define the distribution p = mXk×mXk,Xk+1,···, that is, a distribution
for which all samples after the first k are independent of the first k samples.
Thus, in particular, p(Xn) = m(Xk)m(Xn

k ). We will show that p � m, in
which case the lemma will follow from Lemma 2.7.1. Suppose that p(F ) = 0. If
we denote X+

k = Xk, Xk+1, · · · , then

0 = p(F ) =
∑
xk

m(xk)mX+
k

(Fxk),

where Fxk is the section {x+
k : (xk, x+

k ) = x ∈ F}. For the above relation to
hold, we must have mX+

k
(Fxk) = 0 for all xk with m(xk) 6= 0. We also have,

however, that

m(F ) =
∑
ak

m(Xk = ak, X+
k ∈ Fak)

=
∑
ak

m(Xk = ak|X+
k ∈ Fak)m(X+

k ∈ Fak).
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But this sum must be 0 since the rightmost terms are 0 for all ak for which
m(Xk = ak) is not 0. (Observe that we must have m(Xk = ak|X+

k ∈ Fak) =
0 if m(X+

k ∈ Fak) 6= 0 since otherwise m(Xk = ak) ≥ m(Xk = ak, X+
k ∈ Fak)

> 0, yielding a contradiction.) Thus p� m and the lemma is proved. 2

For later use we note that we have shown that a joint distribution is dom-
inated by a product of its marginals if one of the marginal distributions is
discrete.

Lemma 3.4.2 Suppose that {Xn} is an AMS source with distribution m and
suppose that m̄ is a stationary source that asymptotically dominates m (e.g., m̄
is the stationary mean). If there is an invariant function h such that

lim
n→∞

− 1

n
ln m̄(Xn) = h; m̄− a.e.,

then also,

lim
n→∞

− 1

n
lnm(Xn) = h; m− a.e.

Proof: For any k we can write using the chain rule for densities

− 1

n
lnm(Xn) +

1

n
lnm(Xn−k

k ) = − 1

n
lnm(Xk|Xn−k

k )

= − 1

n
i(Xk;Xn−k

k )− 1

n
lnm(Xk).

From the previous lemma and from the fact that Hm(Xk) = −Em lnm(Xk) is
finite, the right hand terms converge to 0 as n→∞ and hence for any k

lim
n→∞

− 1

n
lnm(Xk|Xn−k

k ) =

lim
n→∞

(− 1

n
lnm(Xn) +

1

n
lnm(Xn−k

k )) = 0; m− a.e. (3.21)

This implies that there is a subsequence k(n)→∞ such that

− 1

n
lnm(Xk(n)|Xn−k(n)

k(n) ) = − 1

n
lnm(Xn)− 1

n
lnm(Xn−k

k(n) (n))→ 0; m− a.e.

(3.22)
To see this, observe that (3.21) ensures that for each k there is an N(k) large
enough so that N(k) > N(k − 1) and

m(| − 1

N(k)
lnm(Xk|XN(k)−k

k )| > 2−k) ≤ 2−k. (3.23)

Applying the Borel-Cantelli lemma implies that for any ε,

m(| − 1/N(k) lnm(Xk|XN(k)−k
k )| > ε i.o.) = 0.
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Now let k(n) = k for N(k) ≤ n < N(k + 1). Then

m(| − 1/n lnm(Xk(n)|Xn−k(n)
k(n) )| > ε i.o.) = 0

and therefore

lim
n→∞

(
− 1

n
lnm(Xn) +

1

n
lnm(X

n−k(n)
k(n) )

)
= 0; m− a.e.

as claimed in (3.22).

In a similar manner we can also choose the sequence so that

lim
n→∞

(
− 1

n
ln m̄(Xn) +

1

n
ln m̄(X

n−k(n)
k(n) )

)
= 0; m̄− a.e.,

that is, we can choose N(k) so that (3.23) simultaneously holds for both m and
m̄. Invoking the entropy ergodic theorem for the stationary m̄ (Corollary 3.3.1)
we have therefore that

lim
n→∞

− 1

n
ln m̄(X

n−k(n)
k(n) ) = h̄; m̄− a.e.. (3.24)

From Markov’s inequality (Lemma 4.4.3 of [50])

m̄(− 1

n
lnm(Xn

k ) ≤ − 1

n
ln m̄(Xn

k )− ε) = m̄(
m(Xn

k )

m̄(Xn
k )
≥ enε)

≤ e−nεEm̄
m(Xn−k

k )

m̄(Xn−k
k )

= e−nε
∑

xn−kk :m̄(xn−kk ) 6=0

m(xn−kk )

m̄(xn−kk )
m̄(xn−kk )

≤ e−nε.

Hence taking k = k(n) and again invoking the Borel-Cantelli lemma we have
that

m̄(− 1

n
lnm(X

n−k(n)
k(n) ) ≤ − 1

n
ln m̄(X

n−k(n)
k(n) )− ε i.o.) = 0

or, equivalently, that

lim inf
n→∞

− 1

n
ln
m(X

n−k(n)
k(n) )

m̄(X
n−k(n)
k(n) )

≥ 0; m̄− a.e. (3.25)

Therefore from (3.24)

lim inf
n→∞

− 1

n
lnm(X

n−k(n)
k(n) ) ≥ h; m̄− a.e.. (3.26)
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The above event is in the tail σ-field F∞ =
⋂
n σ(Xn, Xn+1, · · · ) since it can be

determined from Xk(n), · · · for arbitrarily large n and since h is invariant. Since
m̄ dominates m on the tail σ-field (Theorem 1.7.2), we have also

lim inf
n→∞

− 1

n
lnm(X

n−k(n)
k(n) ) ≥ h; m− a.e.

and hence by (3.22)

lim inf
n→∞

− 1

n
lnm(Xn) ≥ h; m− a.e.

which proves half of the lemma.
Since

m̄( lim
n→∞

− 1

n
ln m̄(Xn) 6= h) = 0

and since m̄ asymptotically dominates m (Theorem 1.7.1), given ε > 0 there is
a k such that

m( lim
n→∞

− 1

n
ln m̄(Xn

k ) = h) ≥ 1− ε.

Again applying Markov’s inequality and the Borel-Cantelli lemma as in the
development of (3.24) we have that

lim inf
n→∞

− 1

n
ln
m̄(Xn

k )

m(Xn
k )
≥ 0; m− a.e,

which implies that

m(lim sup
n→∞

− 1

n
lnm(Xn

k ) ≤ h) ≥ 1− ε

and hence also that

m(lim sup
n→∞

− 1

n
lnm(Xn) ≤ h) ≥ 1− ε.

Since ε can be made arbitrarily small, this proves that m-a.e.

lim sup
n→∞

−n−1 lnm(Xn) ≤ h,

which completes the proof of the lemma. 2

The lemma combined with Corollary 3.3.1 completes the proof of Theo-
rem 3.1.1. 2

3.5 The Asymptotic Equipartition Property

Since convergence almost everywhere implies convergence in probability, Theo-
rem 3.1.1 has the following implication: Suppose that {Xn} is an AMS ergodic
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source with entropy rate H̄. Given ε > 0 there is an N such that for all n > N
the set

Gn = {xn : |n−1hn(x)− H̄| ≥ ε} = {xn : e−n(H̄+ε) ≤ m(xn) ≤ e−n(H̄−ε)}

has probability greater then 1− ε. Furthermore, as in the proof of the theorem,
there can be no more than en(H̄+ε) n-tuples in Gn. Thus there are two sets of n-
tuples: a “good” set of approximately enH̄ n-tuples having approximately equal
probability of e−nH̄ and the complement of this set which has small total prob-
ability. The set of good sequences are often referred to as “typical sequences”
in the information theory literature and in this form the theorem is called the
asymptotic equipartition property or the AEP.

As a first information theoretic application of an ergodic theorem, we con-
sider a simple coding scheme called an “almost noiseless source code.” As we
often do, we consider logarithms to the base 2 when considering specific coding
applications. Suppose that a random process {Xn} has a finite alphabet A with
cardinality ||A|| and entropy rate H̄. Suppose that H̄ < log ||A||, e.g., A might
have 16 symbols, but the entropy rate is slightly less than 2 bits per symbol
rather than log 16 = 4. Larger alphabets cost money in either storage or com-
munication applications. For example, to communicate a source with a 16 letter
alphabet sending one letter per second without using any coding and using a
binary communication system we would need to send 4 binary symbols (or four
bits) for each source letter and hence 4 bits per second would be required. If
the alphabet only had 4 letters, we would need to send only 2 bits per second.
The question is the following: Since our source has an alphabet of size 16 but
an entropy rate of less than 2, can we code the original source into a new source
with an alphabet of only 4 letters so as to communicate the source at the smaller
rate and yet have the receiver be able to recover the original source? The AEP
suggests a technique for accomplishing this provided we are willing to tolerate
occasional errors.

We construct a code of the original source by first picking a small ε and
a δ small enough so that H̄ + δ < 2. Choose a large enough n so that the
AEP holds giving a set Gn of good sequences as above with probability greater
than 1 − ε. Index this collection of fewer than 2n(H̄+δ) < 22n sequences using
binary 2n-tuples. The source Xk is parsed into blocks of length n as Xn

kn =
(Xkn, Xkn+1, · · · , X(k+1)n) and each block is encoded into a binary 2n-tuple as
follows: If the source n-tuple is in Gn, the codeword is its binary 2n-tuple index.
Select one of the unused binary 2n-tuples as the error index and whenever an
n-tuple is not in Gn, the error index is the codeword. The receiver or decoder
than uses the received index and decodes it as the appropriate n-tuple in Gn. If
the error index is received, the decoder can declare an arbitrary source sequence
or just declare an error. With probability at least 1 − ε a source n-tuple at
a particular time will be in Gn and hence it will be correctly decoded. We
can make this probability as small as desired by taking n large enough, but we
cannot in general make it 0.

The above simple scheme is an example of a block coding scheme. If con-
sidered as a mapping from sequences into sequences, the map is not stationary,
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but it is block stationary in the sense that shifting an input block by n results
in a corresponding block shift of the encoded sequence by 2n binary symbols.
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Chapter 4

Information Rates I

4.1 Introduction

Before proceeding to generalizations of the various measures of information,
entropy, and divergence to nondiscrete alphabets, we consider several properties
of information and entropy rates of finite alphabet processes. We show that
codes that produce similar outputs with high probability yield similar rates and
that entropy and information rate, like ordinary entropy and information, are
reduced by coding. The discussion introduces a basic tool of ergodic theory–
the partition distance–and develops several versions of an early and fundamental
result from information theory–Fano’s inequality. We obtain an ergodic theorem
for information densities of finite alphabet processes as a simple application of
the general Shannon-McMillan-Breiman theorem coupled with some definitions.
In Chapter 6 these results easily provide L1 ergodic theorems for information
densities for more general processes.

4.2 Stationary Codes and Approximation

We consider the behavior of entropy when codes or measurements are taken on
the underlying random variables. We have seen that entropy is a continuous
function with respect to the underlying measure. We now wish to fix the measure
and show that entropy is a continuous function with respect to the underlying
measurement.

Say we have two finite alphabet measurements f and g on a common prob-
ability space having a common alphabet A. Suppose that Q and R are the
corresponding partitions. A common metric or distance measure on partitions
in ergodic theory is

|Q −R| = 1

2

∑
i

P (Qi∆Ri), (4.1)

which in terms of the measurements (assuming they have distinct values on dis-
tinct atoms) is just Pr(f 6= g). If we consider f and g as two codes on a common

71
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space, random variable, or random process (that is, finite alphabet mappings),
then the partition distance can also be considered as a form of distance between
the codes. The following lemma shows that entropy of partitions or measure-
ments is continuous with respect to this distance. The result is originally due
to Fano and is called Fano’s inequality [37].

Lemma 4.2.1 Given two finite alphabet measurements f and g on a common
probability space (Ω,B, P ) having a common alphabet A or, equivalently, the
given corresponding partitions Q = {f−1(a); a ∈ A} and R = {g−1(a); a ∈ A},
define the error probability Pe = |Q −R| = Pr(f 6= g). Then

H(f |g) ≤ h2(Pe) + Pe ln(||A|| − 1)

and

|H(f)−H(g)| ≤ h2(Pe) + Pe ln(M − 1)

and hence entropy is continuous with respect to partition distance for a fixed
measure.

Proof: Let M = ||A|| and define a measurement

r : A×A→ {0, 1, · · · ,M − 1}

by r(a, b) = 0 if a = b and r(a, b) = i if a 6= b and a is the ith letter in the
alphabet Ab = A− b. If we know g and we know r(f, g), then clearly we know
f since either f = g (if r(f, g) is 0) or, if not, it is equal to the r(f, g)th letter
in the alphabet A with g removed. Since f can be considered a function of g
and r(f, g),

H(f |g, r(f, g)) = 0

and hence

H(f, g, r(f, g)) = H(f |g, r(f, g)) +H(g, r(f, g)) = H(g, r(f, g)).

Similarly

H(f, g, r(f, g)) = H(f, g).

From Lemma 2.3.2

H(f, g) = H(g, r(f, g)) ≤ H(g) +H(r(f, g))

or

H(f, g)−H(g) = H(f |g) ≤ H(r(f, g))

= −P (r = 0) lnP (r = 0)−
M−1∑
i=1

P (r = i) lnP (r = i).
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Since P (r = 0) = 1− Pe and since
∑
i 6=0 P (r = i) = Pe, this becomes

H(f |g) ≤ −(1− Pe) ln(1− Pe)− Pe
M−1∑
i=1

P (r = i)

Pe
ln
P (r = i)

Pe
− Pe lnPe

≤ h2(Pe) + Pe ln(M − 1)

since the entropy of a random variable with an alphabet of size M − 1 is no
greater than ln(M−1). This proves the first inequality. Since H(f) ≤ H(f, g) =
H(f |g) +H(g), this implies

H(f)−H(g) ≤ h2(Pe) + Pe ln(M − 1).

Interchanging the roles of f and g completes the proof. 2

The lemma can be used to show that related information measures such
as mutual information and conditional mutual information are also continuous
with respect to the partition metric. The following corollary provides useful
extensions. Similar extensions may be found in Csiszár and Körner [26].

Corollary 4.2.1 Given two sequences of measurements {fn} and {gn} with
finite alphabet A on a common probability space, define

P (n)
e =

1

n

n−1∑
i=0

Pr(fi 6= gi).

Then
1

n
H(fn|gn) ≤ P (n)

e ln(||A|| − 1) + h2(P (n)
e )

and

| 1
n
H(fn)− 1

n
H(gn)| ≤ P (n)

e ln(||A|| − 1) + h2(P (n)
e ).

If {fn, gn} are also AMS and hence the limit

P̄e = lim
n→∞

P (n)
e

exists, then if we define

H̄(f |g) = lim
n→∞

1

n
H(fn|gn) = lim

n→∞

1

n
(H(fn, gn)−H(gn)),

where the limits exist since the processes are AMS, then

H̄(f |g) ≤ P̄e ln(||A|| − 1) + h2(P̄e)

|H̄(f)− H̄(g)| ≤ P̄e ln(||A|| − 1) + h2(P̄e).
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Proof: From the chain rule for entropy (Corollary 2.5.1), Lemma 2.5.2, and
Lemma 4.2.1

H(fn|gn) =

n−1∑
i=0

H(fi|f i, gn) ≤
n−1∑
i=0

H(fi|gi) ≤
n−1∑
i=0

H(fi|gi)

≤
n−1∑
i=0

(Pr(fi 6= gi) ln(||A|| − 1) + h2(Pr(fi 6= gi)))

from the previous lemma. Dividing by n yields the first inequality which im-
plies the second as in the proof of the previous lemma. If the processes are
jointly AMS, then the limits exist and the entropy rate results follows from the
continuity of h2 by taking the limit. 2

The per-symbol probability of error P
(n)
e has an alternative form. Recall

that the (average) Hamming distance between two vectors is the number of
positions in which they differ, i.e.,

d
(1)
H (x0, y0) = 1− δx0,y0 ,

where δa,b is the Kronecker delta function (0 if a = b and 1 otherwise), and

d
(n)
H (xn, yn) =

n−1∑
i=0

d
(1)
H (xi, yi).

We have then that

P (n)
e = E

(
1

n
d

(n)
H (fn, gn)

)
,

the normalized average Hamming distance.
The next lemma and corollary provide a useful tool for approximating com-

plicated codes by simpler ones.

Lemma 4.2.2 Given a probability space (Ω,B, P ) suppose that F is a gener-
ating field: B = σ(F). Suppose that B-measurable Q is a partition of Ω and
ε > 0. Then there is a partition Q′ with atoms in F such that |Q − Q′| ≤ ε.

Proof: Let ||A|| = K. From Theorem1.2.1 given γ > 0 we can find sets Ri ∈ F
such that P (Qi∆Ri) ≤ γ for i = 1, 2, · · · ,K − 1. The remainder of the proof
consists of set theoretic manipulations showing that we can construct the desired
partition from the Ri by removing overlapping pieces. The algebra is given for
completeness, but it can be skipped. Form a partition from the sets as

Q′i = Ri −
i−1⋃
j=1

Rj , i = 1, 2, · · · ,K − 1

Q′K = (

K−1⋃
i=1

Q′i)
c.
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For i < K

P (Qi∆Q
′
i) = P (Qi

⋃
Q′i)− P (Qi

⋂
Q′i)

≤ P (Qi
⋃
Ri)− P (Qi

⋂
(Ri −

⋃
j<i

Rj)).

The rightmost term can be written as

P (Qi
⋂

(Ri −
⋃
j<i

Rj)) = P ((Qi
⋂
Ri)− (

⋃
j<i

Qi
⋂
Ri
⋂
Rj))

= P (Qi
⋂
Ri)− P (

⋃
j<i

Qi
⋂
Ri
⋂
Rj),

where we have used the fact that a set difference is unchanged if the portion
being removed is intersected with the set it is being removed from and we have
used the fact that P (F − G) = P (F ) − P (G) if G ⊂ F . Combining (4.2) and
(4.2) we have that

P (Qi∆Q
′
i) ≤ P (Qi

⋃
Ri)− P (Qi

⋂
Ri) + P (

⋃
j<i

Qi
⋂
Ri
⋂
Rj)

= P (Qi∆Ri) + P (
⋃
j<i

Qi
⋂
Ri
⋂
Rj)

≤ γ +
∑
j<i

P (Qi
⋂
Rj).

For j 6= i, however, we have that

P (Qi
⋂
Rj) = P (Qi

⋂
Rj
⋂
Qcj) ≤ P (Rj

⋂
Qcj)

≤ P (Rj∆Qj) ≤ γ,

which with the previous equation implies that

P (Qi∆Q
′
i) ≤ Kγ; i = 1, 2, · · · ,K − 1.

For the remaining atom:

P (QK∆Q′K) = P (QK
⋂
Q′

c
K

⋃
QcK

⋂
Q′K). (4.2)

We have

QK
⋂
Q′

c
K = QK

⋂
(
⋃
j<K

Q′j) = QK
⋂

(
⋃
j<K

Q′j
⋂
Qcj),

where the last equality follows since points in Q′j that are also in Qj can-
not contribute to the intersection with QK since the Qj are disjoint. Since
Q′j

⋂
Qcj ⊂ Q′j∆Qj we have

QK
⋂
Q′

c
K ⊂ QK

⋂
(
⋃
j<K

Q′j∆Qj) ⊂
⋃
j<K

Q′j∆Qj .
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A similar argument shows that

QcK
⋂
Q′K ⊂

⋃
j<k

Q′j∆Qj

and hence with (4.2)

P (QK∆Q′K) ≤ P (
⋃
j<K

Qj∆Q
′
j) ≤

∑
j<K

P (Qj∆Q
′
j) ≤ K2γ.

To summarize, we have shown that

P (Qi∆Q
′
i) ≤ K2γ; i = 1, 2, · · · ,K

If we now choose γ so small that K2γ ≤ ε/K, the lemma is proved. 2

Corollary 4.2.2 Let (Ω,B, P ) be a probability space and F a generating field.
Let f : Ω → A be a finite alphabet measurement. Given ε > 0 there is a
measurement g : Ω→ A that is measurable with respect to F (that is, g−1(a) ∈
F for all a ∈ A) for which P (f 6= g) ≤ ε.

Proof: Follows from the previous lemma by setting Q = {f−1(a); a ∈ A},
choosing Q′ from the lemma, and then assigning g for atom Q′i in Q′ the same
value that f takes on in atom Qi in Q. Then

P (f 6= g) =
1

2

∑
i

P (Qi∆Q
′
i) ≤ ε.

2

We now develop applications of the previous results which relate the idea of
the entropy of a dynamical system with the entropy rate of a random process.
The result is not required for later coding theorems, but it provides insight into
the connections between entropy as considered in ergodic theory and entropy as
used in information theory. In addition, the development involves some ideas of
coding and approximation which are useful in proving the ergodic theorems of
information theory used to prove coding theorems.

Let {Xn} be a random process with alphabet AX . Let A∞X denote the one or
two-sided sequence space. Consider the dynamical system (Ω,B, P, T ) defined
by (A∞X ,B(AX)∞, P, T ), where P is the process distribution and T the shift.
Recall from Section 2.2 that a stationary coding or infinite length sliding block
coding of {Xn} is a measurable mapping f : A∞X → Af into a finite alphabet
which produces an encoded process {fn} defined by

fn(x) = f(Tnx); x ∈ A∞X .

The entropy H(P, T ) of the dynamical system was defined by

H(P, T ) = sup
f
H̄P (f),
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the supremum of the entropy rates of finite alphabet stationary codings of the
original process. We shall soon show that if the original alphabet is finite, then
the entropy of the dynamical system is exactly the entropy rate of the process.
First, however, we require several preliminary results, some of independent in-
terest.

Lemma 4.2.3 If f is a stationary coding of an AMS process, then the process
{fn} is also AMS. If the input process is ergodic, then so is {fn}.

Proof: Suppose that the input process has alphabet AX and distribution P
and that the measurement f has alphabet Af . Define the sequence mapping
f̄ : A∞X → A∞f by f̄(x) = {fn(x); n ∈ T }, where fn(x) = f(Tnx) and T is
the shift on the input sequence space A∞X . If T also denotes the shift on the
output space, then by construction f̄(Tx) = T f̄(x) and hence for any output
event F , f̄−1(T−1F ) = T−1f̄−1(F ). Let m denote the process distribution for
the encoded process. Since m(F ) = P (f̄−1(F )) for any event F ∈ B(Af )∞ , we
have using the stationarity of the mapping f that

lim
n→∞

1

n

n−1∑
i=0

m(T−iF ) = lim
n→∞

1

n

n−1∑
i=0

P (f̄−1(T−iF ))

= lim
n→∞

1

n

n−1∑
i=0

P (T−if̄−1(F )) = P̄ (f̄−1(F )),

where P̄ is the stationary mean of P . Thus m is AMS. If G is an invariant
output event, then f̄−1(G) is also invariant since T−1f̄−1(G) = f̄−1(T−1G).
Hence if input invariant sets can only have probability 1 or 0, the same is true
for output invariant sets. 2

The lemma and Theorem3.1.1 immediately yields the following:

Corollary 4.2.3 If f is a stationary coding of an AMS process, then

H̄(f) = lim
n→∞

1

n
H(fn),

that is, the limit exists.

For later use the next result considers general standard alphabets. A sta-
tionary code f is a scalar quantizer if there is a map q : AX → Af such that
f(x) = q(x0). Intuitively, f depends on the input sequence only through the
current symbol. Mathematically, f is measurable with respect to σ(X0). Such
codes are effectively the simplest possible and have no memory or dependence
on the future.

Lemma 4.2.4 Let {Xn} be an AMS process with standard alphabet AX and
distribution m. Let f be a stationary coding of the process with finite alphabet
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Af . Fix ε > 0. If the process is two-sided, then there is a scalar quantizer
q : AX → Aq, an integer N , and a mapping g : ANq → Af such that

lim
n→∞

1

n

n−1∑
i=0

Pr(fi 6= g(q(Xi−N ), q(Xi−N+1), · · · , q(Xi+N ))) ≤ ε.

If the process is one-sided, then there is a scalar quantizer q : AX → Aq, an
integer N , and a mapping g : ANq → Af such that

lim
n→∞

1

n

n−1∑
i=0

Pr(fi 6= g(q(Xi), q(Xi+1), · · · , q(Xi+N−1))) ≤ ε.

Comment: The lemma states that any stationary coding of an AMS process can
be approximated by a code that depends only on a finite number of quantized
inputs, that is, by a coding of a finite window of a scalar quantized version of
the original process. In the special case of a finite alphabet input process, the
lemma states that an arbitrary stationary coding can be well approximated by
a coding depending only on a finite number of the input symbols.
Proof: Suppose that m̄ is the stationary mean and hence for any measurements
f and g

m̄(f0 6= g0) = lim
n→∞

1

n

n−1∑
n=0

Pr(fi 6= gi).

Let qn be an asymptotically accurate scalar quantizer in the sense that σ(qn(X0))
asymptotically generates B(AX). (Since AX is standard this exists. If AX is
finite, then take q(a) = a.) Then Fn = σ(qn(Xi); i = 0, 1, 2, · · · , n− 1) asymp-
totically generates B(AX)∞ for one-sided processes and Fn = σ(qn(Xi); i =
−n, · · · , n) does the same for two-sided processes. Hence from Corollary 4.2.2
given ε we can find a sufficiently large n and a mapping g that is measurable
with respect to Fn such that m̄(f 6= g) ≤ ε. Since g is measurable with respect
to Fn, it must depend on only the finite number of quantized samples that
generate Fn. (See, e.g., Lemma 5.2.1 of [50].) This proves the lemma. 2

Combining the lemma and Corollary 4.2.1 immediately yields the following
corollary, which permits us to study the entropy rate of general stationary codes
by considering codes which depend on only a finite number of inputs (and hence
for which the ordinary entropy results for random vectors can be applied).

Corollary 4.2.4 Given a stationary coding f of an AMS process let Fn be
defined as above. Then given ε > 0 there exists for sufficiently large n a code g
measurable with respect to Fn such that

|H̄(f)− H̄(g)| ≤ ε.

The above corollary can be used to show that entropy rate, like entropy,
is reduced by coding. The general stationary code is approximated by a code
depending on only a finite number of inputs and then the result that entropy is
reduced by mapping (Lemma 2.3.3) is applied.



4.3. INFORMATION RATE OF FINITE ALPHABET PROCESSES 79

Corollary 4.2.5 Given an AMS process {Xn} with finite alphabet AX and a
stationary coding f of the process, then

H̄(X) ≥ H̄(f),

that is, stationary coding reduces entropy rate.

Proof: For integer n define Fn = σ(X0, X1, · · · , Xn) in the one-sided case
and σ(X−n, · · · , Xn) in the two-sided case. Then Fn asymptotically gener-
ates B(AX)∞. Hence given a code f and an ε > 0 we can choose using the finite
alphabet special case of the previous lemma a large k and a Fk-measurable code
g such that |H̄(f) − H̄(g)| ≤ ε. We shall show that H̄(g) ≤ H̄(X), which will
prove the lemma. To see this in the one-sided case observe that g is a function
of Xk and hence gn depends only on Xn+k and hence

H(gn) ≤ H(Xn+k)

and hence

H̄(g) = lim
n→∞

1

n
H(gn) ≤ lim

n→∞

1

n

n

n+ k
H(Xn+k) = H̄(X).

In the two-sided case g depends on {X−k, · · · , Xk} and hence gn depends on
{X−k, · · · , Xn+k} and hence

H(gn) ≤ H(X−k, · · · , X−1, X0, · · · , Xn+k) ≤ H(X−k, · · · , X−1) +H(Xn+k).

Dividing by n and taking the limit completes the proof as before. 2

Theorem 4.2.1 Let {Xn} be a random process with alphabet AX . Let A∞X
denote the one or two-sided sequence space. Consider the dynamical system
(Ω,B, P, T ) defined by (A∞X ,B(AX)∞, P, T ), where P is the process distribution
and T is the shift. Then

H(P, T ) = H̄(X).

Proof: From (2.2.4), H(P, T ) ≥ H̄(X). Conversely suppose that f is a code
which yields H̄(f) ≥ H(P, T )− ε. Since f is a stationary coding of the process
{Xn}, the previous corollary implies that H̄(f) ≤ H̄(X), which completes the
proof. 2

4.3 Information Rate of Finite Alphabet Pro-
cesses

Let {(Xn, Yn)} be a one-sided random process with finite alphabet A × B and
let ((A×B)Z+ ,B(A×B)Z+) be the corresponding one-sided sequence space of
outputs of the pair process. We consider Xn and Yn to be the sampling functions
on the sequence spaces A∞ and B∞ and (Xn, Yn) to be the pair sampling
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function on the product space, that is, for (x, y) ∈ A∞ × B∞, (Xn, Yn)(x, y)
= (Xn(x), Yn(y)) = (xn, yn). Let p denote the process distribution induced by
the original space on the process {(Xn, Yn)}. Analogous to entropy rate we
can define the mutual information rate (or simply information rate) of a finite
alphabet pair process by

Ī(X,Y ) = lim sup
n→∞

1

n
I(Xn, Y n).

The following lemma follows immediately from the properties of entropy rates
of Theorems 2.4.1 and 3.1.1 since for AMS finite alphabet processes

Ī(X;Y ) = H̄(X) + H̄(Y )− H̄(X,Y )

and since from (3.4) the entropy rate of an AMS process is the same as that of its
stationary mean. Analogous to Theorem 3.1.1 we define the random variables
p(Xn, Y n) by p(Xn, Y n)(x, y) = p(Xn = xn, Y n = yn), p(Xn) by p(Xn)(x, y)
= p(Xn = xn), and similarly for p(Y n).

Lemma 4.3.1 Suppose that {Xn, Yn} is an AMS finite alphabet random process
with distribution p and stationary mean p̄. Then the limits supremum defining
information rates are limits and

Īp(X,Y ) = Īp̄(X,Y ).

Īp is an affine function of the distribution p. If p̄ has ergodic decomposition p̄xy,
then

Īp(X,Y ) =

∫
dp̄(x, y)Īp̄xy (X,Y ).

If we define the information density

in(Xn, Y n) = ln
p(Xn, Y n)

p(Xn)p(Y n)
,

then

lim
n→∞

1

n
in(Xn, Y n) = Īp̄xy (X,Y )

almost everywhere with respect to p̄ and p and in L1(p).

The following lemmas follow either directly from or similarly to the corre-
sponding results for entropy rate of the previous section.

Lemma 4.3.2 Suppose that {Xn, Yn, X
′
n, Y

′
n} is an AMS process and

P̄ = lim
n→∞

1

n

n−1∑
i=0

Pr((Xi, Yi) 6= (X ′i, Y
′
i)) ≤ ε

(the limit exists since the process is AMS). Then

|Ī(X;Y )− Ī(X ′;Y ′)| ≤ 3(ε ln(||A|| − 1) + h2(ε)).
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Proof: The inequality follows from Corollary 4.2.1 since

|̄(X;Y )− Ī(X ′;Y ′)| ≤
|H̄(X)− H̄(X ′)|+ |H̄(Y )− H̄(Y ′)|+ |H̄(X,Y )− H̄(X ′, Y ′)|

and since Pr((Xi, Yi) 6= (Xi
′, Yi

′)) = Pr(Xi 6= Xi
′ or Yi 6= Yi

′) is no smaller
than Pr(Xi 6= Xi

′) or Pr(Yi 6= Yi
′). 2

Corollary 4.3.1 Let {Xn, Yn} be an AMS process and let f and g be stationary
measurements on X and Y , respectively. Given ε > 0 there is an N sufficiently
large, scalar quantizers q and r, and mappings f ′ and g′ which depend only
on {q(X0), · · · , q(XN−1)} and {r(Y0), · · · , r(YN−1)} in the one-sided case and
{q(X−N ), · · · , q(XN )} and {r(Y−N ), · · · , r(YN )} in the two-sided case such that

|Ī(f ; g)− Ī(f ′; g′)| ≤ ε.

Proof: Choose the codes f ′ and g′ from Lemma 4.2.4 and apply the previous
lemma. 2

Lemma 4.3.3 If {Xn, Yn} is an AMS process and f and g are stationary cod-
ings of X and Y , respectively, then

Ī(X;Y ) ≥ Ī(f ; g).

Proof: This is proved as Corollary 4.2.5 by first approximating f and g by finite-
window stationary codes, applying the result for mutual information (Lemma 2.5.2),
and then taking the limit. 2
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Chapter 5

Relative Entropy

5.1 Introduction

A variety of information measures have been introduced for finite alphabet ran-
dom variables, vectors, and processes:entropy, mutual information, relative en-
tropy, conditional entropy, and conditional mutual information. All of these
can be expressed in terms of divergence and hence the generalization of these
definitions to infinite alphabets will follow from a general definition of diver-
gence. Many of the properties of generalized information measures will then
follow from those of generalized divergence.

In this chapter we extend the definition and develop the basic properties
of divergence, including the formulas for evaluating divergence as expectations
of information densities and as limits of divergences of finite codings. We also
develop several inequalities for and asymptotic properties of divergence. These
results provide the groundwork needed for generalizing the ergodic theorems of
information theory from finite to standard alphabets. The general definitions
of entropy and information measures originated in the pioneering work of Kol-
mogorov and his colleagues Gelfand, Yaglom, Dobrushin, and Pinsker [45] [91]
[32] [126].

5.2 Divergence

Given a probability space (Ω,B, P ) (not necessarily with finite alphabet) and
another probability measure M on the same space, define the divergence of P
with respect to M by

D(P‖M) = sup
Q
HP‖M (Q) = sup

f
D(Pf‖Mf ), (5.1)

where the first supremum is over all finite measurable partitions Q of Ω and the
second is over all finite alphabet measurements on Ω. The two forms have the
same interpretation: the divergence is the supremum of the relative entropies

83
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or divergences obtainable by finite alphabet codings of the sample space. The
partition form is perhaps more common when considering divergence per se,
but the measurement or code form is usually more intuitive when considering
entropy and information. This section is devoted to developing the basic proper-
ties of divergence, all of which will yield immediate corollaries for the measures
of information.

The first result is a generalization of the divergence inequality that is a trivial
consequence of the definition and the finite alphabet special case.

Lemma 5.2.1 The Divergence Inequality:
For any two probability measures P and M

D(P‖M) ≥ 0

with equality if and only if P = M .

Proof: Given any partition Q, Theorem 2.3.1 implies that∑
Q∈Q

P (Q) ln
P (Q)

M(Q)
≥ 0

with equality if and only if P (Q) = M(Q) for all atoms Q of the partition. Since
D(P‖Q) is the supremum over all such partitions, it is also nonnegative. It can
be 0 only if P and M assign the same probabilities to all atoms in all partitions
(the supremum is 0 only if the above sum is 0 for all partitions) and hence the
divergence is 0 only if the measures are identical. 2

As in the finite alphabet case, Lemma 5.2.1 justifies interpreting divergence
as a form of distance or dissimilarity between two probability measures. It is
not a true distance or metric in the mathematical sense since it is not symmetric
and it does not satisfy the triangle inequality. Since it is nonnegative and equals
zero only if two measures are identical, the divergence is a distortion measure
as considered in information theory [51], which is a generalization of the notion
of distance. This view often provides interpretations of the basic properties of
divergence. We shall develop several relations between the divergence and other
distance measures. The reader is referred to Csiszár [25] for a development of
the distance-like properties of divergence.

The following two lemmas provide means for computing divergences and
studying their behavior. The first result shows that the supremum can be con-
fined to partitions with atoms in a generating field. This will provide a means
for computing divergences by approximation or limits. The result is due to
Dobrushin and is referred to as Dobrushin’s theorem. The second result shows
that the divergence can be evaluated as the expectation of an entropy density
defined as the logarithm of the Radon-Nikodym derivative of one measure rela-
tive to the other. This result is due to Gelfand, Yaglom, and Perez. The proofs
largely follow the translator’s remarks in Chapter 2 of Pinsker [126] (which in
turn follows Dobrushin [32]).
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Lemma 5.2.2 Suppose that (Ω,B) is a measurable space where B is generated
by a field F , B = σ(F). Then if P and M are two probability measures on this
space,

D(P‖M) = sup
Q⊂F

HP‖M (Q).

Proof: From the definition of divergence, the right-hand term above is clearly
less than or equal to the divergence. If P is not absolutely continuous with
respect to M , then we can find a set F such that M(F ) = 0 but P (F ) 6= 0 and
hence the divergence is infinite. Approximating this event by a field element F0

by applying Theorem 1.2.1 simultaneously to M and G will yield a partition
{F0, F

c
0} for which the right hand side of the previous equation is arbitrarily

large. Hence the lemma holds for this case. Henceforth assume that M � P .
Fix ε > 0 and suppose that a partition Q = {Q1, · · · , QK} yields a relative

entropy close to the divergence, that is,

HP‖M (Q) =

K∑
i=1

P (Qi) ln
P (Qi)

M(Qi)
≥ D(P‖M)− ε/2.

We will show that there is a partition, say Q′ with atoms in F which has
almost the same relative entropy, which will prove the lemma. First observe that
P (Q) ln[P (Q)/M(Q)] is a continuous function of P (Q) and M(Q) in the sense
that given ε/(2K) there is a sufficiently small δ > 0 such that if |P (Q)−P (Q′)| ≤
δ and |M(Q)−M(Q′)| ≤ δ, then provided M(Q) 6= 0

|P (Q) ln
P (Q)

M(Q)
− P (Q′) ln

P (Q′)

M(Q′)
| ≤ ε

2K
.

If we can find a partition Q′ with atoms in F such that

|P (Q′i)− P (Qi)| ≤ δ, |M(Q′i)−M(Qi)| ≤ δ, i = 1, · · · ,K, (5.2)

then

|HP‖M (Q′)−HP‖M (Q)| ≤
∑
i

|P (Qi) ln
P (Qi)

M(Qi)
− P (Q′i) ln

P (Q′i)

M(Q′i)
|

≤ K ε

2K
=
ε

2

and hence

HP‖M (Q′) ≥ D(P‖M)− ε

which will prove the lemma. To find the partition Q′ satisfying (5.2), let m
be the mixture measure P/2 + M/2. As in the proof of Lemma 4.2.2, we can
find a partition Q′ ⊂ F such that m(Qi∆Q

′
i) ≤ K2γ for i = 1, 2, · · · ,K, which

implies that

P (Qi∆Q
′
i) ≤ 2K2γ; i = 1, 2, · · · ,K,
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and

M(Qi∆Q
′
i) ≤ 2K2γ; i = 1, 2, · · · ,K.

If we now choose γ so small that 2K2γ ≤ δ, then (5.2) and hence the lemma
follow from the above and the fact that

|P (F )− P (G)| ≤ P (F∆G). (5.3)

2

Lemma 5.2.3 Given two probability measures P and M on a common mea-
surable space (Ω,B), if P is not absolutely continuous with respect to M , then

D(P‖M) =∞.

If P � M (e.g., if D(P‖M) < ∞), then the Radon-Nikodym derivative f =
dP/dM exists and

D(P‖M) =

∫
ln f(ω)dP (ω) =

∫
f(ω) ln f(ω)dM(ω).

The quantity ln f (if it exists) is called the entropy density or relative entropy
density of P with respect to M .

Proof: The first statement was shown in the proof of the previous lemma. If P
is not absolutely continuous with respect to M , then there is a set Q such that
M(Q) = 0 and P (Q) > 0. The relative entropy for the partition Q = {Q,Qc}
is then infinite, and hence so is the divergence.

Assume that P � M and let f = dP/dM . Suppose that Q is an event for
which M(Q) > 0 and consider the conditional cumulative distribution function
for the real random variable f given that ω ∈ Q:

FQ(u) =
M({f < u}

⋂
Q)

M(Q)
;u ∈ (−∞,∞).

Observe that the expectation with respect to this distribution is

EM (f |Q) =

∫ ∞
0

u dFQ(u) =
1

M(Q)

∫
Q

f(ω) dM(ω) =
P (Q)

M(Q)
.

We also have that∫ ∞
0

u lnu dFQ(u) =
1

M(Q)

∫
Q

f(ω) ln f(ω) dM(ω),

where the existence of the integral is ensured by the fact that u lnu ≥ −e−1.
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Applying Jensen’s inequality to the convex
⋃

function u lnu yields the in-
equality

1

M(Q)

∫
Q

ln f(ω) dP (ω) =
1

M(Q)

∫
Q

f(ω) ln f(ω) dM(ω)

=

∫ ∞
0

u lnu dFQ(u)

≥ [

∫ ∞
0

u dFQ(u)] ln[

∫ ∞
0

u dFQ(u)]

=
P (Q)

M(Q)
ln
P (Q)

M(Q)
.

We therefore have that for any event Q with M(Q) > 0 that∫
Q

ln f(ω) dP (ω) ≥ P (Q) ln
P (Q)

M(Q)
. (5.4)

Let Q = {Qi} be a finite partition and we have∫
ln f(ω)dP (ω) =

∑
i

∫
Qi

ln f(ω) dP (ω)

≥
∑

i:P (Qi)6=0

∫
Qi

ln f(ω) dP (ω)

=
∑
i

P (Qi) ln
P (Qi)

M(Qi)
,

where the inequality follows from (5.4) since P (Qi) 6= 0 implies that M(Qi) 6= 0
since M � P . This proves that

D(P‖M) ≤
∫

ln f(ω) dP (ω).

To obtain the converse inequality, let qn denote the asymptotically accurate
quantizers of Section 1.6. From (1.21)∫

ln f(ω) dP (ω) = lim
n→∞

∫
qn(ln f(ω)) dP (ω).

For fixed n the quantizer qn induces a partition of Ω into 2n2n + 1 atoms
Q. In particular, there are 2n2n − 1 “good” atoms such that for ω, ω′ inside
the atoms we have that | ln f(ω) − ln f(ω′)| ≤ 2−(n−1). The remaining two
atoms group ω for which ln f(ω) ≥ n or ln f(ω) < −n. Defining the shorthand
P (ln f < −n) = P ({ω : ln f(ω) < −n}), we have then that∑

Q∈Q
P (Q) ln

P (Q)

M(Q)
=

∑
good Q

P (Q) ln
P (Q)

M(Q)
+

P (ln f ≥ n) ln
P (ln f ≥ n)

M(ln f ≥ n)
+ P (ln f < −n) ln

P (ln f < −n)

M(ln f < −n)
.
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The rightmost two terms above are bounded below as

P (ln f ≥ n) ln
P (ln f ≥ n)

M(ln f ≥ n)
+ P (ln f < −n) ln

P (ln f < −n)

M(ln f < −n)

≥ P (ln f ≥ n) lnP (ln f ≥ n) + P (ln f < −n) lnP (ln f < −n).

Since P (ln f ≥ n) and P (ln f < −n) → 0 as n → ∞ and since x lnx → 0 as
x → 0, given ε we can choose n large enough to ensure that the above term is
greater than −ε. This yields the lower bound∑

Q∈Q
P (Q) ln

P (Q)

M(Q)
≥

∑
good Q

P (Q) ln
P (Q)

M(Q)
− ε.

Fix a good atom Q and define h̄ = supω∈Q ln f(ω) and h = infω∈Q ln f(ω)
and note that by definition of the good atoms

h̄− h ≤ 2−(n−1).

We now have that

P (Q)h̄ ≥
∫
Q

ln f(ω) dP (ω)

and

M(Q)eh ≤
∫
Q

f(ω)dM(ω) = P (Q).

Combining these yields

P (Q) ln
P (Q)

M(Q)
≥ P (Q) ln

P (Q)

P (Q)e−h
= P (Q)h

≥ P (Q)(h̄− 2−(n−1))

≥
∫
Q

ln f(ω)dP (ω)− P (Q)2−(n−1).

Therefore∑
Q∈Q

P (Q) ln
P (Q)

M(Q)
≥

∑
good Q

P (Q) ln
P (Q)

M(Q)
− ε

≥
∑

good Q

∫
Q

ln f(ω) dP − 2−(n−1) − ε

=

∫
ω:| ln f(ω)|≤n

ln f(ω) dP (ω)− 2−(n−1) − ε.

Since this is true for arbitrarily large n and arbitrarily small ε,

D(P‖Q) ≥
∫

ln f(ω)dP (ω),
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completing the proof of the lemma. 2

It is worthwhile to point out two examples for the previous lemma. If P and
M are discrete measures with corresponding pmf’s p and q, then the Radon-
Nikodym derivative is simply dP/dM(ω) = p(ω)/m(ω) and the lemma gives the
known formula for the discrete case. If P and M are both probability measures
on Euclidean space Rn and if both measures are absolutely continuous with
respect to Lebesgue measure, then there exists a density f called a probability
density function or pdf such that

P (F ) =

∫
F

f(x)dx,

where dx means dm(x) with m Lebesgue measure. (Lebesgue measure assigns
each set its volume.) Similarly, there is a pdf g for M . In this case,

D(P‖M) =

∫
Rn

f(x) ln
f(x)

g(x)
dx. (5.5)

The following immediate corollary to the previous lemma provides a formula
that is occasionally useful for computing divergences.

Corollary 5.2.1 Given three probability distributions M � Q� P , then

D(P‖M) = D(P‖Q) + EP (ln
dQ

dM
).

Proof: From the chain rule for Radon-Nikodym derivatives (e.g., Lemma 5.7.3
of [50])

dP

dM
=
dP

dQ

dQ

dM

and taking expectations using the previous lemma yields the corollary. 2

The next result is a technical result that shows that given a mapping on
a space, the divergence between the induced distributions can be computed
from the restrictions of the original measures to the sub-σ-field induced by
the mapping. As part of the result, the relation between the induced Radon-
Nikodym derivative and the original derivative is made explicit.

Recall that if P is a probability measure on a measurable space (Ω,B) and
if F is a sub-σ-field of B, then the restriction PF of P to F is the probability
measure on the measurable space (Ω,F) defined by PF (G) = P (G), for all
G ∈ F . In other words, we can use either the probability measures on the new
space or the restrictions of the probability measures on the old space to compute
the divergence. This motivates considering the properties of divergences of
restrictions of measures, a useful generality in that it simplifies proofs. The
following lemma can be viewed as a bookkeeping result relating the divergence
and the Radon-Nikodym derivatives in the two spaces.



90 CHAPTER 5. RELATIVE ENTROPY

Lemma 5.2.4 (a) Suppose that M,P are two probability measures on a space
(Ω,B) and that X is a measurement mapping this space into (A,A). Let PX
and MX denote the induced distributions (measures on (A,A)) and let Pσ(X)

and Mσ(X) denote the restrictions of P and M to σ(X), the sub-σ-field of B
generated by X. Then

D(PX‖MX) = D(Pσ(X)‖Mσ(X)).

If the Radon-Nikodym derivative f = dPX/dMX exists (e.g., the above diver-
gence is finite), then define the function f(X) : Ω→ [0,∞) by

f(X)(ω) = f(X(ω)) =
dPX
dMX

(X(ω));

then with probability 1 under both M and P

f(X) =
dPσ(X)

dMσ(X)
.

(b) Suppose that P �M . Then for any sub-σ-field F of B, we have that

dPF
dMF

= EM (
dP

dM
|F).

Thus the Radon-Nikodym derivative for the restrictions is just the conditional
expectation of the original Radon-Nikodym derivative.

Proof: The proof is mostly algebra: D(Pσ(X)‖Mσ(X)) is the supremum over all
finite partitionsQ with elements in σ(X) of the relative entropyHPσ(X)‖Mσ(X)

(Q).
Each element Q ∈ Q ⊂ σ(X) corresponds to a unique set Q′ ∈ A via Q =
X−1(Q′) and hence to eachQ ⊂ σ(X) there is a corresponding partitionQ′ ⊂ A.
The corresponding relative entropies are equal, however, since

HPX‖MX
(Q′) =

∑
Q′∈Q′

Pf (Q′) ln
PX(Q′)

MX(Q′)

=
∑
Q′∈Q′

P (X−1(Q′)) ln
P (X−1(Q′))

M(X−1(Q′))

=
∑
Q∈Q

PX(Q) ln
PX(Q)

MX(Q)

= HPσ(X)‖Mσ(X)
(Q).

Taking the supremum over the partitions proves that the divergences are equal.
If the derivative is f = dPX/dMX , then f(X) is measurable since it is a mea-
surable function of a measurable function. In addition, it is measurable with
respect to σ(X) since it depends on ω only through X(ω). For any F ∈ σ(X)
there is a G ∈ A such that F = X−1(G) and∫

F

f(X)dMσ(X) =

∫
F

f(X)dM =

∫
G

fdMX
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from the change of variables formula (see, e.g., Lemma 4.4.7 of [50]). Thus∫
F

f(X)dMσ(X) = PX(G) = Pσ(X)(X
−1(G)) = Pσ(X)(F ),

which proves that f(X) is indeed the claimed derivative with probability 1 under
M and hence also under P .

The variation quoted in part (b) is proved by direct verification using iterated
expectation. If G ∈ F , then using iterated expectation we have that∫

G

EM (
dP

dM
|F) dMF =

∫
EM (1G

dP

dM
|F) dMF

Since the argument of the integrand is F-measurable (see, e.g., Lemma 5.3.1 of
[50]), invoking iterated expectation (e.g., Corollary 5.9.3 of [50]) yields∫

G

EM (
dP

dM
|F) dMF =

∫
EM (1G

dP

dM
|F) dM

= E(1G
dP

dM
) = P (G) = PF (G),

proving that the conditional expectation is the claimed derivative. 2

Part (b) of the lemma was pointed out to the author by Paul Algoet.
Having argued above that restrictions of measures are useful when finding

divergences of random variables, we provide a key trick for treating such restric-
tions.

Lemma 5.2.5 Let M � P be two measures on a space (Ω,B). Suppose that
F is a sub-σ-field and that PF and MF are the restrictions of P and M to F
Then there is a measure S such that M � S � P and

dP

dS
=

dP/dM

dPF/dMF
,

dS

dM
=

dPF
dMF

,

and
D(P‖S) +D(PF‖MF ) = D(P‖M). (5.6)

Proof: If M � P , then clearly MF � PF and hence the appropriate Radon-
Nikodym derivatives exist. Define the set function S by

S(F ) =

∫
F

dPF
dMF

dM =

∫
F

EM (
dP

dM
|F) dM,

using part (b) of the previous lemma. Thus M � S and dS/dM = dPF/dMF .
Observe that for F ∈ F , iterated expectation implies that

S(F ) = EM (EM (1F
dP

dM
|F)) = EM (1F

dP

dM
)

= P (F ) = PF (F ); F ∈ F
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and hence in particular that S(Ω) is 1 so that dPF/dMF is integrable and S is
indeed a probability measure on (Ω,B). (In addition, the restriction of S to F
is just PF .) Define

g =
dP/dM

dPF/dMF
.

This is well defined since with M probability 1, if the denominator is 0, then
so is the numerator. Given F ∈ B the Radon-Nikodym theorem (e.g., Theorem
5.6.1 of [50]) implies that∫

F

gdS =

∫
1F g

dS

dM
dM =

∫
1F

dP/dM

dPF/dMF
dPF/dMFdM = P (F ),

that is, P � S and
dP

dS
=

dP/dM

dPF/dMF
,

proving the first part of the lemma. The second part follows by direct verifica-
tion:

D(P‖M) =

∫
ln
dP

dM
dP =

∫
ln
dPF
dMF

dP +

∫
ln

dP/dM

dPF/dMF
dP

=

∫
ln
dPF
dMF

dPF +

∫
ln
dP

dS
dP

= D(PF‖MF ) +D(P‖S).

2

The two previous lemmas and the divergence inequality immediately yield
the following result for M � P . If M does not dominate P , then the result is
trivial.

Corollary 5.2.2 Given two measures M,P on a space (Ω,B) and a sub-σ-field
F of B, then

D(P‖M) ≥ D(PF‖MF ).

If f is a measurement on the given space, then

D(P‖M) ≥ D(Pf‖Mf ).

The result is obvious for finite fields F or finite alphabet measurements f
from the definition of divergence. The general result for arbitrary measurable
functions could also have been proved by combining the corresponding finite
alphabet result of Corollary 2.3.1 and an approximation technique. As above,
however, we will occasionally get results comparing the divergences of measures
and their restrictions by combining the trick of Lemma 5.2.5 with a result for a
single divergence.

The following corollary follows immediately from Lemma 5.2.2 since the
union of a sequence of asymptotically generating sub-σ-fields is a generating
field.
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Corollary 5.2.3 Suppose that M,P are probability measures on a measurable
space (Ω,B) and that Fn is an asymptotically generating sequence of sub-σ-fields
and let Pn and Mn denote the restrictions of P and M to Fn (e.g., Pn = PFn).
Then

D(Pn‖Mn) ↑ D(P‖M).

There are two useful special cases of the above corollary which follow im-
mediately by specifying a particular sequence of increasing sub-σ-fields. The
following two corollaries give these results.

Corollary 5.2.4 Let M,P be two probability measures on a measurable space
(Ω,B). Suppose that f is an A-valued measurement on the space. Assume that
qn : A → An is a sequence of measurable mappings into finite sets An with
the property that the sequence of fields Fn = F(qn(f)) generated by the sets
{q−1
n (a); a ∈ An} asymptotically generate σ(f). (For example, if the original

space is standard let Fn be a basis and let qn map the points in the ith atom of
Fn into i.) Then

D(Pf‖Mf ) = lim
n→∞

D(Pqn(f)‖Mqn(f)).

The corollary states that the divergence between two distributions of a ran-
dom variable can be found as a limit of quantized versions of the random vari-
able. Note that the limit could also be written as

lim
n→∞

HPf‖Mf
(qn).

In the next corollary we consider increasing sequences of random variables
instead of increasing sequences of quantizers, that is, more random variables
(which need not be finite alphabet) instead of ever finer quantizers. The corol-
lary follows immediately from Corollary 5.2.3 and Lemma 5.2.4.

Corollary 5.2.5 Suppose that M and P are measures on the sequence space
corresponding to outcomes of a sequence of random variables X0, X1, · · · with
alphabet A. Let Fn = σ(X0, · · · , Xn−1), which asymptotically generates the
σ-field σ(X0, X1, · · · ). Then

lim
n→∞

D(PXn‖MXn) = D(P‖M).

We now develop two fundamental inequalities involving entropy densities
and divergence. The first inequality is from Pinsker [126]. The second is an
improvement of an inequality of Pinsker [126] by Csiszár [24] and Kullback [92].
The second inequality is more useful when the divergence is small. Coupling
these inequalities with the trick of Lemma 5.2.5 provides a simple generalization
of an inequality of [48] and will provide easy proofs of L1 convergence results
for entropy and information densities. A key step in the proof involves a notion
of distance between probability measures and is of interest in its own right.
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Given two probability measures M,P on a common measurable space (Ω,B),
the variational distance between them is defined by

d(P,M) ≡ sup
Q

∑
Q∈Q
|P (Q)−M(Q)|,

where the supremum is over all finite measurable partitions. We will proceed by
stating first the end goal, the two inequalities involving divergence, as a lemma,
and then state two lemmas giving the basic required properties of the variational
distance. The lemmas will be proved in a different order.

Lemma 5.2.6 Let P and M be two measures on a common probability space
(Ω,B) with P �M . Let f = dP/dM be the Radon-Nikodym derivative and let
h = ln f be the entropy density. Then

D(P‖M) ≤
∫
|h|dP ≤ D(P‖M) +

2

e
, (5.7)

∫
|h|dP ≤ D(P‖M) +

√
2D(P‖M). (5.8)

Lemma 5.2.7 Given two probability measures M,P on a common measurable
space (Ω,B), the variational distance is given by

d(P,M) = 2 sup
F∈B
|P (F )−M(F )|. (5.9)

Furthermore, if S is a measure for which P � S and M � S (S = (P +M)/2,
for example), then also

d(P,M) =

∫
|dP
dS
− dM

dS
| dS (5.10)

and the supremum in (5.9) is achieved by the set

F = {ω :
dP

dS
(ω) >

dM

dS
(ω)}.

Lemma 5.2.8
d(P,M) ≤

√
2D(P‖M).

Proof of Lemma 5.2.7: First observe that for any set F we have for the partition
Q = {F, F c} that

d(P,M) ≥
∑
Q∈Q
|P (Q)−M(Q)| = 2|P (F )−M(F )|

and hence
d(P,M) ≥ 2 sup

F∈B
|P (F )−M(F )|.
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Conversely, suppose that Q is a partition which approximately yields the vari-
ational distance, e.g., ∑

Q∈Q
|P (Q)−M(Q)| ≥ d(P,M)− ε

for ε > 0. Define a set F as the union of all of theQ inQ for which P (Q) ≥M(Q)
and we have that∑
Q∈Q
|P (Q)−M(Q)| = P (F )−M(F ) +M(F c)− P (F c) = 2(P (F )−M(F ))

and hence
d(P,M)− ε ≤ sup

F∈B
2|P (F )−M(F )|.

Since ε is arbitrary, this proves the first statement of the lemma.
Next suppose that a measure S dominating both P and M exists and define

the set

F = {ω :
dP

dS
(ω) >

dM

dS
(ω)}

and observe that∫
|dP
dS
− dM

dS
| dS =

∫
F

(
dP

dS
− dM

dS
) dS −

∫
F c

(
dP

dS
− dM

dS
) dS

= P (F )−M(F )− (P (F c)−M(F c))

= 2(P (F )−M(F )).

From the definition of F , however,

P (F ) =

∫
F

dP

dS
dS ≥

∫
F

dM

dS
dS = M(F )

so that P (F )−M(F ) = |P (F )−M(F )|. Thus we have that∫
|dP
dS
− dM

dS
| dS = 2|P (F )−M(F )| ≤ 2 sup

G∈B
|P (G)−M(G)| = d(P,M).

To prove the reverse inequality, assume that Q approximately yields the varia-
tional distance, that is, for ε > 0 we have∑

Q∈Q
|P (Q)−M(Q)| ≥ d(P,M)− ε.

Then ∑
Q∈Q
|P (Q)−M(Q)| =

∑
Q∈Q
|
∫
Q

(
dP

dS
− dM

dS
) dS|

≤
∑
Q∈Q

∫
Q

|dP
dS
− dM

dS
| dS

=

∫
|dP
dS
− dM

dS
| dS
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which, since ε is arbitrary, proves that

d(P,M) ≤
∫
|dP
dS
− dM

dS
| dS,

Combining this with the earlier inequality proves (5.10). We have already seen
that this upper bound is actually achieved with the given choice of F , which
completes the proof of the lemma. 2

Proof of Lemma 5.2.8: Assume that M � P since the result is trivial otherwise
because the right-hand side is infinite. The inequality will follow from the first
statement of Lemma 5.2.7 and the following inequality: Given 1 ≥ p,m ≥ 0,

p ln
p

m
+ (1− p) ln

1− p
1−m

− 2(p−m)2 ≥ 0. (5.11)

To see this, suppose the truth of (5.11). Since F can be chosen so that 2(P (F )−
M(F )) is arbitrarily close to d(P,M), given ε > 0 choose a set F such that
[2(P (F )−M(F ))]2 ≥ d(P,M)2 − 2ε. Since {F, F c} is a partition,

D(P‖M)− d(P,M)2

2

≥ P (F ) ln
P (F )

M(F )
+ (1− P (F )) ln

1− P (F )

1−M(F )
− 2(P (F )−M(F ))2 − ε.

If (5.11) holds, then the right-hand side is bounded below by −ε, which proves
the lemma since ε is arbitrarily small. To prove (5.11) observe that the left-
hand side equals zero for p = m, has a negative derivative with respect to m
for m < p, and has a positive derivative with respect to m for m > p. (The
derivative with respect to m is (m − p)[1 − 4m(1 −m)]/[m(1 −m).) Thus the
left hand side of (5.11) decreases to its minimum value of 0 as m tends to p from
above or below. 2

Proof of Lemma 5.2.6: The magnitude entropy density can be written as

|h(ω)| = h(ω) + 2h(ω)− (5.12)

where a− = −min(a, 0). This inequality immediately gives the trivial left-hand
inequality of (5.7). The right-hand inequality follows from the fact that∫

h−dP =

∫
f [ln f ]−dM

and the elementary inequality a ln a ≥ −1/e.
The second inequality will follow from (5.12) if we can show that

2

∫
h−dP ≤

√
2D(P‖M).

Let F denote the set {h ≤ 0} and we have from (5.4) that

2

∫
h−dP = −2

∫
F

hdP ≤ −2P (F ) ln
P (F )

M(F )
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and hence using the inequality lnx ≤ x− 1 and Lemma 5.2.7

2

∫
h−dP ≤ 2P (F ) ln

M(F )

P (F )
≤ 2(M(F )− P (F ))

≤ d(P,M) ≤
√

2D(P‖M),

completing the proof. 2

Combining Lemmas 5.2.6 and 5.2.5 yields the following corollary, which gen-
eralizes Lemma 2 of [54].

Corollary 5.2.6 Let P and M be two measures on a space (Ω,B). Suppose
that F is a sub-σ-field and that PF and MF are the restrictions of P and M
to F . Assume that M � P . Define the entropy densities h = ln dP/dM and
h′ = ln dPF/dMF . Then∫

|h− h′| dP ≤ D(P‖M)−D(PF‖MF ) +
2

e
, (5.13)

and∫
|h− h′| dP ≤ D(P‖M)−

D(PF‖MF ) +
√

2D(P‖M)− 2D(PF‖MF ). (5.14)

Proof: Choose the measure S as in Lemma 5.2.5 and then apply Lemma 5.2.6
with S replacing M . 2

Variational Description of Divergence

As in the discrete case, divergence has a variational characterization that is a
fundamental property for its applications to large deviations theory [145] [31].
We again take a detour to state and prove the property without delving into its
applications.

Suppose now that P and M are two probability measures on a common
probability space, say (Ω,B), such that M � P and hence the density

f =
dP

dM

is well defined. Suppose that Φ is a real-valued random variable defined on the
same space. which has finite cumulant generating function:

EM (eΦ) <∞.

Then we can define a probability measure MΦ by

MΦ(F ) =

∫
F

eΦ

EM (eΦ)
dM (5.15)
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and observe immediately that by construction M �MΦ and

dMΦ

dM
=

eΦ

EM (eΦ)
.

The measure MΦ is called a “tilted” or “exponentially tilted” distribution in
statistics and in information theory. Furthermore, by construction dMΦ/dM 6=
0 and hence we can write∫

F

f

eΦ/EM (eΦ)
dMΦ =

∫
F

f

eΦ/EM (eΦ)

dMΦ

dM
dM =

∫
F

fdM = P (F )

and hence P �MΦ and

dP

dMΦ
=

f

eΦ/EM (eΦ)

which implies that M �MΦ � P .

We are now ready to state and prove the principal result of this section, a
variational characterization of divergence.

Theorem 5.2.1 Suppose that M � P . Then

D(P‖M) = sup
Φ

(
EPΦ− ln(EM (eΦ))

)
, (5.16)

where the supremum is over all random variables Φ for which eΦ is M -integrable
and EP (Φ) is well-defined.

Proof: First consider the random variable Φ defined by Φ = ln dP/dM . This
choice meets the constraints required by the theorem since∫

eΦdM =

∫
dM

dP

dM
=

∫
dP = 1∫

ΦdP =

∫
dP ln

dP

dM
= D(P‖M)

and hence for this choice

EPΦ− ln(EM (eΦ)) = D(P‖M)− ln 1 = D(P‖M).

This proves that the supremum over all Φ is no smaller than the divergence
D(P‖M) since the divergence is achievable with the given choice of Φ, Note
that this is true even if the divergence D(P‖M) is infinite, which is possible
even if M � P .

To prove the other half of the theorem observe that for any Φ satisfying the
constraints of the theorem, we have as above that M � MΦ � P and hence
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from Corollary 5.2.1 with Q = MΦ and the divergence inequality

D(P‖M) = D(P‖MΦ) + EP

(
ln
dMΦ

dM

)
= D(P‖MΦ) + EP

(
ln

eΦ

EM (eΦ)

)
≥ EP

(
ln

eΦ

EM (eΦ)

)
= EPΦ− lnEM (eΦ)

which completes the proof. Note that equality holds and the supremum is
achieved if and only if MΦ = P . 2

The author thanks David Rosenberg for finding the errors in the First Edition
in February 2011 and suggesting how to repair the proof. His correction arrived
when the Second Edition was in print and hence my incorrect proof propagated
to the Second Edition. The correct proof is included into the May 2023 errata
list for the Second Edition. The above proof is a slight modification of the one
that appeared in the 3 March 2013 Corrected Version of the First Edition. The
errors in the proof of the theorem were also pointed out by Yevgeny Seldin in
May 2012. I am indebted to both for finding and reporting and helping to repair
the proof.

5.3 Conditional Relative Entropy

Lemmas 5.2.4 and 5.2.5 combine with basic properties of conditional probability
in standard spaces to provide an alternative form of Lemma 5.2.5 in terms of
random variables that gives an interesting connection between the densities for
combinations of random variables and those for individual random variables.
The results are collected in Theorem 5.3.1. First, however, several definitions are
required. LetX and Y be random variables with standard alphabets AX and AY
and σ-fields BAX and BAY , respectively. Let PXY and MXY be two distributions
on (AX×AY ,BAX×AY ) and assume that MXY � PXY . Let MY and PY denote
the induced marginal distributions, e.g., MY (F ) = MXY (AX × F ). Define the
(nonnegative) densities (Radon-Nikodym derivatives):

fXY =
dPXY
dMXY

, fY =
dPY
dMY

so that

PXY (F ) =

∫
F

fXY dMXY ; F ∈ BAX×AY

PY (F ) =

∫
F

fY dMY ; F ∈ BAY .
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Note that MXY � PXY implies that MY � PY and hence fY is well defined if
fXY is. Define also the conditional density

fX|Y (x|y) =

{
fXY (x,y)
fY (y) ; if fY (y) > 0

1; otherwise.

Suppose now that the entropy density

hY = ln fY

exists and define the conditional entropy density or conditional relative entropy
density by

hX|Y = ln fX|Y .

Again suppose that these densities exist, we (tentatively) define the conditional
relative entropy

HP‖M (X|Y ) = E ln fX|Y =

∫
dPXY (x, y) ln fX|Y (x|y)

=

∫
dMXY (x, y)fXY (x, y) ln fX|Y (x|y).

if the expectation exists. Note that unlike unconditional relative entropies,
the above definition of conditional relative entropy requires the existence of
densities. Although this is sufficient in many of the applications and is con-
venient for the moment, it is not sufficiently general to handle all the cases
we will encounter. In particular, there will be situations where we wish to de-
fine a conditional relative entropy HP‖M (X|Y ) even though it is not true that
MXY � PXY . Hence at the end of this section we will return to this ques-
tion and provide a general definition that agrees with the current one when the
appropriate densities exist and that shares those properties not requiring the
existence of densities, e.g., the chain rule for relative entropy. An alternative
approach to a general definition for conditional relative entropy can be found in
Algoet [6].

The previous construction immediately yields the following lemma providing
chain rules for densities and relative entropies.

Lemma 5.3.1

fXY = fX|Y fY

hXY = hX|Y + hY ,

and hence
D(PXY ‖MXY ) = HP‖M (X|Y ) +D(PY ‖MY ), (5.17)

or, equivalently,

HP‖M (X,Y ) = HP‖M (Y ) +HP‖M (X|Y ), (5.18)
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a chain rule for relative entropy analogous to that for ordinary entropy. Thus
if HP‖M (Y ) <∞ so that the indeterminate form ∞−∞ is avoided, then

HP‖M (X|Y ) = HP‖M (X,Y )−HP‖M (Y ).

Since the alphabets are standard, there is a regular version of the conditional
probabilities of X given Y under the distribution MXY ; that is, for each y ∈
B there is a probability measure MX|Y (F |y); F ∈ BA for fixed F ∈ BAX
MX|Y (F |y) is a measurable function of y and such that for all G ∈ BAY

MXY (F ×G) = E(1G(Y )MX|Y (F |Y )) =

∫
G

MX|Y (F |y)dMY (y).

Lemma 5.3.2 Given the previous definitions, define the set B̄ ∈ BB to be the
set of y for which ∫

A

fX|Y (x|y)dMX|Y (x|y) = 1.

Define PX|Y for y ∈ B̄ by

PX|Y (F |y) =

∫
F

fX|Y (x|y)dMX|Y (x|y); F ∈ BA

and let PX|Y (.|y) be an arbitrary fixed probability measure on (A,BA) for all
y 6∈ B̄. Then MY (B̄) = 1, PX|Y is a regular conditional probability for X given
Y under the distribution PXY , and

PX|Y �MX|Y ; MY − a.e.,

that is, MY ({y : PX|Y (·|y) � MX|Y (·|y)}) = 1. Thus if PXY � MXY , we
can choose regular conditional probabilities under both distributions so that with
probability one under MY the conditional probabilities under P are dominated
by those under M and

dPX|Y

dMX|Y
(x|y) ≡

dPX|Y (·|y)

dMX|Y (·|y)
(x) = fX|Y (x|y); x ∈ A.

Proof: Define for each y ∈ B the set function

Gy(F ) =

∫
F

fX|Y (x|y)dMX|Y (x|y); F ∈ BA.

We shall show that Gy(F ), y ∈ B, F ∈ BA is a version of a regular conditional
probability of X given Y under PXY . First observe using iterated expecta-
tion and the fact that conditional expectations are expectations with respect to
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conditional probability measures ([50], Section 5.9) that for any F ∈ BB∫
F

[

∫
A

fX|Y (x|y)dMX|Y (x|y)] dMY (y)

= E(1F (Y )E[1A(X)fX|Y |Y ]) = E(1F (Y )1A(X)
fXY
fY

1fY >0)

=

∫
1A×F

1

fY
1{fY >0}fXY dMXY =

∫
A×F

1

fY
1{fY >0} dPXY

=

∫
F

1

fY
1{fY >0} dPY

∫
F

1

fY
dPY ,

where the last step follows since since the function being integrated depends only
on Y and hence is measurable with respect to σ(Y ) and therefore its expectation
can be computed from the restriction of PXY to σ(Y ) (see, for example, Lemma
5.3.1 of [50]) and since PY (fY > 0) = 1. We can compute this last expectation,
however, using MY as∫

F

1

fY
dPY =

∫
F

1

fY
fY dMY =

∫
F

dMY = MY (F )

which yields finally that∫
F

[

∫
A

fX|Y (x|y) dMX|Y (x|y)] dMY (y) = MY (F ); all F ∈ BB .

If ∫
F

g(y)dMY (y) =

∫
F

1dMY (y), all F ∈ BB ,

however, it must also be true that g = 1 MY -a.e. (See, for example, Corollary
5.3.1 of [50].) Thus we have MY -a.e. and hence also PY -a.e. that∫

A

fX|Y (x|y)dMX|Y (x|y)]dMY (y) = 1;

that is, MY (B̄) = 1. For y ∈ B̄, it follows from the basic properties of integration
that Gy is a probability measure on (A,BA) (see Corollary 4.4.3 of [50]).

By construction, PX|Y (·|y)�MX|Y (·|y) for all y ∈ B̄ and hence this is true
with probability 1 under MY and PY . Furthermore, by construction

dPX|Y (·|y)

dMX|Y (·|y)
(x) = fX|Y (x|y).

To complete the proof we need only show that PX|Y is indeed a version of the
conditional probability of X given Y under PXY . To do this, fix G ∈ BA and
observe for any F ∈ BB that∫

F

PX|Y (G|y) dPY (y) =

∫
F

[

∫
G

fX|Y (x|y)dMX|Y (x|y)] dPY (y)

=

∫
F

[

∫
G

fX|Y (x|y) dMX|Y (x|y)]fY (y) dMY (y)

= E[1F (Y )fY E[1G(X)fX|Y |Y ] = EM [1G×F fXY ],
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again using iterated expectation. This immediately yields∫
F

PX|Y (G|y) dPY (y) =

∫
G×F

fXY dMXY =

∫
G×F

dPXY = PXY (G× F ),

which proves that PX|Y (G|y) is a version of the conditional probability of X
given Y under PXY , thereby completing the proof. 2

Theorem 5.3.1 Given the previous definitions with MXY � PXY , define the
distribution SXY by

SXY (F ×G) =

∫
G

MX|Y (F |y)dPY (y), (5.19)

that is, SXY has PY as marginal distribution for Y and MX|Y as the conditional
distribution of X given Y . Then the following statements are true:

1. MXY � SXY � PXY .

2. dSXY /dMXY = fY and dPXY /dSXY = fX|Y .

3. D(PXY ‖MXY ) = D(PY ‖MY )+D(PXY ‖SXY ), and hence D(PXY ‖MXY )
exceeds D(PY ‖MY ) by an amount D(PXY ‖SXY ) = HP‖M (X|Y ).

Proof: To apply Lemma 5.2.5 define P = PXY , M = MXY , F = σ(Y ), P ′ =
Pσ(Y ), and M ′ = Mσ(Y ). Define S by

S(F ×G) =

∫
F×G

dPσ(Y )

dMσ(Y )
dMXY ,

for F ∈ BA and G ∈ BB . We begin by showing that S = SXY . All of the
properties will then follow from Lemma 5.2.5.

For F ∈ BAX and G ∈ BAY

S(F ×G) =

∫
F×G

dPσ(Y )

dMσ(Y )
dMXY = E

(
1F×G

dPσ(Y )

dMσ(Y )

)
,

where the expectation is with respect to MXY . Using Lemma 5.2.4 and iterated
conditional expectation (c.f. Corollary 5.9.3 of [50]) yields

E

(
1F×G

dPσ(Y )

dMσ(Y )

)
= E

(
1F (X)1G(Y )

dPY
dMY

(Y )

)
= E

(
1G(Y )

dPY
dMY

(Y )E[1F (X)|Y ]

)
= E

(
1G(Y )

dPY
dMY

(Y )MX|Y (F |Y )

)
∫
MX|Y (F |y)

dPY
dMY

(Y )dMY (y) =

∫
G

MX|Y (F |y) dPY (y),
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proving that S = SXY . Thus Lemma 5.5.2 implies that MXY � SXY � PXY ,
proving the first property.

From Lemma 5.2.4, dP ′/dM ′ = dPσ(Y )/dMσ(Y ) = dPY /dMY = fY , proving
the first equality of property 2. This fact and the first property imply the second
equality of property 2 from the chain rule of Radon-Nikodym derivatives. (See,
e.g., Lemma 5.7.3 of [50].) Alternatively, the second equality of the second
property follows from Lemma 5.2.5 since

dPXY
dSXY

=
dPXY /dMXY

dMXY /dSXY
=
fXY
fY

.

Corollary 5.2.1 therefore implies that D(PXY ‖MXY ) = D(PXY ‖SXY ) +
D(SXY ‖MXY ), which with Property 2, Lemma 5.2.3, and the definition of
relative entropy rate imply Property 3. 2

It should be observed that it is not necessarily true that D(PXY ‖SXY ) ≥
D(PX‖MX) and hence that D(PXY ‖MXY ) ≥ D(PX‖MX)+D(PY ‖MY ) as one
might expect since in general SX 6= MX . These formulas will, however, be true
in the special case where MXY = MX ×MY .

We next turn to an extension and elaboration of the theorem when there
are three random variables instead of two. This will be a crucial generalization
for our later considerations of processes, when the three random variables will
be replaced by the current output, a finite number of previous outputs, and the
infinite past.

Suppose that MXY Z � PXY Z are two distributions for three standard
alphabet random variables X, Y , and Z taking values in measurable spaces
(AX ,BAX ), (AY ,BAY ), (AZ ,BAZ ), respectively. Observe that the absolute con-
tinuity implies absolute continuity for the restrictions, e.g., MXY � PXY and
MY � PY . Define the Radon-Nikodym derivatives fXY Z , fY Z , fY , etc. in the
obvious way; for example,

fXY Z =
dPXY Z
dMXY Z

.

Let hXY Z , hY Z , hY , etc., denote the corresponding relative entropy densities,
e.g.,

hXY Z = ln fXY Z .

Define as previously the conditional densities

fX|Y Z =
fXY Z
fY Z

; fX|Y =
fXY
fY

,

the conditional entropy densities

hX|Y Z = ln fX|Y Z ; hX|Y = ln fX|Y ,

and the conditional relative entropies

HP‖M (X|Y ) = E(ln fX|Y )
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and
HP‖M (X|Y,Z) = E(ln fX|Y Z).

By construction (or by double use of Lemma 5.3.1) we have the following chain
rules for conditional relative entropy and its densities.

Lemma 5.3.3

fXY Z = fX|Y ZfY |ZfZ ,

hXY Z = hX|Y Z + hY |Z + hZ ,

and hence

HP‖M (X,Y, Z) = HP‖M (X|Y Z) +HP‖M (Y |Z) +HP‖M (Z).

Corollary 5.3.1 Given a distribution PXY , suppose that there is a product
distribution MXY = MX ×MY � PXY . Then

MXY � PX × PY � PXY ,

dPXY
d(PX × PY )

=
fXY
fXfY

=
fX|Y

fX
,

d(PX × PY )

dMXY
= fXfY ,

D(PXY ‖PX × PY ) +HP‖M (X) = HP‖M (X|Y ), and

D(PX × PY ‖MXY ) = HP‖M (X) +HP‖M (Y ).

Proof: First apply Theorem 5.3.1 with MXY = MX ×MY . Since MXY is a
product measure, MX|Y = MX and MXY � SXY = MX×PY � PXY from the
theorem. Next we again apply Theorem 5.3.1, but this time the roles of X and
Y in the theorem are reversed and we replace MXY in the theorem statement
by the current SXY = MX ×PY and we replace SXY in the theorem statement
by

S′XY (F ×G) =

∫
F

SY |X(G|x) dPX(x) = PX(F )PY (G);

that is, S′XY = PX × PY . We then conclude from the theorem that S′XY =
PX × PY � PXY , proving the first statement. We now have that

MXY = MX ×MY � PX × PY � PXY

and hence the chain rule for Radon-Nikodym derivatives (e.g., Lemma 5.7.3 of
[50]) implies that

fXY =
dPXY
dMXY

=
dPXY

d(PX × PY )

d(PX × PY )

d(MX ×MY )
.

It is straightforward to verify directly that

d(PX × PY )

d(MX ×MY )
=

dPX
dMX

dPY
dMY

= fXfY



106 CHAPTER 5. RELATIVE ENTROPY

and hence

fXY =
dPXY

d(PX × PY )
)fXfY ,

as claimed. Taking expectations using Lemma 5.2.3 then completes the proof
(as in the proof of Corollary 5.2.1.) 2

The lemma provides an interpretation of the product measure PX×PY . This
measure yields independent random variables with the same marginal distribu-
tions as PXY , which motivates calling PX × PY the independent approximation
or memoryless approximation to PXY . The next corollary further enhances this
name by showing that PX × PY is the best such approximation in the sense of
yielding the minimum divergence with respect to the original distribution.

Corollary 5.3.2 Given a distribution PXY letM denote the class of all product
distributions for XY ; that is, if MXY ∈M, then MXY = MX ×MY . Then

inf
MXY ∈M

D(PXY ‖MXY ) = D(PXY ‖PX × PY ).

Proof: We need only consider those M yielding finite divergence (since if there
are none, both sides of the formula are infinite and the corollary is trivially
true). Then

D(PXY ‖MXY ) = D(PXY ‖PX × PY ) +D(PX × PY ‖MXY )

≥ D(PXY ‖PX × PY )

with equality if and only if D(PX × PY ‖MXY ) = 0, which it will be if MXY =
PX × PY . 2

Recall that given random variables (X,Y, Z) with distribution MXY Z , then
X → Y → Z is a Markov chain (with respect to MXY Z) if for any event
F ∈ BAZ with probability one

MZ|Y X(F |y, x) = MZ|Y (F |y).

If this holds, we also say that X and Z are conditionally independent given Y .
Equivalently, if we define the distribution MX×Z|Y by

MX×Z|Y (FX × FZ × FY ) =

∫
Fy

MX|Y (FX |y)MZ|Y (FZ |y)dMY (y);

FX ∈ BAX ; FZ ∈ BAZ ; FY ∈ BAY ;

then Z → Y → X is a Markov chain if MX×Z|Y = MXY Z . (See Section 5.10 of
[50].) This construction shows that a Markov chain is symmetric in the sense
that X → Y → Z if and only if Z → Y → X.

Note that for any measure MXY Z , X → Y → Z is a Markov chain under
MX×Z|Y by construction.

The following corollary highlights special properties of the various densities
and relative entropies when the dominating measure is a Markov chain. It will
lead to the idea of a Markov approximation to an arbitrary distribution on
triples extending the independent approximation of the previous corollary.
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Corollary 5.3.3 Given a probability space, suppose that MXY Z � PXY Z are
two distributions for a random vector (X,Y, Z) with the property that Z → Y →
X forms a Markov chain under M . Then

MXY Z � PX×Z|Y � PXY Z

and

dPXY Z
dPX×Z|Y

=
fX|Y Z

fX|Y
(5.20)

dPX×Z|Y

dMXY Z
= fY ZfX|Y . (5.21)

Thus

ln
dPXY Z
dPX×Z|Y

+ hX|Y = hX|Y Z

ln
dPX×Z|Y

dMXY Z
= hY Z + hX|Y

and taking expectations yields

D(PXY Z‖PX×Z|Y ) +HP‖M (X|Y ) = HP‖M (X|Y Z)

D(PX×Z|Y ‖MXY Z) = D(PY Z‖MY Z) +HP‖M (X|Y ).

Furthermore,
PX×Z|Y = PX|Y PY Z , (5.22)

that is,

PX×Z|Y (FX × FZ × FY ) =

∫
FY ×FZ

PX|Y (FX |y)dPZY (z, y). (5.23)

Lastly, if Z → Y → X is a Markov chain under M , then it is also a Markov
chain under P if and only if

hX|Y = hX|Y Z (5.24)

in which case
HP‖M (X|Y ) = HP‖M (X|Y Z). (5.25)

Proof: Define

g(x, y, z) =
fX|Y Z(x|y, z)
fX|Y (x|y)

=
fXY Z(x, y, z)

fY Z(y, z)

fY (y)

fXY (x, y)

and simplify notation by defining the measure Q = PX×Z|Y . Note that Z →
Y → X is a Markov chain with respect to Q. To prove the first statement of
the corollary requires proving the following relation:

PXY Z(FX × FY × FZ) =

∫
FX×FY ×FZ

gdQ;

all FX ∈ BAX , FZ ∈ BAZ , FY ∈ BAY .
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From iterated expectation with respect to Q (e.g., Section 5.9 of [50])

E(g1FX (X)1FZ (Z)1FY (Y )) = E(1FY (Y )1FZ (Z)E(g1FX (X)|Y Z))

=

∫
1FY (y)1FZ (z)(

∫
FX

g(x, y, z) dQX|Y Z(x|y, z)) dQY Z(y, z).

Since QY Z = PY Z and QX|Y Z = PX|Y Q-a.e. by construction, the previous
formula implies that∫

FX×FY ×FZ
g dQ =

∫
FY ×FZ

dPY Z

∫
FX

gdPX|Y .

This proves (5.22. Since MXY Z � PXY Z , we also have that MXY � PXY and
hence application of Theorem 5.3.1 yields∫

FX×FY ×FZ
gdQ =

∫
FY ×FZ

dPY Z

∫
FX

gfX|Y dMX|Y

=

∫
FY ×FZ

dPY Z

∫
FX

fX|Y ZdMX|Y .

By assumption, however, MX|Y = MX|Y Z a.e. and therefore∫
FX×FY ×FZ

g dQ =

∫
FY ×FZ

dPY Z

∫
FX

fX|Y Z dMX|Y Z

=

∫
FY ×FZ

dPY Z

∫
FX

dPX|Y Z

= PXY Z(FX × FY × FZ),

where the final step follows from iterated expectation. This proves (5.20) and
that Q� PXY Z .

To prove (5.21) we proceed in a similar manner and replace g by fX|Y fZY

and replace Q by MXY Z = MX×Y |Z . Also abbreviate PX×Y |Z to P̂ . As in the
proof of (5.20) we have since Z → Y → X is a Markov chain under M that∫

FX×FY ×FZ
g dQ =

∫
FY ×FZ

dMY Z

∫
FX

g dMX|Y

=

∫
FY ×FZ

fZY dMY Z

(∫
FX

fX|Y dMX|Y

)
=

∫
FY ×FZ

dPY Z

(∫
FX

fX|Y dMX|Y

)
.

From Theorem 5.3.1 this is∫
FY ×FZ

PX|Y (FX |y) dPY Z .

But PY Z = P̂Y Z and

PX|Y (FX |y) = P̂X|Y (FX |y) = P̂X|Y Z(FX |yz)
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since P̂ yields a Markov chain. Thus the previous formula is P̂ (FX ×FY ×FZ),
proving (5.21) and the corresponding absolute continuity.

If Z → Y → X is a Markov chain under both M and P , then PX×Z|Y =
PXY Z and hence

dPXY Z
dPX×Z|Y

= 1 =
fX|Y Z

fX|Y
,

which implies (5.24). Conversely, if (5.24) holds, then fX|Y Z = fX|Y which with
(5.20) implies that PXY Z = PX×Z|Y , proving that Z → Y → X is a Markov
chain under P . 2

The previous corollary and one of the constructions used will prove important
later and hence it is emphasized now with a definition and another corollary
giving an interesting interpretation.

Given a distribution PXY Z , define the distribution PX×Z|Y as the Markov

approximation to PXY Z . Abbreviate PX×Z|Y to P̂ . The definition has two

motivations. First, the distribution P̂ makes Z → Y → X a Markov chain
which has the same initial distribution P̂ZY = PZY and the same conditional
distribution P̂X|Y = PX|Y , the only difference is that P̂ yields a Markov chain,

that is, P̂X|ZY = P̂X|Y . The second motivation is the following corollary which

shows that of all Markov distributions, P̂ is the closest to P in the sense of
minimizing the divergence.

Corollary 5.3.4 Given a distribution P = PXY Z , letM denote the class of all
distributions for XY Z for which Z → Y → X is a Markov chain under MXY Z

(MXY Z = MX×Z|Y ). Then

inf
MXYZ∈M

D(PXY Z‖MXY Z) = D(PXY Z‖PX×Z|Y );

that is, the infimum is a minimum and it is achieved by the Markov approxima-
tion.

Proof: If no MXY Z in the constraint set satisfies MXY Z � PXY Z , then both
sides of the above equation are infinite. Hence confine interest to the case
MXY Z � PXY Z . Similarly, if all such MXY Z yield an infinite divergence, we
are done. Hence we also consider only MXY Z yielding finite divergence. Then
the previous corollary implies that MXY Z � PX×Z|Y � PXY Z and hence

D(PXY Z‖MXY Z) = D(PXY Z‖PX×Z|Y ) +D(PX×Z|Y ‖MXY Z)

≥ D(PXY Z‖PX×Z|Y )

with equality if and only if

D(PX×Z|Y ‖MXY Z) = D(PY Z‖MY Z) +HP‖M (X|Y ) = 0.

But this will be zero if M is the Markov approximation to P since then MY Z =
PY Z and MX|Y = PX|Y by construction. 2
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Generalized Conditional Relative Entropy

We now return to the issue of providing a general definition of conditional
relative entropy, that is, one which does not require the existence of the densities
or, equivalently, the absolute continuity of the underlying measures. We require,
however, that the general definition reduce to that considered thus far when the
densities exist so that all of the results of this section will remain valid when
applicable. The general definition takes advantage of the basic construction of
the early part of this section. Once again let MXY and PXY be two measures,
where we no longer assume that MXY � PXY . Define as in Theorem 5.3.1 the
modified measure SXY by

SXY (F ×G) =

∫
G

MX|Y (F |y)dPY (y); (5.26)

that is, SXY has the same Y marginal as PXY and the same conditional distri-
bution of X given Y as MXY . We now replace the previous definition by the
following: The conditional relative entropy is defined by

HP‖M (X|Y ) = D(PXY ‖SXY ). (5.27)

If MXY � PXY as before, then from Theorem 5.3.1 this is the same quantity as
the original definition and there is no change. The divergence of (5.27), however,
is well-defined even if it is not true that MXY � PXY and hence the densities
used in the original definition do not work. The key question is whether or not
the chain rule

HP‖M (Y ) +HP‖M (X|Y ) = HP‖M (XY ) (5.28)

remains valid in the more general setting. It has already been proven in the case
that MXY � PXY , hence suppose this does not hold. In this case, if it is also
true that MY � PY does not hold, then both the marginal and joint relative
entropies will be infinite and (5.28) again must hold since the conditional relative
entropy is nonnegative. Thus we need only show that the formula holds for the
case where MY � PY but it is not true that MXY � PXY . By assumption
there must be an event F for which

MXY (F ) =

∫
MX|Y (Fy) dMY (y) = 0

but

PXY (F ) =

∫
PX|Y (Fy) dPY (y) 6= 0,

where Fy = {(x, y) : (x, y) ∈ F} is the section of F at Fy. Thus MX|Y (Fy) = 0
MY -a.e. and hence also PY -a.e. since MY � PY . Thus

SXY (F ) =

∫
MX|Y (Fy) dPY (y) = 0

and hence it is not true that SXY � PXY and therefore

D(PXY ‖SXY ) =∞,



5.4. LIMITING ENTROPY DENSITIES 111

which proves that the chain rule holds in the general case.

It can happen that PXY is not absolutely continuous with respect to MXY ,
and yet D(PXY ‖SXY ) <∞ and hence PXY � SXY and hence

HP‖M (X|Y ) =

∫
dPXY ln

dPXY
dSXY

,

in which case it makes sense to define the conditional density

fX|Y ≡
dPXY
dSXY

so that exactly as in the original tentative definition in terms of densities (5.17)
we have that

HP‖M (X|Y ) =

∫
dPXY ln fX|Y .

Note that this allows us to define a meaningful conditional density even though
the joint density fXY does not exist! If the joint density does exist, then the
conditional density reduces to the previous definition from Theorem 5.3.1.

We summarize the generalization in the following theorem.

Theorem 5.3.2 The conditional relative entropy defined by (5.27) and (5.26)
agrees with the definition (5.17) in terms of densities and satisfies the chain
rule (5.28). If the conditional relative entropy is finite, then

HP‖M (X|Y ) =

∫
dPXY ln fX|Y ,

where the conditional density is defined by

fX|Y ≡
dPXY
dSXY

.

If MXY � PXY , then this reduces to the usual definition

fX|Y =
fXY
fY

.

The generalizations can be extended to three or more random variables in the
obvious manner.

5.4 Limiting Entropy Densities

We now combine several of the results of the previous section to obtain results
characterizing the limits of certain relative entropy densities.
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Lemma 5.4.1 Given a probability space (Ω,B) and an asymptotically gener-
ating sequence of sub-σ-fields Fn and two measures M � P , let Pn = PFn ,
Mn = MFn and let hn = ln dPn/dMn and h = ln dP/dM denote the entropy
densities. If D(P‖M) <∞, then

lim
n→∞

∫
|hn − h| dP = 0,

that is, hn → h in L1. Thus the entropy densities hn are uniformly integrable.

Proof: Follows from the Corollaries 5.2.3 and 5.2.6. 2

The following lemma is Lemma 1 of Algoet and Cover [7].

Lemma 5.4.2 Given a sequence of nonnegative random variables {fn} defined
on a probability space (Ω,B, P ), suppose that

E(fn) ≤ 1; all n.

Then

lim sup
n→∞

1

n
ln fn ≤ 0.

Proof: Given any ε > 0 the Markov inequality and the given assumption imply
that

P (fn > enε) ≤ E(fn)

enε
≤ e−nε.

We therefore have that

P (
1

n
ln fn ≥ ε) ≤ e−nε

and therefore

∞∑
n=1

P (
1

n
ln fn ≥ ε) ≤

∞∑
n=1

e−nε =
1

eε−1
<∞,

Thus from the Borel-Cantelli lemma (Lemma 4.6.3 of [50]), P (n−1hn ≥ ε i.o.)
= 0. Since ε is arbitrary, the lemma is proved. 2

The lemma easily gives the first half of the following result, which is also
due to Algoet and Cover [7], but the proof is different here and does not use
martingale theory. The result is the generalization of Lemma 2.7.1.

Theorem 5.4.1 Given a probability space (Ω,B) and an asymptotically gener-
ating sequence of sub-σ-fields Fn, let M and P be two probability measures with
their restrictions Mn = MFn and Pn = PFn . Suppose that Mn � Pn for all n
and define fn = dPn/dMn and hn = ln fn. Then

lim sup
n→∞

1

n
hn ≤ 0,M − a.e.
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and

lim inf
n→∞

1

n
hn ≥ 0, P − a.e..

If it is also true that M � P (e.g., D(P‖M) <∞), then

lim
n→∞

1

n
hn = 0, P − a.e..

Proof: Since
EMfn = EMnfn = 1,

the first statement follows from the previous lemma. To prove the second state-
ment consider the probability

P (− 1

n
ln
dPn
Mn

> ε) = Pn(− 1

n
ln fn > ε) = Pn(fn < e−nε)

=

∫
fn<e−nε

dPn =

∫
fn<e−nε

fn dMn

< e−nε
∫
fn<e−nε

dMn = e−nεMn(fn < e−nε) ≤ e−nε.

Thus it has been shown that

P (
1

n
hn < −ε) ≤ e−nε

and hence again applying the Borel-Cantelli lemma we have that

P (n−1hn ≤ −ε i.o.) = 0

which proves the second claim of the theorem.
If M � P , then the first result also holds P -a.e., which with the second

result proves the final claim. 2

Barron [9] provides an additional property of the sequence hn/n. If M � P ,
then the sequence hn/n is dominated by an integrable function.

5.5 Information for General Alphabets

We can now use the divergence results of the previous sections to generalize the
definitions of information and to develop their basic properties. We assume now
that all random variables and processes are defined on a common underlying
probability space (Ω,B, P ). As we have seen how all of the various information
quantities–entropy, mutual information, conditional mutual information–can be
expressed in terms of divergence in the finite case, we immediately have defi-
nitions for the general case. Given two random variables X and Y , define the
average mutual information between them by

I(X;Y ) = D(PXY ‖PX × PY ), (5.29)
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where PXY is the joint distribution of the random variables X and Y and
PX × PY is the product distribution.

Define the entropy of a single random variable X by

H(X) = I(X;X). (5.30)

From the definition of divergence this implies that

I(X;Y ) = sup
Q
HPXY ‖PX×PY (Q).

From Dobrushin’s theorem (Lemma 5.2.2), the supremum can be taken over
partitions whose elements are contained in a generating field. Letting the gen-
erating field be the field generated by all rectangles of the form F ×G, F ∈ BAX
and G ∈ BAY , we have the following lemma which is often used as a definition
for mutual information (e.g., in Pinsker’s Information and Information Stability,
p. 9).

Lemma 5.5.1
I(X;Y ) = sup

q,r
I(q(X); r(Y )),

where the supremum is over all quantizers q and r of AX and AY . Hence there
exist sequences of increasingly fine quantizers qn : AX → An and rn : AY → Bn
such that

I(X;Y ) = lim
n→∞

I(qn(X); rn(Y )).

Applying this result to entropy we have that

H(X) = sup
q
H(q(X)),

where the supremum is over all quantizers.

By “increasingly fine” quantizers is meant that the corresponding partitions
Qn = {q−1

n (a); a ∈ An} are successive refinements, e.g., atoms in Qn are unions
of atoms in Qn+1. (If this were not so, a new quantizer could be defined for
which it was true.) There is an important drawback to the lemma (which will
shortly be removed in Lemma 5.5.5 for the special case where the alphabets
are standard): the quantizers which approach the suprema may depend on the
underlying measure PXY . In particular, a sequence of quantizers which work
for one measure need not work for another.

Given a third random variable Z, let AX , AY , and AZ denote the alphabets
of X, Y , and Z and define the conditional average mutual information

I(X;Y |Z) = D(PXY Z‖PX×Y |Z). (5.31)

This is the extension of the discrete alphabet definition of (2.25) and it makes
sense only if the distribution PX×Y |Z exists, which is the case if the alphabets
are standard but may not be the case otherwise. We shall later provide an
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alternative definition due to Wyner [154] that is valid more generally and equal
to the above when the spaces are standard.

Note that I(X;Y |Z) can be interpreted using Corollary 5.3.4 as the diver-
gence between PXY Z and its Markov approximation.

Combining these definitions with Lemma 5.2.1 yields the following general-
izations of the discrete alphabet results.

Lemma 5.5.2 Given two random variables X and Y , then

I(X;Y ) ≥ 0

with equality if and only if X and Y are independent. Given three random
variables X, Y , and Z, then

I(X;Y |Z) ≥ 0

with equality if and only if Y → Z → X form a Markov chain.

Proof: The first statement follow from Lemma 5.2.1 since X and Y are indepen-
dent if and only if PXY = PX × PY . The second statement follows from (5.31)
and the fact that Y → Z → X is a Markov chain if and only if PXY Z = PX×Y |Z
(see, e.g., Corollary 5.10.1 of [50]). 2

The properties of divergence provide means of computing and approximating
these information measures. From Lemma 5.2.3, if I(X;Y ) is finite, then

I(X;Y ) =

∫
ln

dPXY
d(PX × PY )

dPXY (5.32)

and if I(X;Y |Z) is finite, then

I(X;Y |Z) =

∫
ln

dPXY Z
dPX×Y |Z

dPXY Z . (5.33)

For example, if X,Y are two random variables whose distribution is abso-
lutely continuous with respect to Lebesgue measure dxdy and hence which have
a pdf fXY (x, y) = dPXY (xy)/dxdy, then

I(X;Y ) =

∫
dxdyfXY (xy) ln

fXY (x, y)

fX(x)fY (y)
,

where fX and fY are the marginal pdf’s, e.g.,

fX(x) =

∫
fXY (x, y) dy =

dPX(x)

dx
.

In the cases where these densities exist, we define the information densities

iX;Y = ln
dPXY

d(PX × PY )
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(5.34)

iX;Y |Z = ln
dPXY Z
dPX×Y |Z

.

The results of Section 5.3 can be used to provide conditions under which the
various information densities exist and to relate them to each other. Corollar-
ies 5.3.1 and 5.3.2 combined with the definition of mutual information immedi-
ately yield the following two results.

Lemma 5.5.3 Let X and Y be standard alphabet random variables with distri-
bution PXY . Suppose that there exists a product distribution MXY = MX ×MY

such that MXY � PXY . Then

MXY � PX × PY � PXY ,

iX;Y = ln(fXY /fXfY ) = ln(fX|Y /fX)

and

I(X;Y ) +HP‖M (X) = HP‖M (X|Y ). (5.35)

Comment: This generalizes the fact that I(X;Y ) = H(X) − H(X|Y ) for the
finite alphabet case. The sign reversal results from the difference in definitions
of relative entropy and entropy. Note that this implies that unlike ordinary
entropy, relative entropy is increased by conditioning, at least when the reference
measure is a product measure.

The previous lemma provides an apparently more general test for the exis-
tence of a mutual information density than the requirement that PX × PY �
PXY , it states that if PXY is dominated by any product measure, then it is also
dominated by the product of its own marginals and hence the densities exist.
The generality is only apparent, however, as the given condition implies from
Corollary 5.3.1 that the distribution is dominated by its independent approx-
imation. Restating Corollary 5.3.1 in terms of mutual information yields the
following.

Corollary 5.5.1 Given a distribution PXY let M denote the collection of all
product distributions MXY = MX ×MY . Then

I(X;Y ) = inf
MXY ∈M

HP‖M (X|Y ) = inf
MXY ∈M

D(PXY ‖MXY ).

The next result is an extension of Lemma 5.5.3 to conditional information
densities and relative entropy densities when three random variables are con-
sidered. It follows immediately from Corollary 5.3.3 and the definition of con-
ditional information density.

Lemma 5.5.4 (The chain rule for relative entropy densities) Suppose that MXY Z �
PXY Z are two distributions for three standard alphabet random variables and
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that Z → Y → X is a Markov chain under MXY Z . Let fX|Y Z , fX|Y , hX|Y Z ,
and hX|Y be as in Section 5.3. Then PX×Z|Y � PXY Z ,

hX|Y Z = iX;Z|Y + hX|Y (5.36)

and
HP‖M (X|Y,Z) = I(X;Z|Y ) +HP‖M (X|Y ). (5.37)

Thus, for example,

HP‖M (X|Y, Z) ≥ HP‖M (X|Y ).

As with Corollary 5.5.1, the lemma implies a variational description of con-
ditional mutual information. The result is just a restatement of Corollary 5.3.4.

Corollary 5.5.2 Given a distribution PXY Z let M denote the class of all dis-
tributions for XY Z under which Z → Y → X is a Markov chain, then

I(X;Z|Y ) = inf
MXYZ∈M

HP‖M (X|Y,Z) = inf
MXYZ∈M

D(PXY Z‖MXY Z),

and the minimum is achieved by MXY Z = PX×Z|Y .

The following corollary relates the information densities of the various infor-
mation measures and extends Kolmogorov’s equality to standard alphabets.

Corollary 5.5.3 (The chain rule for information densities and Kolmogorov’s
formula.) Suppose that X,Y , and Z are random variables with standard al-
phabets and distribution PXY Z . Suppose also that there exists a distribution
MXY Z = MX ×MY Z such that MXY Z � PXY Z . (This is true, for example, if
PX×PY Z � PXY Z .) Then the information densities iX;Z|Y , iX;Y , and iX;(Y Z)

exist and are related by

iX;Z|Y + iX;Y = iX;(Y,Z) (5.38)

and
I(X;Z|Y ) + I(X;Y ) = I(X; (Y,Z)). (5.39)

Proof: If MXY Z = MX ×MY Z , then Z → Y → X is trivially a Markov chain
since MX|Y Z = MX|Y = MX . Thus the previous lemma can be applied to this
MXY Z to conclude that PX×Z|Y � PXY Z and that (5.36) holds. We also have
that MXY = MX × MY � PXY . Thus all of the densities exist. Applying
Lemma 5.5.3 to the product measures MXY = MX × MY and MX(Y Z) =
MX ×MY Z in (5.36) yields

iX;Z|Y = hX|Y Z − hX|Y = ln fX|Y Z − ln fX|Y

= ln
fX|Y Z

fX
− ln

fX|Y

fX
= iX;Y Z − iX;Y .
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Taking expectations completes the proof. 2

The previous corollary implies that if PX×PY Z � PXY Z , then also PX×Z|Y �
PXY Z and PX×PY � PXY and hence that the existence of iX;(Y,Z) implies that
of iX;Z|Y and iX;Y . The following result provides a converse to this fact: the
existence of the latter two densities implies that of the first. The result is due
to Dobrushin [32]. (See also Theorem 3.6.1 of Pinsker [126] and the translator’s
comments.)

Corollary 5.5.4 If PX×Z|Y � PXY Z and PX × PY � PXY , then also PX ×
PY Z � PXY Z and

dPXY Z
d(PX × PY Z)

=
dPXY

d(PX × PY )
.

Thus the conclusions of Corollary 5.5.3 hold.

Proof: The key to the proof is the demonstration that

dPXY
d(PX × PY )

=
dPX×Z|Y

d(PX × PY Z)
, (5.40)

which implies that PX × PY Z � PX×Z|Y . Since it is assumed that PX×Z|Y �
PXY Z , the result then follows from the chain rule for Radon-Nikodym deriva-
tives.

Eq. (5.40) will be proved if it is shown that for all FX ∈ BAX , FY ∈ BAY ,
and FZ ∈ BAZ ,

PX×Z|Y (FX × FZ × FY ) =

∫
FX×FZ×FY

dPXY
d(PX × PY )

d(PX × PY Z). (5.41)

The thrust of the proof is the demonstration that for any measurable nonnega-
tive function f(x, z)∫

z∈FZ
f(x, y) d(PX × PY Z)(x, y, z) =

∫
f(x, y)PZ|Y (FZ |y)d(PX × PY )(x, y).

(5.42)
The lemma will then follow by substituting

f(x, y) =
dPXY

d(PX × PY )
(x, y)1FX (x)1FY (y)

into (5.42) to obtain (5.41).
To prove (5.42) first consider indicator functions of rectangles: f(x, y) =

1FX (x)1FY (y). Then both sides of (5.42) equal PX(FX)PY Z(FY ×FY ) from the
definitions of conditional probability and product measures. In particular, from
Lemma 5.10.1 of [50] the left-hand side is∫
z∈FZ

1FX (x)1FY (y) d(PX × PY Z)(x, y, z) = (

∫
1FXdPX)(

∫
1FY ×FZ dPY Z)

= PX(F )PY Z(FY × FZ)
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and the right-hand side is∫
1FX (x)1FY (y)PZ|Y (FZ |y) d(PX × PY )(x, y) =

(

∫
1FX (x) dPX(x))(

∫
1FY (y)PZ|Y (FZ |y) dPY (y)) = PX(F )PY Z(FY × FZ),

as claimed. This implies (5.42) holds also for simple functions and hence also
for positive functions by the usual approximation arguments. 2

Note that Kolmogorov’s formula (5.37) gives a formula for computing con-
ditional mutual information as

I(X;Z|Y ) = I(X; (Y, Z))− I(X;Y ).

The formula is only useful if it is not indeterminate, that is, not of the form∞−
∞. This will be the case if I(Y ;Z) (the smaller of the two mutual informations)
is finite.

Corollary 5.2.5 provides a means of approximating mutual information by
that of finite alphabet random variables. Assume now that the random variables
X,Y have standard alphabets. For, say, random variable X with alphabet AX
there must then be an asymptotically generating sequence of finite fields FX(n)
with atoms AX(n), that is, all of the members of FX(n) can be written as unions
of disjoint sets in AX(n) and FX(n) ↑ BAX ; that is, BAX = σ(

⋃
n FX(n)). The

atoms AX(n) form a partition of the alphabet of X.

Consider the divergence result of Corollary 5.2.5. with P = PXY , M =

PX×PY and quantizer q(n)(x, y) = (q
(n)
X (x), q

(n)
Y (y)). Consider the limit n→∞.

Since FX(n) asymptotically generates BAX and FY (n) asymptotically generates
BAY and since the pair σ-field BAX×AY is generated by rectangles, the field
generated by all sets of the form FX × FY with FX ∈ FX(n), some n, and
FY ∈ FY (m), some m, generates BAX×AY . Hence Corollary 5.2.5 yields the
first result of the following lemma. The second is a special case of the first. The
result shows that the quantizers of Lemma 5.5.1 can be chosen in a manner not
depending on the underlying measure if the alphabets are standard.

Lemma 5.5.5 Suppose that X and Y are random variables with standard al-

phabets defined on a common probability space. Suppose that q
(n)
X , n = 1, 2, · · ·

is a sequence of quantizers for AX such that the corresponding partitions asymp-
totically generate BAX . Define quantizers for Y similarly. Then for any distri-
bution PXY

I(X;Y ) = lim
n→∞

I(q
(n)
X (X); q

(n)
Y (Y ))

and

H(X) = lim
n→∞

H(q
(n)
X (X));

that is, the same quantizer sequence works for all distributions.
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An immediate application of the lemma is the extension of the convexity
properties of Lemma 2.5.4 to standard alphabets.

Corollary 5.5.5 Let µ denote a distribution on a space (AX ,BAX ), and let ν
be a regular conditional distribution ν(F |x) = Pr(Y ∈ F |X = x), x ∈ AX ,
F ∈ BAY . Let µν denote the resulting joint distribution. Let Iµν = Iµν(X;Y )
be the average mutual information. Then Iµν is a convex

⋃
function of ν and

a convex
⋂

function of µ.

Proof: Follows immediately from Lemma 5.5.5 and the finite alphabet result
Lemma 2.5.4. 2

Next consider the mutual information I(f(X), g(Y )) for arbitrary measur-
able mappings f and g of X and Y . From Lemma 5.5.2 applied to the random
variables f(X) and g(Y ), this mutual information can be approximated arbi-
trarily closely by I(q1(f(X)); q2(g(Y ))) by an appropriate choice of quantizers
q1 and q2. Since the composition of q1 and f constitutes a finite quantization
of X and similarly q2g is a quantizer for Y , we must have that

I(f(X); g(Y )) ≈ I(q1(f(X)); q2(g(Y )) ≤ I(X;Y ).

Making this precise yields the following corollary.

Corollary 5.5.6 If f is a measurable function of X and g is a measurable
function of Y , then

I(f(X), g(Y )) ≤ I(X;Y ).

The corollary states that mutual information is reduced by any measurable
mapping, whether finite or not. For practice we point out another proof of
this basic result that directly applies a property of divergence. Let P = PXY ,
M = PX × PY , and define the mapping r(x, y) = (f(x), g(y)). Then from
Corollary 5.2.2 we have

I(X;Y ) = D(P‖M) ≥ D(Pr‖Mr) ≥ D(Pf(X),g(Y )‖Mf(X),g(Y )).

But Mf(X),g(Y ) = Pf(X) × Pg(Y ) since

Mf(X),g(Y )(FX × FZ) = M(f−1(FX)
⋂
g−1(FY )

= PX(f−1(FX))× PY (g−1(FY ))

= Pf(X)(FX)× Pg(Y )(FY ).

Thus the previous inequality yields the corollary. 2

For the remainder of this section we focus on conditional entropy and infor-
mation.

Although we cannot express mutual information as a difference of ordinary
entropies in the general case (since the entropies of nondiscrete random variables
are generally infinite), we can obtain such a representation in the case where one
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of the two variables is discrete. Suppose we are given a joint distribution PXY
and that X is discrete. We can choose a version of the conditional probability
given Y so that pX|Y (x|y) = P (X = x|Y = y) is a valid pmf (considered as a
function of x for fixed y) with PY probability 1. (This follows from Corollary
5.8.1 of [50] since the alphabet of X is discrete; the alphabet of Y need not be
even standard.) Define

H(X|Y = y) =
∑
x

pX|Y (x|y) ln
1

pX|Y (x|y)

and

H(X|Y ) =

∫
H(X|Y = y) dPY (y).

Note that this agrees with the formula of Section 2.5 in the case that both
alphabets are finite. The following result is due to Wyner [154].

Lemma 5.5.6 If X,Y are random variables and X has a finite alphabet, then

I(X;Y ) = H(X)−H(X|Y ).

Proof: We first claim that pX|Y (x|y)/pX(x) is a version of dPXY /d(PX × PY ).
To see this observe that for F ∈ B(AX × AY ), letting Fy denote the section
{x : (x, y) ∈ F} we have that∫

F

pX|Y (x|y)

pX(x)
d(PX × PY ) =

∫ ∑
x∈Fy

pX|Y (x|y)

pX(x)
pX(x)dPY (y)

=

∫
dPY (y)

∑
x∈Fy

pX|Y (x|y)

=

∫
dPY (y)PX(Fy|y) = PXY (F ).

Thus

I(X;Y ) =

∫
ln(

pX|Y (x|y)

pX(x)
) dPXY

= H(X) +

∫
dPY (y)

∑
x

pX|Y (x|y) ln pX|Y (x|y).

2

We now wish to study the effects of quantizing on conditional information.
As discussed in Section 2.5,it is not true that I(X;Y |Z) is always greater than
I(f(X); q(Y )|r(Z)) and hence that I(X;Y |Z) can be written as a supremum
over all quantizers and hence the definition of (5.31) and the formula (5.33)
do not have the intuitive counterpart of a limit of informations of quantized
values. We now consider an alternative (and more general) definition of condi-
tional mutual information due to Wyner [154]. The definition has the form of a
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supremum over quantizers and does not require the existence of the probability
measure PX×Y |Z and hence makes sense for alphabets that are not standard.
Given PXY Z and any finite measurements f and g on X and Y , we can choose
a version of the conditional probability given Z = z so that

pz(a, b) = Pr(f(X) = a, g(Y ) = b|Z = z)

is a valid pmf with probability 1 (since the alphabets of f and g are finite and
hence standard a regular conditional probability exists from Corollary 5.8.1 of
[50]). For such finite measurements we can define

I(f(X); g(Y )|Z = z) =
∑
a∈Af

∑
b∈Ag

pz(a, b) ln
pz(a, b)∑

a′ pz(a
′, b)

∑
b′ pz(a, b

′)
,

that is, the ordinary discrete average mutual information with respect to the
distribution pz.

Lemma 5.5.7 Define

I ′(X;Y |Z) = sup
f,g

∫
dPZ(z)I(f(X); g(Y )|Z = z),

where the supremum is over all quantizers. Then there exist sequences of quan-
tizers (as in Lemma 5.5.5) such that

I ′(X;Y |Z) = lim
n→∞

I ′(qm(X); rm(Y )|Z).

I ′ satisfies Kolmogorov’s formula, that is,

I ′(X;Y |Z) = I((X,Z);Y )− I(Y ;Z).

If the alphabets are standard, then

I(X;Y |Z) = I ′(X;Y |Z).

Comment: The main point here is that conditional mutual information can be
expressed as a supremum or limit of quantizers. The other results simply point
out that the two conditional mutual informations have the same relation to
ordinary mutual information and are (therefore) equal when both are defined.
The proof follows Wyner [154].
Proof: First observe that for any quantizers q and r of Af and Ag we have from
the usual properties of mutual information that

I(q(f(X)); r(g(Y ))|Z = z) ≤ I(f(X); g(Y )|Z = z)

and hence integrating we have that

I ′(q(f(X)); r(g(Y ))|Z) =

∫
I(q(f(X)); r(g(Y ))|Z = z) dPZ(z)

≤
∫
I(f(X); g(Y )|Z = z) dPZ(z) (5.43)
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and hence taking the supremum over all q and r to get I ′(f(X); g(Y )|Z) yields

I ′(f(X); g(Y )|Z) =

∫
I(f(X); g(Y )|Z = z) dPZ(z). (5.44)

so that (5.43) becomes

I ′(q(f(X)); r(g(Y ))|Z) ≤ I ′(f(X); g(Y )|Z) (5.45)

for any quantizers q and r and the definition of I ′ can be expressed as

I ′(X;Y |Z) = sup
f,g

I ′(f(X); g(Y )|Z), (5.46)

where the supremum is over all quantizers f and g. This proves the first part of
the lemma since the supremum can be approached by a sequence of quantizers.
Next observe that

I ′(f(X); g(Y )|Z) =

∫
I(f(X); g(Y )|Z = z) dPZ(z)

= H(g(Y )|Z)−H(g(Y )|f(X), Z).

Since we have from Lemma 5.5.6 that

I(g(Y );Z) = H(g(Y ))−H(g(Y )|Z),

we have by adding these equations and again using Lemma 5.5.6 that

I(g(Y );Z) + I ′(f(X); g(Y )|Z) = H(g(Y ))−H(g(Y )|f(X), Z)

= I((f(X), Z); g(Y )).

Taking suprema over both sides over all quantizers f and g yields the relation

I(X;Z) + I ′(X;Y |Z) = I((X,Z);Y ),

proving Kolmogorov’s formula. Lastly, if the spaces are standard, then from
Kolmogorov’s inequality for the original definition (which is valid for the stan-
dard space alphabets) combined with the above formula implies that

I ′(X;Y |Z) = I((X,Z);Y )− I(X;Z) = I(X;Y |Z).

2

5.6 Some Convergence Results

We now combine the convergence results for divergence with the definitions
and properties of information densities to obtain some convergence results for
information densities. Unlike the results to come for relative entropy rate and
information rate, these are results involving the information between a sequence
of random variables and a fixed random variable.
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Lemma 5.6.1 Given random variables X and Y1, Y2, · · · defined on a common
probability space,

lim
n→∞

I(X; (Y1, Y2, · · · , Yn)) = I(X; (Y1, Y2, · · · )).

If in addition I(X; (Y1, Y2, · · · )) < ∞ and hence PX × PY1,Y2,··· � PX,Y1,Y2,···,
then

iX;Y1,Y2,··· ,Yn →
n→∞

iX;Y1,Y2,···

in  L1.

Proof: The first result follows from Corollary 5.2.5 with X,Y1, Y2, · · · , Yn−1

replacing Xn, P being the distribution PX,Y1,···, and M being the product dis-
tribution PX × PY1,Y2,···. The density result follows from Lemma 5.4.1. 2

Corollary 5.6.1 Given random variables X, Y , and Z1, Z2, · · · defined on a
common probability space, then

lim
n→∞

I(X;Y |Z1, Z2, · · · , Zn) = I(X;Y |Z1, Z2, · · · ).

If

I((X,Z1, · · · );Y ) <∞,

( e.g., if Y has a finite alphabet and hence I((X,Z1, · · · );Y ) ≤ H(Y ) < ∞),
then also

iX;Y |Z1,··· ,Zn →n→∞ iX;Y |Z1,··· (5.47)

in L1.

Proof: From Kolmogorov’s formula

I(X;Y |Z1, Z2, · · · , Zn) =

I(X; (Y,Z1, Z2, · · · , Zn))− I(X;Z1, · · · , Zn) ≥ 0. (5.48)

From the previous lemma, the first term on the left converges as n → ∞ to
I(X; (Y, Z1, · · · )) and the second term on the right is the negative of a term con-
verging to I(X; (Z1, · · · )). If the first of these limits is finite, then the difference
in (5.6) converges to the difference of these terms, which gives (5.47). From the
chain rule for information densities, the conditional information density is the
difference of the information densities:

iX;Y |Z1,··· ,Zn = iX;(Y,Z1,··· ,Zn) − iX;(Z1,··· ,Zn)

which is converging in L1x to

iX;Y |Z1,··· = iX;(Y,Z1,··· ) − iX;(Z1,··· ),
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again invoking the density chain rule. If I(X;Y |Z1, · · · ) = ∞ then quantize Y
as q(Y ) and note since q(Y ) has a finite alphabet that

I(X;Y |Z1, Z2, · · · , Zn) ≥ I(X; q(Y )|Z1, Z2, · · · , Zn) →
n→∞

I(X; q(Y )|Z1, · · · )

and hence
lim inf
N→∞

I(X;Y |Z1, · · · ) ≥ I(X; q(Y )|Z1, · · · ).

Since the right-hand term above can be made arbitrarily large, the remaining
part of the lemma is proved. 2

Lemma 5.6.2 If
PX × PY1,Y2,··· � PX,Y1,Y2,···

(e.g., I(X; (Y1, Y2, · · · )) <∞), then with probability 1.

lim
n→∞

1

n
i(X; (Y1, · · · , Yn)) = 0.

Proof: This is a corollary of Theorem 5.4.1. Let P denote the distribution of
{X,Y1, Y2, · · · } and let M denote the distribution PX × PY1,···. By assumption
M � P . The information density is

i(X; (Y1, · · · , Yn)) = ln
dPn
dMn

,

where Pn and Mn are the restrictions of P and M to σ(X,Y1, · · ·Yn). Theo-
rem 5.4.1 can therefore be applied to conclude that P -a.e.

lim
n→∞

1

n
ln
dPn
dMn

= 0,

which proves the lemma. 2

The lemma has the following immediate corollary.

Corollary 5.6.2 If {Xn} is a process with the property that

I(X0;X−1, X−2, · · · ) <∞,

that is, there is a finite amount of information between the zero time sample
and the infinite past, then

lim
n→∞

1

n
i(X0;X−1, · · · , X−n) = 0.

If the process is stationary, then also

lim
n→∞

1

n
i(Xn;Xn) = 0.
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Chapter 6

Information Rates II

6.1 Introduction

In this chapter we develop general definitions of information rate for processes
with standard alphabets and we prove a mean ergodic theorem for information
densities. The L1 results are extensions of the results of Moy [106] and Perez
[124] for stationary processes, which in turn extended the Shannon-McMillan
theorem from entropies of discrete alphabet processes to information densities.
(See also Kieffer [86].) We also relate several different measures of information
rate and consider the mutual information between a stationary process and its
ergodic component function. In the next chapter we apply the results of Chapter
5 on divergence to the definitions of this chapter for limiting information and
entropy rates to obtain a number of results describing the behavior of such
rates. In Chapter 8 almost everywhere ergodic theorems for relative entropy
and information densities are proved.

6.2 Information Rates for General Alphabets

Suppose that we are given a pair random process {Xn, Yn} with distribution p.
The most natural definition of the information rate between the two processes
is the extension of the definition for the finite alphabet case:

Ī(X;Y ) = lim sup
n→∞

1

n
I(Xn;Y n).

This was the first general definition of information rate and it is due to Do-
brushin [32]. While this definition has its uses, it also has its problems. Another
definition is more in the spirit of the definition of information itself: We formed
the general definitions by taking a supremum of the finite alphabet definitions
over all finite alphabet codings or quantizers. The above definition takes the
limit of such suprema. An alternative definition is to instead reverse the order
and take the supremum of the limit and hence the supremum of the information

127
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rate over all finite alphabet codings of the process. This will provide a definition
of information rate similar to the definition of the entropy of a dynamical system.
There is a question as to what kind of codings we permit, that is, do the quan-
tizers quantize individual outputs or long sequences of outputs. We shall shortly
see that it makes no difference. Suppose that we have a pair random process
{Xn, Yn} with standard alphabets AX and AY and suppose that f : A∞X → Af
and g : A∞Y → Ag are stationary codings of the X and Y sequence spaces into
a finite alphabet. We will call such finite alphabet stationary mappings sliding
block codes or stationary codes. Let {fn, gn} be the induced output process, that
is, if T denotes the shift (on any of the sequence spaces) then fn(x, y) = f(Tnx)
and gn(x, y) = g(Tny). Recall that f(Tn(x, y)) = fn(x, y), that is, shifting the
input n times results in the output being shifted n times.

Since the new process {fn, gn} has a finite alphabet, its mutual information
rate is defined. We now define the information rate for general alphabets as
follows:

I∗(X;Y ) = sup
sliding block codes f,g

Ī(f ; g)

= sup
sliding block codes f,g

lim sup
n→∞

1

n
I(fn; gn).

We now focus on AMS processes, in which case the information rates for
finite alphabet processes (e.g., quantized processes) is given by the limit, that
is,

I∗(X;Y ) = sup
sliding block codes f,g

Ī(f ; g)

= sup
sliding block codes f,g

lim
n→∞

1

n
I(fn; gn).

The following lemma shows that for AMS sources I∗ can also be evaluated by
constraining the sliding block codes to be scalar quantizers.

Lemma 6.2.1 Given an AMS pair random process {Xn, Yn} with standard al-
phabet,

I∗(X;Y ) = sup
q,r

Ī(q(X); r(Y )) = sup
q,r

lim sup
n→∞

1

n
I(q(X)n; r(Y )n),

where the supremum is over all quantizers q of AX and r of AY and where
q(X)n = q(X0), · · · , q(Xn−1).

Proof: Clearly the right hand side above is less than I∗ since a scalar quantizer is
a special case of a stationary code. Conversely, suppose that f and g are sliding
block codes such that Ī(f ; g) ≥ I∗(X;Y ) − ε. Then from Corollary 4.3.1 there
are quantizers q and r and codes f ′ and g′ depending only on the quantized
processes q(Xn) and r(Yn) such that Ī(f ′; g′) ≥ Ī(f ; g)− ε. From Lemma 4.3.3,
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however, Ī(q(X); r(Y )) ≥ Ī(f ′; g′) since f ′ and g′ are stationary codings of the
quantized processes. Thus Ī(q(X); r(Y )) ≥ I∗(X;Y ) − 2ε, which proves the
lemma. 2

Corollary 6.2.1
I∗(X;Y ) ≤ Ī(X;Y ).

If the alphabets are finite, then the two rates are equal.

Proof: The inequality follows from the lemma and the fact that

I(Xn;Y n) ≥ I(q(X)n; r(Y )n)

for any scalar quantizers q and r (where q(X)n is q(X0), · · · , q(Xn−1)). If
the alphabets are finite, then the identity mappings are quantizers and yield
I(Xn;Y n) for all n. 2

Pinsker [126] introduced the definition of information rate as a supremum
over all scalar quantizers and hence we shall refer to this information rate as
the Pinsker rate. The Pinsker definition has the advantage that we can use the
known properties of information rates for finite alphabet processes to infer those
for general processes, an attribute the first definition lacks.

Corollary 6.2.2 Given a standard alphabet pair process alphabet AX×AY there
is a sequence of scalar quantizers qm and rm such that for any AMS pair pro-
cess {Xn, Yn} having this alphabet (that is, for any process distribution on the
corresponding sequence space)

I(Xn;Y n) = lim
m→∞

I(qm(X)n; rm(Y )n)

I∗(X;Y ) = lim
m→∞

Ī(qm(X); rm(Y )).

Furthermore, the above limits can be taken to be increasing by using finer and
finer quantizers. Comment: It is important to note that the same sequence of
quantizers gives both of the limiting results.

Proof: The first result is Lemma 5.5.5. The second follows from the previous
lemma. 2

Observe that

I∗(X;Y ) = lim
m→∞

lim sup
n→∞

1

n
I(qm(X); rm(Y ))

whereas

Ī(X;Y ) = lim sup
n→∞

lim
m→∞

1

n
I(qm(X); rm(Y )).

Thus the two notions of information rate are equal if the two limits can be
interchanged. We shall later consider conditions under which this is true and
we shall see that equality of these two rates is important for proving ergodic
theorems for information densities.
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Lemma 6.2.2 Suppose that {Xn, Yn} is an AMS standard alphabet random
process with distribution p and stationary mean p̄. Then

I∗p (X;Y ) = I∗p̄ (X;Y ).

I∗p is an affine function of the distribution p. If p̄ has ergodic decomposition p̄xy,
then

I∗p (X;Y ) =

∫
dp̄(x, y)I∗p̄xy (X;Y ).

If f and g are stationary codings of X and Y , then

I∗p (f ; g) =

∫
dp̄(x, y)I∗p̄xy (f ; g).

Proof: For any scalar quantizers q and r ofX and Y we have that Īp(q(X); r(Y )) =
Īp̄(q(X); r(Y )). Taking a limit with ever finer quantizers yields the first equal-
ity. The fact that I∗ is affine follows similarly. Suppose that p̄ has ergodic
decomposition p̄xy. Define the induced distributions of the quantized process
by m and mxy, that is, m(F ) = p̄(x, y : {q(xi), r(yi); i ∈ T } ∈ F ) and similarly
for mxy. It is easy to show that m is stationary (since it is a stationary coding
of a stationary process), that the mxy are stationary ergodic (since they are
stationary codings of stationary ergodic processes), and that the mxy form an
ergodic decomposition of m. If we let X ′n, Y

′
n denote the coordinate functions

on the quantized output sequence space (that is, the processes {q(Xn), r(Yn)}
and {X ′n, Y ′n} are equivalent), then using the ergodic decomposition of mutual
information for finite alphabet processes (Lemma 4.3.1) we have that

Īp(q(X); r(Y )) = Īm(X ′;Y ′) =

∫
Īmx′y′ (X

′;Y ′) dm(x′, y′)

=

∫
Īp̄xy (q(X); r(Y )) dp̄(x, y).

Replacing the quantizers by the sequence qm, rm the result then follows by
taking the limit using the monotone convergence theorem. The result for sta-
tionary codings follows similarly by applying the previous result to the induced
distributions and then relating the equation to the original distributions. 2

The above properties are not known to hold for Ī in the general case. Thus
although Ī may appear to be a more natural definition of mutual information
rate, I∗ is better behaved since it inherits properties from the discrete alphabet
case. It will be of interest to find conditions under which the two rates are the
same, since then Ī will share the properties possessed by I∗. The first result of
the next section adds to the interest by demonstrating that when the two rates
are equal, a mean ergodic theorem holds for the information densities.

6.3 A Mean Ergodic Theorem for Densities
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Theorem 6.3.1 Given an AMS pair process {Xn, Yn} with standard alphabets,
assume that for all n

PXn × PY n � PXnY n

and hence that the information densities

iXn;Y n = ln
dPXn,Y n

d(PXn × PY n)

are well defined. For simplicity we abbreviate iXn;Y n to in when there is no
possibility of confusion. If the limit

lim
n→∞

1

n
I(Xn;Y n) = Ī(X;Y )

exists and
Ī(X;Y ) = I∗(X;Y ) <∞,

then n−1in(Xn;Y n) converges in L1 to an invariant function i(X;Y ). If the
stationary mean of the process has an ergodic decomposition p̄xy, then the lim-
iting density is I∗p̄xy (X;Y ), the information rate of the ergodic component in
effect.

Proof: Let qm and rm be asymptotically accurate quantizers for AX and AY .
Define the discrete approximations X̂n = qm(Xn) and Ŷn = rm(Yn). Observe
that PXn ×PY n � PXnY n implies that PX̂n ×PŶ n � PX̂nŶ n and hence we can
define the information densities of the quantized vectors by

în = ln
dPX̂nŶ n

d(PX̂n × PŶ n)
.

For any m we have that∫
| 1
n
in(xn; yn)− I∗p̄xy (X;Y )| dp(x, y) ≤∫

| 1
n
in(xn; yn)− 1

n
în(qm(x)n; rm(y)n)| dp(x, y)+∫

| 1
n
în(qm(x)n; rm(y)n)− Īp̄xy (qm(X); rm(Y ))| dp(x, y)+∫

|Īp̄xy (qm(X); rm(Y ))− I∗p̄xy (X;Y )| dp(x, y), (6.1)

where
qm(x)n = (qm(x0), · · · , qm(xn−1)),

rm(y)n = (rm(y0), · · · , rm(yn−1)),

and Īp(qm(X); rm(Y )) denotes the information rate of the process {qm(Xn), rm(Yn);
n = 0, 1, · · · , } when p is the process measure describing {Xn, Yn}.
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Consider first the right-most term of (6.1). Since I∗ is the supremum over
all quantized versions,∫

|Īp̄xy (qm(X); rm(Y ))− I∗p̄xy (X;Y )| dp(x, y) =∫
(I∗p̄xy (X;Y )− Īp̄xy (qm(X); rm(Y ))) dp(x, y).

Using the ergodic decomposition of I∗ (Lemma 6.2.2) and that of Ī for discrete
alphabet processes (Lemma 4.3.1) this becomes∫

|Īp̄xy (qm(X); rm(Y ))− I∗p̄xy (X;Y )| dp(x, y) =

I∗p (X;Y )− Īp(qm(X); rm(Y )). (6.2)

For fixed m the middle term of (6.1) can be made arbitrarily small by taking
n large enough from the finite alphabet result of Lemma 4.3.1. The first term on
the right can be bounded above using Corollary 5.2.6 with F = σ(q(X)n; r(Y )n)
by

1

n
(I(Xn;Y n)− I(X̂n; Ŷ n) +

2

e
)

which as n→∞ goes to Ī(X;Y ) −Ī(qm(X); rm(Y )). Thus we have for any m
that

lim sup
n→∞

∫
| 1
n
in(xn; yn)− I∗p̄xy (X;Y )| dp(x, y) ≤

Ī(X;Y )− Ī(qm(X); rm(Y )) + I∗(X;Y )− Ī(qm(X); rm(Y ))

which as m→∞ becomes Ī(X;Y )− I∗(X;Y ), which is 0 by assumption. 2

6.4 Information Rates of Stationary Processes

In this section we introduce two more definitions of information rates for the
case of stationary two-sided processes. These rates are useful tools in relating
the Dobrushin and Pinsker rates and they provide additional interpretations
of mutual information rates in terms of ordinary mutual information. The
definitions follow Pinsker [126].

Henceforth assume that {Xn, Yn} is a stationary two-sided pair process with
standard alphabets. Define the sequences y = {yi; i ∈ T } and Y = {Yi; i ∈ T }

First define

Ĩ(X;Y ) = lim sup
n→∞

1

n
I(Xn;Y ),

that is, consider the per-letter limiting information between n-tuples of X and
the entire sequence from Y . Next define

I−(X;Y ) = I(X0;Y |X−1, X−2, · · · ),
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that is, the average conditional mutual information between one letter from X
and the entire Y sequence given the infinite past of the X process. We could
define the first rate for one-sided processes, but the second makes sense only
when we can consider an infinite past. For brevity we write X− = X−1, X−2, · · ·
and hence

I−(X;Y ) = I(X0;Y |X−).

Theorem 6.4.1

Ĩ(X;Y ) ≥ Ī(X;Y ) ≥ I∗(X;Y ) ≥ I−(X;Y ).

If the alphabet of X is finite, then the above rates are all equal.

Comment: We will later see more general sufficient conditions for the equality
of the various rates, but the case where one alphabet is finite is simple and
important and points out that the rates are all equal in the finite alphabet case.

Proof: We have already proved the middle inequality. The left inequality follows
immediately from the fact that I(Xn;Y ) ≥ I(Xn;Y n) for all n. The remaining
inequality is more involved. We prove it in two steps. First we prove the
second half of the theorem, that the rates are the same if X has finite alphabet.
We then couple this with an approximation argument to prove the remaining
inequality. Suppose now that the alphabet of X is finite. Using the chain rule
and stationarity we have that

1

n
I(Xn;Y n) =

1

n

n−1∑
i=0

I(Xi;Y
n|X0, · · · , Xi−1)

=
1

n

n−1∑
i=0

I(X0;Y n−i|X−1, · · · , X−i),

where Y n−i is Y−i, · · · , Y−i+n−1, that is, the n-vector starting at −i. Since X has
finite alphabet, each term in the sum is bounded. We can show as in Section 5.5
(or using Kolmogorov’s formula and Lemma 5.5.1) that each term converges as
i→∞, n→∞, and n− i→∞ to I(X0;Y |X−1, X−2, · · · ) or I−(X;Y ). These
facts, however, imply that the above Cesàro average converges to the same limit
and hence Ī = I−. We can similarly expand Ĩ as

1

n

n−1∑
i=0

I(Xi;Y |X0, · · · , Xi−1) =
1

n

n−1∑
i=0

I(X0;Y |X−1, · · · , X−i),

which converges to the same limit for the same reasons. Thus Ĩ = Ī = I− for
stationary processes when the alphabet of X is finite. Now suppose that X
has a standard alphabet and let qm be an asymptotically accurate sequences of
quantizers. Recall that the corresponding partitions are increasing, that is, each
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refines the previous partition. Fix ε > 0 and choose m large enough so that the
quantizer α(X0) = qm(X0) satisfies

I(α(X0);Y |X−) ≥ I(X0;Y |X−)− ε.

Observe that so far we have only quantized X0 and not the past. Since

Fm = σ(α(X0), Y, qm(X−i); i = 1, 2, · · · )

asymptotically generates

σ(α(X0), Y,X−i; i = 1, 2, · · · ),

given ε we can choose for m large enough (larger than before) a quantizer β(x) =
qm(x) such that if we define β(X−) to be β(X−1), β(X−2), · · · , then

|I(α(X0); (Y, β(X−)))− I(α(X0); (Y,X−))| ≤ ε

and
|I(α(X0);β(X−))− I(α(X0);X−)| ≤ ε.

Using Kolmogorov’s formula this implies that

|I(α(X0);Y |X−)− I(α(X0);Y |β(X−))| ≤ 2ε

and hence that

I(α(X0);Y |β(X−)) ≥ I(α(X0);Y |X−)− 2ε ≥ I(X0;Y |X−)− 3ε.

But the partition corresponding to β refines that of α and hence increases the
information; hence

I(β(X0);Y |β(X−)) ≥ I(α(X0);Y |β(X−)) ≥ I(X0;Y |X−)− 3ε.

Since β(Xn) has a finite alphabet, however, from the finite alphabet result the
left-most term above must be Ī(β(X);Y ), which can be made arbitrarily close
to I∗(X;Y ). Since ε is arbitrary, this proves the final inequality. 2

The following two theorems provide sufficient conditions for equality of the
various information rates. The first result is almost a special case of the second,
but it is handled separately as it is simpler, much of the proof applies to the
second case, and it is not an exact special case of the subsequent result since it
does not require the second condition of that result. The result corresponds to
condition (7.4.33) of Pinsker [126], who also provides more general conditions.
The more general condition is also due to Pinsker and strongly resembles that
considered by Barron [9].

Theorem 6.4.2 Given a stationary pair process {Xn, Yn} with standard alpha-
bets, if

I(X0; (X−1, X−2, · · · )) <∞,
then

Ĩ(X;Y ) = Ī(X;Y ) = I∗(X;Y ) = I−(X;Y ). (6.3)
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Proof: We have that

1

n
I(Xn;Y ) ≤ 1

n
I(Xn; (Y,X−)) =

1

n
I(Xn;X−) +

1

n
I(Xn;Y |X−), (6.4)

where, as before, X− = {X−1, X−2, · · · }. Consider the first term on the right.
Using the chain rule for mutual information

1

n
I(Xn;X−) =

1

n

n−1∑
i=0

I(Xi;X
−|Xi) (6.5)

=
1

n

n−1∑
i=0

(I(Xi; (Xi, X−))− I(Xi;X
i)). (6.6)

Using stationarity we have that

1

n
I(Xn;X−) =

1

n

n−1∑
i=0

(I(X0;X−)− I(X0; (X−1, · · · , X−i)). (6.7)

The terms I(X0; (X−1, · · · , X−i)) are converging to I(X0;X−), hence the terms
in the sum are converging to 0, i.e.,

lim
i→∞

I(Xi;X
−|Xi) = 0. (6.8)

The Cesàro mean of (6.6) is converging to the same thing and hence

1

n
I(Xn;X−)→ 0. (6.9)

Next consider the term I(Xn;Y |X−). For any positive integers n,m we have

I(Xn+m;Y |X−) = I(Xn;Y |X−) + I(Xm
n ;Y |X−, Xn), (6.10)

where Xm
n = Xn, · · · , Xn+m−1. From stationarity, however, the rightmost term

is just I(Xm;Y |X−) and hence

I(Xm+n;Y |X−) = I(Xn;Y |X−) + I(Xm;Y |X−). (6.11)

This is just a linear functional equation of the form f(n + m) = f(n) + f(m)
and the unique solution to such an equation is f(n) = nf(1), that is,

1

n
I(Xn;Y |X−) = I(X0;Y |X−) = I−(X;Y ). (6.12)

Taking the limit supremum in (6.4) we have shown that

Ĩ(X;Y ) ≤ I−(X;Y ), (6.13)

which with Theorem 6.4.1 completes the proof. 2
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Intuitively, the theorem states that if one of the processes has finite average
mutual information between one symbol and its infinite past, then the Dobrushin
and Pinsker information rates yield the same value and hence there is an L1

ergodic theorem for the information density.
To generalize the theorem we introduce a condition that will often be useful

when studying asymptotic properties of entropy and information. A stationary
process {Xn} is said to have the finite-gap information property if there exists
an integer K such that

I(XK ;X−|XK) <∞, (6.14)

where, as usual, X− = (X−1, X−2, · · · ). When a process has this property for
a specific K, we shall say that it has the K-gap information property. Observe
that if a process possesses this property, then it follows from Lemma 5.5.4

I(XK ; (X−1, · · · , X−l)|XK) <∞; l = 1, 2, · · · (6.15)

Since these informations are finite,

P
(K)
Xn � PXn ; n = 1, 2, . . . , (6.16)

where P
(K)
Xn is the Kth order Markov approximation to PXn .

Theorem 6.4.3 Given a stationary standard alphabet pair process {Xn, Yn}, if
{Xn} satisfies the finite-gap information property (6.14) and if, in addition,

I(XK ;Y ) <∞, (6.17)

then (6.3) holds.

If K = 0 then there is no conditioning and (6.17) is trivial, that is, the
previous theorem is the special case with K = 0.

Comment: This theorem shows that if there is any finite dimensional future vec-
tor (XK , XK+1, · · · , XK+N−1) which has finite mutual information with respect
to the infinite pastX− when conditioned on the intervening gap (X0, · · · , XK−1),
then the various definitions of mutual information are equivalent provided that
the mutual information betwen the “gap” XK and the sequence Y are finite.
Note that this latter condition will hold if, for example, Ĩ(X;Y ) is finite.

Proof: For n > K

1

n
I(Xn;Y ) =

1

n
I(XK ;Y ) +

1

n
I(Xn−K

K ;Y |XK).

By assumption the first term on the left will tend to 0 as n→∞ and hence we
focus on the second, which can be broken up analogous to the previous theorem
with the addition of the conditioning:

1

n
I(Xn−K

K ;Y |XK) ≤ 1

n
I(Xn−K

K ; (Y,X−|XK))

=
1

n
I(Xn−K

K ;X−|XK) +
1

n
I(Xn−K

K ;Y |X−, XK).
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Consider first the term

1

n
I(Xn−K

K ;X−|XK) =
1

n

n−1∑
i=K

I(Xi;X
−|Xi),

which is as (6.6) in the proof of Theorem 6.4.2 except that the first K terms
are missing. The same argument then shows that the limit of the sum is 0. The
remaining term is

1

n
I(Xn−K

K ;Y |X−, XK) =
1

n
I(Xn;Y |X−)

exactly as in the proof of Theorem 6.4.2 and the same argument then shows
that the limit is I−(X;Y ), which completes the proof. 2

One result developed in the proofs of Theorems 6.4.2 and 6.4.3 will be im-
portant later in its own right and hence we isolate it as a corollary. The result
is just (6.8), which remains valid under the more general conditions of Theo-
rem 6.4.3, and the fact that the Cesàro mean of converging terms has the same
limit.

Corollary 6.4.1 If a process {Xn} has the finite-gap information property

I(XK ;X−|XK) <∞

for some K, then
lim
n→∞

I(Xn;X−|Xn) = 0

and

lim
n→∞

1

n
I(Xn;X−) = 0.

The corollary can be interpreted as saying that if a process has the the finite
gap information property, then the mutual information between a single sample
and the infinite past conditioned on the intervening samples goes to zero as the
number of intervening samples goes to infinity. This can be interpreted as a
form of asymptotic independence property of the process.

Corollary 6.4.2 If a one-sided stationary source {Xn} is such that for some
K, I(Xn;Xn−K |XK

n−K) is bounded uniformly in n, then it has the finite-gap
property and hence

Ī(X;Y ) = I∗(X;Y ).

Proof: Simply imbed the one-sided source into a two-sided stationary source
with the same probabilities on all finite-dimensional events. For that source

I(Xn;Xn−K |XK
n−K) = I(XK ;X−1, · · · , X−n−K |XK) →

n→∞
I(XK ;X−|XK).

Thus if the terms are bounded, the conditions of Theorem 6.4.2 are met for the
two-sided source. The one-sided equality then follows. 2

The above results have an information theoretic implication for the ergodic
decomposition, which is described in the next theorem.
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Theorem 6.4.4 Suppose that {Xn} is a stationary process with the finite-gap
property (6.14). Let ψ be the ergodic component function of Theorem 1.8.3 and
suppose that for some n

I(Xn;ψ) <∞. (6.18)

(This will be the case, for example, if the finite-gap information property holds
for 0 gap, that is, I(X0;X−) < ∞ since ψ can be determined from X− and
information is decreased by taking a function.) Then

lim
n→∞

1

n
I(Xn;ψ) = 0.

Comment: For discrete alphabet processes this theorem is just the ergodic de-
composition of entropy rate in disguise (Theorem 2.4.1). It also follows for
finite alphabet processes from Lemma 3.3.1. We shall later prove a correspond-
ing almost everywhere convergence result for the corresponding densities. All
of these results have the interpretation that the per-symbol mutual information
between the outputs of the process and the ergodic component decreases with
time because the ergodic component in effect can be inferred from the process
output in the limit of an infinite observation sequence. The finiteness condition
on some I(Xn;ψ) is necessary for the nonzero finite-gap case to avoid cases such
as where Xn = ψ for all n and hence

I(Xn;ψ) = I(ψ;ψ) = H(ψ) =∞,

in which case the theorem does not hold.

Proof:
Define ψn = ψ for all n. Since ψ is invariant, {Xn, ψn} is a stationary

process. Since Xn satisfies the given conditions, however, Ī(X;ψ) = I∗(X;ψ).
But for any scalar quantizer q, Ī(q(X);ψ) is 0 from Lemma 3.3.1. I∗(X;ψ) is
therefore 0 since it is the supremum of Ī(q(X);ψ) over all quantizers q. Thus

0 = Ī(X;ψ) = lim
n→∞

1

n
I(Xn;ψn) = lim

n→∞

1

n
I(Xn;ψ). 2



Chapter 7

Relative Entropy Rates

7.1 Introduction

This chapter extends many of the basic properties of relative entropy to se-
quences of random variables and to processes. Several limiting properties of
entropy rates are proved and a mean ergodic theorem for relative entropy densi-
ties is given. The principal ergodic theorems for relative entropy and information
densities in the general case are given in the next chapter.

7.2 Relative Entropy Densities and Rates

Suppose that p and m are two AMS distributions for a random process {Xn}
with a standard alphabet A. For convenience we assume that the random vari-
ables {Xn} are coordinate functions of an underlying measurable space (Ω,B)
where Ω is a one-sided or two-sided sequence space and B is the corresponding
σ-field. Thus x ∈ Ω has the form x = {xi}, where the index i runs from
0 to ∞ for a one-sided process and from −∞ to +∞ for a two-sided pro-
cess. The random variables and vectors of principal interest are Xn(x) = xn,
Xn(x) = xn = (x0, · · · , xn−1), and Xk

l (x) = (xl, · · · , xl+k−1). The process
distributions p and m are both probability measures on the measurable space
(Ω,B).

For n = 1, 2, . . . let MXn and PXn be the vector distributions induced by p
and m. We assume throughout this section that MXn � PXn and hence that
the Radon-Nikodym derivatives fXn = dPXn/dMXn and the entropy densities
hXn = ln fXn are well defined for all n = 1, 2, . . . Strictly speaking, for each n
the random variable fXn is defined on the measurable space (An,BAn) and hence
fXn is defined on a different space for each n. When considering convergence
of relative entropy densities, it is necessary to consider a sequence of random
variables defined on a common measurable space, and hence two notational
modifications are introduced: The random variables fXn(Xn) : Ω→ [0,∞) are
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defined by
fXn(Xn)(x) ≡ fXn(Xn(x)) = fXn(xn)

for n = 1, 2, . . .. Similarly the entropy densities can be defined on the common
space (Ω,B) by

hXn(Xn) = ln fXn(Xn).

The reader is warned of the potentially confusing dual use of Xn in this nota-
tion: the subscript is the name of the random variable Xn and the argument
is the random variable Xn itself. To simplify notation somewhat, we will often
abbreviate the previous (unconditional) densities to

fn = fXn(Xn); hn = hXn(Xn).

For n = 1, 2, . . . define the relative entropy by

Hp‖m(Xn) = D(PXn‖MXn) = EPXnhXn = EphXn(Xn).

Define the relative entropy rate by

H̄p‖m(X) = lim sup
n→∞

1

n
Hp‖m(Xn).

Analogous to Dobrushin’s definition of information rate, we also define

H∗p‖m(X) = sup
q
H̄p‖m(q(X)),

where the supremum is over all scalar quantizers q.
Define as in Chapter 5 the conditional densities

fXn|Xn =
fXn+1

fXn
=
dPXn+1/dMXn+1

dPXn/dMXn
=

dPXn|Xn

dMXn|Xn
(7.1)

provided fXn 6= 0 and fXn|Xn = 1 otherwise. As for unconditional densities we
change the notation when we wish to emphasize that the densities can all be
defined on a common underlying sequence space. For example, we follow the
notation for ordinary conditional probability density functions and define the
random variables

fXn|Xn(Xn|Xn) =
fXn+1(Xn+1)

fXn(Xn)

and
hXn|Xn(Xn|Xn) = ln fXn|Xn(Xn|Xn)

on (Ω,B). These densities will not have a simple abbreviation as do the uncon-
ditional densities.

Define the conditional relative entropy

Hp‖m(Xn|Xn) = EPXn (ln fXn|Xn) =

∫
dp ln fXn|Xn(Xn|Xn). (7.2)
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All of the above definitions are immediate applications of definitions of Chapter
5 to the random variables Xn and Xn. The difference is that these are now
defined for all samples of a random process, that is, for all n = 1, 2, . . .. The
focus of this chapter is the interrelations of these entropy measures and on some
of their limiting properties for large n.

For convenience define

Dn = Hp‖m(Xn|Xn); n = 1, 2, . . . ,

and D0 = Hp‖m(X0). From Theorem 5.3.1 this quantity is nonnegative and

Dn +D(PXn‖MXn) = D(PXn+1‖MXn+1).

If D(PXn‖MXn) <∞, then also

Dn = D(PXn+1‖MXn+1)−D(PXn‖MXn).

We can write Dn as a single divergence if we define as in Theorem 5.3.1 the
distribution SXn+1 by

SXn+1(F ×G) =

∫
F

MXn|Xn(F |xn) dPXn(xn); F ∈ BA; G ∈ BAn . (7.3)

Recall that SXn+1 combines the distribution PXn on Xn with the conditional
distribution MXn|Xn giving the conditional probability under M for Xn given
Xn. We shall abbreviate this construction by

SXn+1 = MXn|XnPXn . (7.4)

Then
Dn = D(PXn+1‖SXn+1). (7.5)

Note that SXn+1 is not in general a consistent family of measures in the sense
of the Kolmogorov extension theorem since its form changes with n, the first
n samples being chosen according to p and the final sample being chosen using
the conditional distribution induced by m given the first n samples. Thus,
in particular, we cannot infer that there is a process distribution s which has
SXn ; , n = 1, 2, . . . as its vector distributions.

We immediately have a chain rule for densities

fXn =

n−1∏
i=0

fXi|Xi (7.6)

and a corresponding chain rule for conditional relative entropies similar to that
for ordinary entropies:

D(PXn‖MXn) = Hp‖m(Xn) =

n−1∑
i=0

Hp‖m(Xi|Xi) =

n−1∑
i=0

Di. (7.7)
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7.3 Markov Dominating Measures

The evaluation of relative entropy simplifies for certain special cases and re-
duces to a mutual information when the dominating measure is a Markov ap-
proximation of the dominated measure. The following lemma is an extension to
sequences of the results of Corollary 5.5.2 and Lemma 5.5.4.

Theorem 7.3.1 Suppose that p is a process distribution for a standard alpha-
bet random process {Xn} with induced vector distributions PXn ; n = 1, 2, . . ..
Suppose also that there exists a process distribution m with induced vector dis-
tributions MXn such that

(a) under m {Xn} is a k-step Markov source, that is, for all n ≥ k, Xn−k →
Xk
n−k → Xn is a Markov chain or, equivalently,

MXn|Xn = MXn|Xkn−k
,

and

(b) MXn � PXn , n = 1, 2, . . . so that the densities

fXn =
dPXn

dMXn

are well defined.

Suppose also that p(k) is the k-step Markov approximation to p, that is, the

source with induced vector distributions P
(k)
Xn such that

P
(k)

Xk
= PXk

and for all n ≥ k
P

(k)
Xn|Xn = PXn|Xkn−k ;

that is, p(k) is a k-step Markov process having the same initial distribution and
the same kth order conditional probabilities as p. Then for all n ≥ k

MXn � P
(k)
Xn � PXn (7.8)

and

dP
(k)
Xn

dMXn
= f

(k)
Xn ≡ fXk

n−1∏
l=k

fXl|Xkl−k , (7.9)

dPXn

dP
(k)
Xn

=
fXn

f
(k)
Xn

. (7.10)

Furthermore
hXn|Xn = hXn|Xkn−k + iXn;Xn−k|Xkn−k

(7.11)
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and hence

Dn = Hp‖m(Xn|Xn)

= Ip(Xn;Xn−k|Xk
n−k) +Hp‖m(Xn|Xk

n−k).

Thus

hXn = hXk +

n−1∑
l=k

(
hXl|Xkl−k + iXl;Xl−k|Xkl−k

)
(7.12)

and hence

D(PXn‖MXn) = Hp‖m(Xk)+

n−1∑
l=k

(Ip(Xl;X
l−k|Xk

l−k) +Hp‖m(Xl|Xk
l−k)). (7.13)

If m = p(k), then for all n ≥ k we have that hXn|Xkn−k = 0 and hence

Hp‖p(k)(Xn|Xk
n−k) = 0 (7.14)

and
Dn = Ip(Xn;Xn−k|Xk

n−k), (7.15)

and hence

D(PXn‖P (k)
Xn) =

n−1∑
l=k

Ip(Xl;X
l−k|Xk

l−k). (7.16)

Proof: If n = k+1, then the results follow from Corollary 5.3.3 and Lemma 5.5.4
with X = Xn, Z = Xk, and Y = Xk. Now proceed by induction and assume
that the results hold for n. Consider the distribution QX(n+1) specified by
QXn = PXn and QXn|Xn = PXn|Xkn−k . In other words,

QXn+1 = PXn|Xkn−kPX
n

Application of Corollary 5.3.1 with Z = Xn−k, Y = Xk
n−k, and X = Xn implies

that MXn+1 � QXn+1 � PXn+1 and that

dPXn+1

dQXn+1

=
fXn|Xn

fXn|Xkn−k
.

This means that we can write

PXn+1(F ) =

∫
F

dPXn+1

dQXn+1

dQXn+1 =

∫
F

dPXn+1

dQXn+1

dQXn|Xn dQXn

=

∫
F

dPXn+1

dQXn+1

dPXn|Xkn−k dPX
n .
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From the induction hypothesis we can express this as

PXn+1(F ) =

∫
F

dPXn+1

dQXn+1

dPXn

dP
(k)
Xn

dPXn|Xkn−k dP
(k)
Xn

=

∫
F

dPXn+1

dQXn+1

dPXn

dP
(k)
Xn

dP
(k)
Xn+1 ,

proving that P
(k)
Xn+1 � PXn+1 and that

dPXn+1

dP
(k)
Xn+1

=
dPXn+1

dQXn+1

dPXn

dP
(k)
Xn

=
fXn|Xn

fXn|Xkn−k

dPXn

dP
(k)
Xn

.

This proves the right hand part of (7.9) and (7.10).
Next define the distribution P̂Xn by

P̂Xn(F ) =

∫
F

f
(k)
Xn dMXn ,

where f
(k)
Xn is defined in (7.9). Proving that P̂Xn = P

(k)
Xn will prove both the left

hand relation of (7.8) and (7.9). Clearly

d̂PXn

dMXn
= f

(k)
Xn

and from the definition of f (k) and conditional densities

f
(k)
Xn|Xn = f

(k)

Xn|Xkn−k
. (7.17)

From Corollary 5.3.1 it follows that Xn−k → Xk
n−k → Xn is a Markov

chain. Since this is true for any n ≥ k, P̂Xn is the distribution of a k-step
Markov process. By construction we also have that

f
(k)

Xn|Xkn−k
= fXn|Xkn−k (7.18)

and hence from Theorem 5.3.1

P
(k)

Xn|Xkn−k
= PXn|Xkn−k .

Since also f
(k)

Xk
= fXk , P̂Xn = P

(k)
Xn as claimed. This completes the proof of

(7.8)–(7.10). Eq. (7.11) follows since

fXn|Xn = fXn|Xkn−k ×
fXn|Xn

fXn|Xkn−k
.

Eq. (7.12) then follows by taking expectations. Eq. (7.12) follows from (7.11)
and

fXn = fXk

n−1∏
l=k

fXl|Xl ,
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whence (7.13) follows by taking expectations. If m = p(k), then the claims
follow from (5.24)–(5.25). 2

Corollary 7.3.1 Given a stationary source p, suppose that for some K there
exists a K-step Markov source m with distributions MXn � PXn , n = 1, 2, . . ..
Then for all k ≥ K (7.8)–(7.10) hold.

Proof: If m is a K-step Markov source with the property MXn � PXn , n =
1, 2, . . ., then it is also a k-step Markov source with this property for all k ≥ K.
The corollary then follows from the theorem. 2

Comment: The corollary implies that if any K-step Markov source dominates
p on its finite dimensional distributions, then for all k ≥ K the k-step Markov
approximations p(k) also dominate p on its finite dimensional distributions.

The following variational corollary follows from Theorem 7.3.1.

Corollary 7.3.2 For a fixed k let Let Mk denote the set of all k-step Markov
distributions. Then infM∈Mk D(PXn‖M) is attained by P (k), and

inf
M∈Mk

D(PXn‖M) = D(PXn‖P (k)
Xn) =

n−1∑
l=k

Ip(Xl;X
l−k|Xk

l−k).

Since the divergence can be thought of as a distance between probability
distributions, the corollary justifies considering the k-step Markov process with
the same kth order distributions as the k-step Markov approximation or model
for the original process: It is the minimum divergence distribution meeting the
k-step Markov requirement.

7.4 Stationary Processes

Several of the previous results simplify when the processes m and p are both sta-
tionary. We can consider the processes to be two-sided since given a stationary
one-sided process, there is always a stationary two-sided process with the same
probabilities on all positive time events. When both processes are stationary,
the densities fXnm and fXn satisfy

fXnm =
dPXnm
dMXnm

= fXnT
m =

dPXn

dMXn
Tm,

and have the same expectation for any integer m. Similarly the conditional
densities fXn|Xn , fXk|Xnk−n , and fX0|X−1,X−2,··· ,X−n satisfy

fXn|Xn = fXk|Xnk−nT
n−k = fX0|X−1,X−2,··· ,X−nT

n (7.19)

for any k and have the same expectation. Thus

1

n
Hp‖m(Xn) =

1

n

n−1∑
i=0

Hp‖m(X0|X−1, · · · , X−i). (7.20)
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Using the construction of Theorem 5.3.1 we have also that

Di = Hp‖m(Xi|Xi) = Hp‖m(X0|X−1, · · · , X−i)
= D(PX0,X−1,··· ,X−i‖SX0,X−1,··· ,X−i),

where now
SX0,X−1,··· ,X−i = MX0|X−1,··· ,X−iPX−1,··· ,X−i ; (7.21)

that is,

SX0,X−1,··· ,X−i(F ×G) =∫
F

MX0|X−1,··· ,X−i(F |x
i) dPX−1,··· ,X−i(x

i);F ∈ BA;G ∈ BAi .

As before the SXn distributions are not in general consistent. For example,
they can yield differing marginal distributions SX0

. As we saw in the finite
case, general conclusions about the behavior of the limiting conditional relative
entropies cannot be drawn for arbitrary reference measures. If, however, we
assume as in the finite case that the reference measures are Markov, then we
can proceed.

Suppose now that under m the process is a k-step Markov process. Then for
any n ≥ k (X−n, · · · , X−k−2, X−k−1)→ Xk

−k → X0 is a Markov chain under m
and Lemma 5.5.4 implies that

Hp‖m(X0|X−1, · · · , X−n) = Hp‖m(Xk|Xk) + Ip(Xk; (X−1, · · · , X−n)|Xk)
(7.22)

and hence from (7.20)

H̄p‖m(X) = Hp‖m(Xk|Xk) + Ip(Xk;X−|Xk). (7.23)

We also have, however, that X− → Xk → Xk is a Markov chain under m
and hence a second application of Lemma 5.5.4 implies that

Hp‖m(X0|X−) = Hp‖m(Xk|Xk) + Ip(Xk;X−|Xk). (7.24)

Putting these facts together and using (7.2) yields the following lemma.

Lemma 7.4.1 Let {Xn} be a two-sided process with a standard alphabet and
let p and m be stationary process distributions such that MXn � PXn all n and
m is kth order Markov. Then the relative entropy rate exists and

H̄p‖m(X) = lim
n→∞

1

n
Hp‖m(Xn)

= lim
n→∞

Hp‖m(X0|X−1, · · · , X−n)

= Hp‖m(X0|X−)

= Hp‖m(Xk|Xk) + Ip(Xk;X−|Xk)

= Ep[ln fXk|Xk(Xk|Xk)] + Ip(Xk;X−|Xk).
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Corollary 7.4.1 Given the assumptions of Lemma 7.4.1,

Hp‖m(XN |X−) = NHp‖m(X0|X−).

Proof: From the chain rule for conditional relative entropy (equation (7.7),

Hp‖m(XN |X−) =

n−1∑
l=0

Hp‖m(Xl|X l, X−).

Stationarity implies that each term in the sum equals Hp‖m(X0|X−), proving
the corollary. 2

The next corollary extends Corollary 7.3.1 to processes.

Corollary 7.4.2 Given k and n ≥ k, let Mk denote the class of all k-step
stationary Markov process distributions. Then

inf
m∈Mk

H̄p‖m(X) = H̄p‖p(k)(X) = Ip(Xk;X−|Xk).

Proof: Follows from (7.22) and Theorem 7.3.1. 2

This result gives an interpretation of the finite-gap information property
(6.14): If a process has this property, then there exists a k-step Markov process
which is only a finite “distance” from the given process in terms of limiting
per-symbol divergence. If any such process has a finite distance, then the k-
step Markov approximation also has a finite distance. Furthermore, we can
apply Corollary 6.4.1 to obtain the generalization of the finite alphabet result
of Theorem 2.6.1

.

Corollary 7.4.3 Given a stationary process distribution p which satisfies the
finite-gap information property,

inf
k

inf
m∈Mk

H̄p‖m(X) = inf
k
H̄p‖p(k)(X) = lim

k→∞
H̄p‖p(k)(X) = 0.

Lemma 7.4.1 also yields the following approximation lemma.

Corollary 7.4.4 Given a process {Xn} with standard alphabet A let p and m
be stationary measures such that PXn � MXn for all n and m is kth order
Markov. Let qk be an asymptotically accurate sequence of quantizers for A.
Then

H̄p‖m(X) = lim
k→∞

H̄p‖m(qk(X)),

that is, the divergence rate can be approximated arbitrarily closely by that of a
quantized version of the process. Thus, in particular,

H̄p‖m(X) = H∗p‖m(X).
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Proof: This follows from Corollary 5.2.3 by letting the generating σ-fields be
Fn = σ(qn(Xi); i = 0,−1, . . .) and the representation of conditional relative
entropy as an ordinary divergence. 2

Another interesting property of relative entropy rates for stationary pro-
cesses is that we can “reverse time” when computing the rate in the sense of
the following lemma.

Lemma 7.4.2 Let {Xn}, p, and m be as in Lemma 7.4.1. If either H̄p‖m(X) <
∞ or HP‖M (X0|X−) <∞, then

Hp‖m(X0|X−1, · · · , X−n) = Hp‖m(X0|X1, · · · , Xn)

and hence

Hp‖m(X0|X1, X2, · · · ) = Hp‖m(X0‖X−1, X−2, · · · ) = H̄p‖m(X) <∞.

Proof: If H̄p‖m(X) is finite, then so must be the termsHp‖m(Xn) =D(PXn‖MXn)
(since otherwise all such terms with larger n would also be infinite and hence
H̄ could not be finite). Thus from stationarity

Hp‖m(X0|X−1, · · · , X−n) = Hp‖m(Xn|Xn)

= D(PXn+1‖MXn+1)−D(PXn‖MXn)

D(PXn+1‖MXn+1)−D(PXn1 ‖MXn1
) = Hp‖m(X0|X1, · · · , Xn)

from which the results follow. If on the other hand the conditional relative
entropy is finite, the results then follow as in the proof of Lemma 7.4.1 using the
fact that the joint relative entropies are arithmetic averages of the conditional
relative entropies and that the conditional relative entropy is defined as the
divergence between the P and S measures (Theorem 5.3.2). 2

7.5 Mean Ergodic Theorems

In this section we state and prove some preliminary ergodic theorems for relative
entropy densities analogous to those first developed for entropy densities in
Chapter 3 and for information densities in Section 6.3. In particular, we show
that an almost everywhere ergodic theorem for finite alphabet processes follows
easily from the sample entropy ergodic theorem and that an approximation
argument then yields an L1 ergodic theorem for stationary sources. The results
involve little new and closely parallel those for mutual information densities
and therefore the details are skimpy. The results are given for completeness and
because the L1 results yield the byproduct that relative entropies are uniformly
integrable, a fact which does not follow as easily for relative entropies as it did
for entropies.
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Finite Alphabets

Suppose that we now have two process distributions p and m for a random
process {Xn} with finite alphabet. Let PXn and MXn denote the induced
nth order distributions and pXn and mXn the corresponding probability mass
functions (pmf’s). For example, pXn(an) = PXn({xn : xn = an}) = p({x :
Xn(x) = an}). We assume that PXn �MXn . In this case the relative entropy
density is given simply by

hn(x) = hXn(Xn)(x) = ln
pXn(xn)

mXn(xn)
,

where xn = Xn(x).
The following lemma generalizes Theorem 3.1.1 from entropy densities to

relative entropy densities for finite alphabet processes. Relative entropies are of
more general interest than ordinary entropies because they generalize to contin-
uous alphabets in a useful way while ordinary entropies do not.

Lemma 7.5.1 Suppose that {Xn} is a finite alphabet process and that p and m
are two process distributions with MXn � PXn for all n, where p is AMS with
stationary mean p̄, m is a kth order Markov source with stationary transitions,
and {p̄x} is the ergodic decomposition of the stationary mean of p. Assume also
that MXn � P̄Xn for all n. Then

lim
n→∞

1

n
hn = h; p− a.e. and in L1(p),

where h(x) is the invariant function defined by

h(x) = −H̄p̄x(X)− Ep̄x lnm(Xk|Xk)

= lim
n→∞

1

n
Hp̄x‖m(Xn)

= H̄p̄x‖m(X),

where

m(Xk|Xk)(x) ≡ mXk+1(xk+1)

mXk(xk)
= MXk|Xk(xk|xk).

Furthermore,

Eph = H̄p‖m(X) = lim
n→∞

1

n
Hp‖m(Xn), (7.25)

that is, the relative entropy rate of an AMS process with respect to a Markov
process with stationary transitions is given by the limit. Lastly,

H̄p‖m(X) = H̄p̄‖m(X); (7.26)

that is, the relative entropy rate of the AMS process with respect to m is the
same as that of its stationary mean with respect to m.
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Proof: We have that

1

n
h(Xn) =

1

n
ln p(Xn)− 1

n
lnm(Xk) +

1

n

n−1∑
i=k

lnm(Xi|Xk
i−k)

=
1

n
ln p(Xn)− 1

n
lnm(Xk)− 1

n

n−1∑
i=k

lnm(Xk|Xk)T i−k,

where T is the shift transformation, p(Xn) is an abbreviation for PXn(Xn), and
m(Xk|Xk) = MXk|Xk(Xk|Xk). From Theorem 3.1.1 the first term converges to
−H̄p̄x(X)p-a.e. and in L1(p).

Since MXk � PXk , if MXk(F ) = 0, then also PXk(F ) = 0. Thus PXk and
hence also p assign zero probability to the event that MXk(Xk) = 0. Thus with
probability one under p, lnm(Xk) is finite and hence the second term in (7.5.4)
converges to 0 p-a.e. as n→∞.

Define α as the minimum nonzero value of the conditional probabilitym(xk|xk).
Then with probability 1 under MXn and hence also under PXn we have that

1

n

n−1∑
i=k

ln
1

m(Xi|Xk
i−k)

≤ ln
1

α

since otherwise the sequence Xn would have 0 probability under MXn and hence
also under PXn and 0 ln 0 is considered to be 0. Thus the rightmost term of
(7.27) is uniformly integrable with respect to p and hence from Theorem 1.8.3
this term converges to Ep̄x(lnm(Xk|Xk)). This proves the leftmost equality of
(7.25).

Let p̄Xn|x denote the distribution of Xn under the ergodic component p̄x.
Since MXn � P̄Xn and P̄Xn =

∫
dp̄(x)p̄Xn|x, if MXn(F ) = 0, then p̄Xn|x(F ) =

0 p-a.e. Since the alphabet of Xn if finite, we therefore also have with probability
one under p̄ that MXn � p̄Xn|x and hence

Hp̄x‖m(Xn) =
∑
an

p̄Xn|x(an) ln
p̄Xn|x(an)

MXn(an)

is well defined for p̄-almost all x. This expectation can also be written as

Hp̄x‖m(Xn) = −Hp̄x(Xn)− Ep̄x [lnm(Xk) +

n−1∑
i=k

lnm(Xk|Xk)T i−k]

= −Hp̄x(Xn)− Ep̄x [lnm(Xk)]− (n− k)Ep̄x [lnm(Xk|Xk)],

where we have used the stationarity of the ergodic components. Dividing by
n and taking the limit as n → ∞, the middle term goes to zero as previously
and the remaining limits prove the middle equality and hence the rightmost
inequality in (7.25).

Equation (7.25) follows from (7.25) and L1(p) convergence, that is, since
n−1hn → h, we must also have that Ep(n

−1hn(Xn)) = n−1Hp‖m(Xn) converges
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to Eph. Since the former limit is H̄p‖m(X), (7.25) follows. Since p̄x is invariant
(Theorem 1.8.2) and since expectations of invariant functions are the same under
an AMS measure and its stationary mean (Lemma 6.3.1 of [50]), application of
the previous results of the lemma to both p and p̄ proves that

H̄p‖m(X) =

∫
dp(x)H̄p̄x‖m(X) =

∫
dp̄(x)H̄p̄x‖m(X) = H̄p̄‖m(X),

which proves (7.27) and completes the proof of the lemma. 2

Corollary 7.5.1 Given p and m as in the Lemma, then the relative entropy
rate of p with respect to m has an ergodic decomposition, that is,

H̄p‖m(X) =

∫
dp(x)H̄p̄x‖m(X).

Proof: This follows immediately from (7.25) and (7.25). 2

Standard Alphabets

We now drop the finite alphabet assumption and suppose that {Xn} is a stan-
dard alphabet process with process distributions p and m, where p is stationary,
m is kth order Markov with stationary transitions, and MXn � PXn are the in-
duced vector distributions for n = 1, 2, . . . . Define the densities fn and entropy
densities hn as previously.

As an easy consequence of the development to this point, the ergodic de-
composition for divergence rate of finite alphabet processes combined with the
definition of H∗ as a supremum over rates of quantized processes yields an ex-
tension of Corollary 6.2.1 to divergences. This yields other useful properties as
summarized in the following corollary.

Corollary 7.5.2 Given a standard alphabet process {Xn} suppose that p and m
are two process distributions such that p is AMS and m is kth order Markov with
stationary transitions and MXn � PXn are the induced vector distributions. Let
p̄ denote the stationary mean of p and let {p̄x} denote the ergodic decomposition
of the stationary mean p̄. Then

H∗p‖m(X) =

∫
dp(x)H∗p̄x‖m(X). (7.27)

In addition,

H∗p‖m(X) = H∗p̄‖m(X) = H̄p̄‖m(X) = H̄p‖m(X); (7.28)

that is, the two definitions of relative entropy rate yield the same values for
AMS p and stationary transition Markov m and both rates are the same as the
corresponding rates for the stationary mean. Thus relative entropy rate has an
ergodic decomposition in the sense that

H̄p‖m(X) =

∫
dp(x)H̄p̄x‖m(X). (7.29)
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Comment: Note that the extra technical conditions of Theorem 6.4.2 for equality
of the analogous mutual information rates Ī and I∗ are not needed here. Note
also that only the ergodic decomposition of the stationary mean p̄ of the AMS
measure p is considered and not that of the Markov source m.

Proof: The first statement follows as previously described from the finite al-
phabet result and the definition of H∗. The left-most and right-most equalities
of (7.28) both follow from the previous lemma. The middle equality of (7.28)
follows from Corollary 7.4.2. Eq. (7.29) then follows from (7.27) and (7.28). 2

Theorem 7.5.1 Given a standard alphabet process {Xn} suppose that p and m
are two process distributions such that p is AMS and m is kth order Markov with
stationary transitions and MXn � PXn are the induced vector distributions. Let
{p̄x} denote the ergodic decomposition of the stationary mean p̄. If

lim
n→∞

1

n
Hp‖m(Xn) = H̄p‖m(X) <∞,

then there is an invariant function h such that n−1hn → h in L1(p) as n→∞.
In fact,

h(x) = H̄p̄x‖m(X),

the relative entropy rate of the ergodic component p̄x with respect to m. Thus,
in particular, under the stated conditions the relative entropy densities hn are
uniformly integrable with respect to p.

Proof: The proof exactly parallels that of Theorem 6.3.1, the mean ergodic
theorem for information densities, with the relative entropy densities replacing
the mutual information densities. The density is approximated by that of a
quantized version and the integral bounded above using the triangle inequality.
One term goes to zero from the finite alphabet case. Since H̄ = H∗ (Corol-
lary 7.5.2 the remaining terms go to zero because the relative entropy rate can
be approximated arbitrarily closely by that of a quantized process. 2

It should be emphasized that although Theorem 7.5.1 and Theorem 6.3.1
are similar in appearance, neither result directly implies the other. It is true
that mutual information can be considered as a special case of relative entropy,
but given a pair process {Xn, Yn} we cannot in general find a kth order Markov
distribution m for which the mutual information rate Ī(X;Y ) equals a relative
entropy rate H̄p‖m. We will later consider conditions under which convergence
of relative entropy densities does imply convergence of information densities.



Chapter 8

Ergodic Theorems for
Densities

8.1 Introduction

This chapter is devoted to developing ergodic theorems first for relative entropy
densities and then information densities for the general case of AMS processes
with standard alphabets. The general results were first developed by Barron [9]
using the martingale convergence theorem and a new martingale inequality. The
similar results of Algoet and Cover [7] can be proved without direct recourse to
martingale theory. They infer the result for the stationary Markov approxima-
tion and for the infinite order approximation from the ordinary ergodic theorem.
They then demonstrate that the growth rate of the true density is asymptoti-
cally sandwiched between that for the kth order Markov approximation and the
infinite order approximation and that no gap is left between these asymptotic
upper and lower bounds in the limit as k → ∞. They use martingale theory
to show that the values between which the limiting density is sandwiched are
arbitrarily close to each other, but we shall see that this is not necessary and
this property follows from the results of Chapter 6.

8.2 Stationary Ergodic Sources

Theorem 8.2.1 Given a standard alphabet process {Xn}, suppose that p and
m are two process distributions such that p is stationary ergodic and m is a
K-step Markov source with stationary transition probabilities. Let MXn � PXn

be the vector distributions induced by p and m. As before let

hn = ln fXn(Xn) = ln
dPXn

dMXn
(Xn).

153
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Then with probability one under p

lim
n→∞

1

n
hn = H̄p‖m(X).

Proof: Let p(k) denote the k-step Markov approximation of p as defined in
Theorem 7.3.1, that is, p(k) has the same kth order conditional probabilities
and k-dimensional initial distribution. From Corollary 7.3.1, if k ≥ K, then
(7.8)–(7.10) hold. Consider the expectation

Ep

(
f

(k)
Xn(Xn)

fXn(Xn)

)
= EPXn

(
f

(k)
Xn

fXn

)
=

∫ (
f

(k)
Xn

fXn

)
dPXn .

Define the set An = {xn : fXn > 0}; then PXn(An) = 1. Use the fact that
fXn = dPXn/dMXn to write

EP

(
f

(k)
Xn(Xn)

fXn(Xn)

)
=

∫
An

(
f

(k)
Xn

fXn

)
fXn dMXn

=

∫
An

f
(k)
Xn dMXn .

From Theorem 7.3.1,

f
(k)
Xn =

dP
(k)
Xn

dMXn

and therefore

Ep

(
f

(k)
Xn(Xn)

fXn(Xn)

)
=

∫
An

dP
(k)
Xn

dMXn
dMXn = P

(k)
Xn(An) ≤ 1.

Thus we can apply Lemma 5.4.2 to the sequence f
(k)
Xn(Xn)/fXn(Xn) to con-

clude that with p-probability 1

lim
n→∞

1

n
ln
f

(k)
Xn(Xn)

fXn(Xn)
≤ 0

and hence

lim
n→∞

1

n
ln f

(k)
Xn(Xn) ≤ lim inf

n→∞

1

n
fXn(Xn). (8.1)

The left-hand limit is well defined by the usual ergodic theorem:

lim
n→∞

1

n
ln f

(k)
Xn(Xn) = lim

n→∞

1

n

n−1∑
l=k

ln fXl|Xkl−k(Xl|Xk
l−k) + lim

n→∞

1

n
ln fXk(Xk).

Since 0 < fXk <∞ with probability 1 under MXk and hence also under PXk ,
then 0 < fXk(Xk) < ∞ under p and therefore n−1 ln fXk(Xk) → 0 as n → ∞
with probability one. Furthermore, from the ergodic theorem for stationary and
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ergodic processes (e.g., Theorem 7.2.1 of [50]), since p is stationary ergodic we
have with probability one under p using (7.19) and Lemma 7.4.1 that

lim
n→∞

1

n

n−1∑
l=k

ln fXl|Xkl−k(Xl|Xk
l−k)

= lim
n→∞

1

n

n−1∑
l=k

ln fX0|X−1,··· ,X−k(X0 | X−1, · · · , X−k)T l

= Ep ln fX0|X−1,··· ,X−k(X0|X−1, · · · , X−k)

= Hp‖m(X0|X−1, · · · , X−k) = H̄p(k)‖m(X).

Thus with (8.1) we now have that

lim inf
n→∞

1

n
ln fXn(Xn) ≥ Hp‖m(X0|X−1, · · · , X−k) (8.2)

for any positive integer k. Since m is Kth order Markov, Lemma 7.4.1 and the
above imply that

lim inf
n→∞

1

n
ln fXn(Xn) ≥ Hp‖m(X0|X−) = H̄p‖m(X), (8.3)

which completes half of the sandwich proof of the theorem.
If H̄p‖m(X) =∞, the proof is completed with (8.3). Hence we can suppose

that H̄p‖m(X) < ∞. From Lemma 7.4.1 using the distribution SX0,X−1,X−2,···
constructed there, we have that

D(PX0,X−1,···‖SX0,X−1,···) = Hp‖m(X0|X−) =

∫
dPX0,X− ln fX0|X−

where

fX0|X− =
dPX0,X−1,···

dSX0,X−1,···
.

It should be pointed out that we have not (and will not) prove that fX0|X−1,··· ,X−n
→ fX0|X− ; the convergence of conditional probability densities which follows
from the martingale convergence theorem and the result about which most gen-
eralized Shannon-McMillan-Breiman theorems are built. (See, e.g., Barron [9].)
We have proved, however, that the expectations converge (Lemma 7.4.1), which
is what is needed to make the sandwich argument work.

For the second half of the sandwich proof we construct a measure Q which
will be dominated by p on semi-infinite sequences using the above conditional
densities given the infinite past. Define the semi-infinite sequence

X−n = {· · · , Xn−1}

for all nonnegative integers n. Let Bnk = σ(Xn
k ) and B−k = σ(X−k ) = σ(· · · , Xk−1)

be the σ-fields generated by the finite dimensional random vector Xn
k and the

semi-infinite sequence X−k , respectively. Let Q be the process distribution
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having the same restriction to σ(X−k ) as does p and the same restriction to
σ(X0, X1, · · · ) as does p, but which makes X− and Xn

k conditionally indepen-
dent given Xk for any n; that is,

QX−k
= PX−k

,

QXk,Xk+1,··· = PXk,Xk+1,···,

and X− → Xk → Xn
k is a Markov chain for all positive integers n so that

Q(Xn
k ∈ F |X−k ) = Q(Xn

k ∈ F |Xk).

The measure Q is a (nonstationary) k-step Markov approximation to P in
the sense of Section 5.3 and

Q = PX−×(Xk,Xk+1,··· )|Xk

(in contrast to P = PX−XkX∞k ). Observe that X− → Xk → Xn
k is a Markov

chain under both Q and m.
By assumption,

Hp‖m(X0|X−) <∞

and hence from Lemma 7.4.1

Hp‖m(Xn
k |X−k ) = nHp‖m(Xn

k |X−k ) <∞

and hence from Theorem 5.3.2 the density fXnk |X
−
k

is well-defined as

fXnk |X
−
k

=
dSX−n+k

PX−n+k

(8.4)

where
SX−n+k

= MXnk |XkPX−k
, (8.5)

and ∫
dPX−n+k

ln fXnk |X
−
k

= D(PX−n+k
‖SX−n+k

)

= nHp‖m(Xn
k |X−k ) <∞.

Thus, in particular,
SX−n+k

� PX−n+k
.

Consider now the sequence of ratios of conditional densities

ζn =
fXnk |Xk(Xn+k)

fXnk |X
−
k

(X−n+k)

We have that ∫
dpζn =

∫
Gn

ζn
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where

Gn = {x : fXnk |X
−
k

(x−n+k) > 0}

since Gn has probability 1 under p (or else (8.6) would be violated). Thus∫
dpζn =

∫
dPX−n+k

(
fXnk |Xk(Xn+k)

fXnk |X
−
k

1{f
Xn
k
|X−
k
>0}

)

=

∫
dSX−n+k

fXnk |X
−
k

(
fXnk |Xk(Xn+k)

fXnk |X
−
k

1{f
Xn
k
|X−
k
>0}

)

=

∫
dSX−n+k

fXnk |Xk(Xn+k)1{f
Xn
k
|X−
k
>0}

≤
∫
dSX−n+k

fXnk |Xk(Xn+k).

Using the definition of the measure S and iterated expectation we have that∫
dpζn ≤

∫
dMXnk |X

−
k
dPX−k

fXnk |Xk(Xn+k)

=

∫
dMXnk |XkdPX−k

fXnk |Xk(Xn+k).

Since the integrand is now measurable with respect to σ(Xn+k), this reduces
to ∫

dpζn ≤
∫
dMXnk |XkdPXkfXnk |Xk .

Applying Lemma 5.3.2 we have∫
dpζn ≤

∫
dMXnk |XkdPXk

dPXnk |Xk

dMXnk |Xk

=

∫
dPXkdPXnk |Xk = 1.

Thus ∫
dpζn ≤ 1

and we can apply Lemma 5.4.1 to conclude that p-a.e.

lim sup
n→∞

ζn = lim sup
n→∞

1

n
ln
fXnk |Xk

fXnk |X
−
k

≤ 0. (8.6)

Using the chain rule for densities,

fXnk |Xk

fXnk |X
−
k

=
fXn

fXk
× 1∏n−1

l=k fXl|X−l

.
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Thus from (8.6)

lim sup
n→∞

(
1

n
ln fXn −

1

n
ln fXk −

1

n

n−1∑
l=k

ln fXl|X−l

)
≤ 0.

Invoking the ergodic theorem for the rightmost terms and the fact that
the middle term converges to 0 almost everywhere since ln fXk is finite almost
everywhere implies that

lim sup
n→∞

1

n
ln fXn ≤ Ep(ln fXk|X−k ) = Ep(ln fX0|X−) = H̄p‖m(X). (8.7)

Combining this with (8.3) completes the sandwich and proves the theorem.
2

8.3 Stationary Nonergodic Sources

Next suppose that the source p is stationary with ergodic decomposition {pλ; λ ∈
Λ} and ergodic component function ψ as in Theorem 1.8.3. We first require some
technical details to ensure that the various Radon-Nikodym derivatives are well
defined and that the needed chain rules for densities hold.

Lemma 8.3.1 Given a stationary source {Xn}, let {pλ; λ ∈ Λ} denote the
ergodic decomposition and ψ the ergodic component function of Theorem 1.8.3.
Let Pψ denote the induced distribution of ψ. Let PXn and PλXn denote the
induced marginal distributions of p and pλ. Assume that {Xn} has the finite-
gap information property of (6.14); that is, there exists a K such that

Ip(XK ;X−|XK) <∞, (8.8)

where X− = (X−1, X−2, · · · ). We also assume that for some n

I(Xn;ψ) <∞. (8.9)

This will be the case, for example, if (8.8) holds for K = 0. Let m be a K-
step Markov process such that MXn � PXn for all n. (Observe that such
a process exists since from (8.8) the Kth order Markov approximation p(K)

suffices.) Define MXn,ψ = MXn × Pψ. Then

MXn,ψ � PXn × Pψ � PXn,ψ, (8.10)

and with probability 1 under p

MXn � PXn � PψXn .

Lastly,

dPψXn

dMXn
= fXn|ψ =

dPXn,ψ
d(MXn × Pψ)

. (8.11)

and therefore

dPψXn

dPXn
=
dPψXn/dMXn

dPXn/dMXn
=
fXn|ψ

fXn
. (8.12)
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Proof: From Theorem 6.4.4 the given assumptions ensure that

lim
n→∞

1

n
Epi(X

n;ψ) = lim
n→∞

1

n
I(Xn;ψ) = 0 (8.13)

and hence PXn × Pψ � PXn,ψ (since otherwise I(Xn;ψ) would be infinite for
some n and hence infinite for all larger n since it is increasing with n). This
proves the right-most absolute continuity relation of (8.10). This in turn implies
that MXn × Pψ � PXn,ψ. The lemma then follows from Theorem 5.3.1 with
X = Xn, Y = ψ and the chain rule for Radon-Nikodym derivatives. 2

We know that the source will produce with probability one an ergodic com-
ponent pλ and hence Theorem 8.2.1 will hold for this ergodic component. In
other words, we have for all λ that

lim
n→∞

1

n
ln fXn|ψ(Xn|λ) = H̄pλ(X); pλ − a.e.

This implies that

lim
n→∞

1

n
ln fXn|ψ(Xn|ψ) = H̄pψ (X); p− a.e. (8.14)

Making this step precise generalizes Lemma 3.3.1.

Lemma 8.3.2 Suppose that {Xn} is a stationary not necessarily ergodic source
with ergodic component function ψ. Then (8.14) holds.

Proof: The proof parallels that for Lemma 3.3.1. Observe that if we have two
random variables U, V (U = X0, X1, · · · and Y = ψ above) and a sequence of
functions gn(U, V ) (n−1fXn|ψ(Xn|ψ)) and a function g(V ) (H̄pψ (X)) with the
property

lim
n→∞

gn(U, v) = g(v), PU |V=v − a.e.,

then also
lim
n→∞

gn(U, V ) = g(V ); PUV − a.e.

since defining the (measurable) set G = {u, v : limn→∞ gn(u, v) = g(v)} and its
section Gv = {u : (u, v) ∈ G}, then from (1.26)

PUV (G) =

∫
PU |V (Gv|v)dPV (v) = 1

if PU |V (Gv|v) = 1 with probability 1. 2

It is not, however, the relative entropy density using the distribution of the
ergodic component that we wish to show converges. It is the original sample
density fXn . The following lemma shows that the two sample entropies converge
to the same thing. The lemma generalizes Lemma 3.3.1 and is proved by a
sandwich argument analogous to Theorem 8.2.1. The result can be viewed as
an almost everywhere version of (8.13).
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Theorem 8.3.1 Given a stationary source {Xn}, let {pλ; λ ∈ Λ} denote the
ergodic decomposition and ψ the ergodic component function of Theorem 1.8.3.
Assume that the finite-gap information property (8.8) is satisfied and that (8.9)
holds for some n. Then

lim
n→∞

1

n
i(Xn;ψ) = lim

n→∞

1

n
ln
fXn|ψ

fXn
= 0; p− a.e.

Proof: From Theorem 5.4.1 we have immediately that

lim inf
n→∞

in(Xn;ψ) ≥ 0, (8.15)

which provides half of the sandwich proof.
To develop the other half of the sandwich, for each k ≥ K let p(k) denote the

k-step Markov approximation of p. Exactly as in the proof of Theorem 8.2.1,
it follows that (8.1) holds. Now, however, the Markov approximation relative
entropy density converges instead as

lim
n→∞

1

n
ln f

(k)
Xn(Xn) = lim

n→∞

1

n

∞∑
l=k

fXk|Xk(Xk|Xk)T k = EpψfXk|Xk(Xk|Xk).

Combining this with (8.14 we have that

lim sup
n→∞

1

n
ln
fXn|ψ(Xn|ψ)

fXn(Xn)
≤ H̄pψ‖m(X)− EpψfXk|Xk(Xk|Xk).

From Lemma 7.4.1, the right hand side is just Ipψ (Xk;X−|Xk) which from
Corollary 7.4.2 is just H̄p‖p(k)(X). Since the bound holds for all k, we have that

lim sup
n→∞

1

n
ln
fXn|ψ(Xn|ψ)

fXn(Xn)
≤ inf

k
H̄pψ‖p(k)(X) ≡ ζ.

Using the ergodic decompostion of relative entropy rate (Corollary 7.5.1) that
and the fact that Markov approximations are asymptotically accurate (Corol-
lary 7.4.3) we have further that∫

dPψζ =

∫
dPψ inf

k
H̄pψ‖p(k)(X)

≤ inf
k

∫
dPψH̄pψ‖p(k)(X)

= inf
k
H̄p‖p(k)(X) = 0

and hence ζ = 0 with Pψ probability 1. Thus

lim sup
n→∞

1

n
ln
fXn|ψ(Xn|ψ)

fXn(Xn)
≤ 0, (8.16)

which with (8.15) completes the sandwich proof. 2
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Simply restating the theorem yields and using (8.14) the ergodic theorem
for relative entropy densities in the general stationary case.

Corollary 8.3.1: Given the assumptions of Theorem 8.3.1,

lim
n→∞

1

n
ln fXn(Xn) = H̄pψ‖m(X), p− a.e.

The corollary states that the sample relative entropy density of a process
satisfying (8.8) converges to the conditional relative entropy rate with respect
to the underlying ergodic component. This is a slight extension and elaboration
of Barron’s result [9] which made the stronger assumption that Hp‖m(X0|X−) =
H̄p‖m(X) < ∞. From Corollary 7.4.3 this condition is sufficient but not nec-
essary for the finite-gap information property of (8.8). In particular, the finite
gap information property implies that

H̄p‖p(k)(X) = Ip(Xk;X−|Xk) <∞,

but it need not be true that H̄p‖m(X) < ∞. In addition, Barron [9] and
Algoet and Cover [7] do not characterize the limiting density as the entropy
rate of the ergodic component, instead they effectively show that the limit is
Epψ (ln fX0|X−(X0|X−)). This, however, is equivalent since it follows from the
ergodic decomposition (see specifically Lemma 8.6.2 or [50]) that fX0|X− =
fX0|X−,ψ with probability one since the ergodic component ψ can be determined
from the infinite past X−.

8.4 AMS Sources

The following lemma is a generalization of Lemma 3.4.1. The result is due to
Barron [9], who proved it using martingale inequalities and convergence results.

Lemma 8.4.1 Let {Xn} be an AMS source with the property that for every
integer k there exists an integer l = l(k) such that

Ip(X
k; (Xk+l, Xk+l+1, · · · )|X l

k). <∞. (8.17)

Then

lim
n→∞

1

n
i(Xk; (Xk + l, · · · , Xn−1)|X l

k) = 0; p− a.e.

Proof: By assumption

Ip(X
k; (Xk+l, Xk+l+1, · · · )|X l

k) = Ep ln
fXk|Xk,Xk+1,···(X

k|Xk, Xk+1, · · · )
fXk|Xlk(Xk|X l

k)
<∞.

This implies that
PXk×(Xk+l,··· )|Xlk

� PX0,X1,....

with
dPX0,X1,....

dPXk×(Xk+l,··· )|Xlk
=
fXk|Xk,Xk+1,···(X

k|Xk, Xk + 1, · · · )
fXk|Xlk(Xk|X l

k).
.
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Restricting the measures to Xn for n > k + l yields

dPXn

dPXk×(Xk+l,··· ,Xn)|Xlk
=

fXk|Xk,Xk+1,··· ,Xn(Xk|Xk, Xk + 1, · · · )
fXk|Xlk(Xk|X l

k)

= i(Xk; (Xk + l, · · · , Xn)|X l
k).

With this setup the lemma follows immediately from Theorem 5.4.1. 2

The following lemma generalizes Lemma 3.4.2 and will yield the general the-
orem. The lemma was first proved by Barron [9] using martingale inequalities.

Theorem 8.4.1 Suppose that p and m are distributions of a standard alphabet
process {Xn} such that p is AMS and m is k-step Markov. Let p̄ be a stationary
measure that asymptotically dominates p (e.g., the stationary mean). Suppose
that PXn , P̄Xn , and MXn are the distributions induced by p, p̄, and m and that
MXn dominates both PXn and P̄Xn for all n and that fXn and f̄Xn are the
corresponding densities. If there is an invariant function h such that

lim
n→∞

1

n
ln f̄Xn(Xn) = h; p̄− a.e.

then also

lim
n→∞

1

n
ln fXn(Xn) = h; p− a.e.

Proof: For any k and n ≥ k we can write using the chain rule for densities

1

n
ln fXn −

1

n
ln fXn−kk

=
1

n
ln fXk|Xn−kk

.

Since for k ≤ l < n

1

n
ln fXk|Xn−kk

=
1

n
ln fXk|Xlk +

1

n
i(Xk; (Xk+l, · · · , Xn−1)|X l

k),

Lemma 8.4.1 and the fact that densities are finite with probability one implies
that

lim
n→∞

1

n
ln fXk|Xn−kk

= 0; p− a.e.

This implies that there is a subsequence k(n)→∞ such that

1

n
ln fXn(Xn)− 1

n
ln f

X
n−k(n)

k(n)
)
(X

n−k(n)
k(n) ); → 0, p− a.e.

To prove this, for each k chose N(k) large enough so that

p(| 1

N
(k) ln f

Xk|XN(k)−k
k

(Xk|XN(k)−k
k )| > 2−k) ≤ 2−k

and then let k(n) = k for N(k) ≤ n < N(k + 1). Then from the Borel-Cantelli
lemma we have for any ε that

p(| 1

N(k)
ln f

Xk|XN(k)−k
k

(Xk|XN(k)−k
k )| > ε i.o.) = 0
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and hence

lim
n→∞

1

n
ln fXn(Xn) = lim

n→∞

1

n
ln f

X
n−k(n)

k(n)

(X
n−k(n)
k(n) ); p− a.e.

In a similar manner we can also choose the sequence so that

lim
n→∞

1

n
ln f̄Xn(Xn) = lim

n→∞

1

n
ln f̄

X
n−k(n)

k(n)

(X
n−k(n)
k(n) ); p̄− a.e.

From Markov’s inequality

p̄(
1

n
ln fXn−kk

(Xn−k
k ) ≥ 1

n
ln f̄Xn−kk

(Xn−k
k ) + ε)

= p̄(
fXn−kk

(Xn−k
k )

f̄Xn−kk
(Xn−k

k )
≥ enε)

≤ e−nε
∫
dp̄
fXn−kk

(Xn−k
k )

f̄Xn−kk
(Xn−k

k )

= e−nε
∫
dmfXn−kk

(Xn−k
k ) = e−nε.

Hence again invoking the Borel-Cantelli lemma we have that

p̄(
1

n
ln fXn−kk

(Xn−k
k ) ≥ 1

n
ln f̄Xn−kk

(Xn−k
k ) + ε i.o.) = 0

and therefore

lim sup
n→∞

1

n
ln fXn−kk

(Xn−k
k ) ≤ h, p̄− a.e. (8.18)

The above event is in the tail σ-field
⋂
n σ(Xn, Xn+1, · · · ) since h is invariant

and p̄ dominates p on the tail σ-field. Thus

lim sup
n→∞

1

n
ln f

X
n−k(n)

k(n)

(X
n−k(n)
k(n) ) ≤ h; p− a.e.

and hence

lim sup
n→∞

1

n
ln fXn(Xn) ≤ h; p− a.e.

which half proves the lemma.
Since p̄ asymptotically dominates p, given ε > 0 there is a k such that

p( lim
n→∞

n−1f̄(Xn−k
k ) = h) ≥ 1− ε.

Again applying Markov’s inequality and the Borel-Cantelli lemma as previously
we have that

lim inf
n→∞

1

n
ln
f
X
n−k(n)

k(n)

(X
n−k(n)
k(n) )

f̄
X
n−k(n)

k(n)

(X
n−k(n)
k(n) )

≥ 0; p− a.e.
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which implies that

p(lim inf
n→∞

1

n
f
X
n−k(n)

k(n)

(Xn−k
k ) ≥ h) ≥ ε

and hence also that

p(lim inf
n→∞

1

n
fXn(Xn) ≥ h) ≥ ε.

Since ε can be made arbitrarily small, this proves that p-a.e. lim inf n−1hn ≥ h,
which completes the proof of the lemma. 2

We can now extend the ergodic theorem for relative entropy densities to the
general AMS case.

Corollary 8.4.1: Given the assumptions of Theorem 8.4.1,

lim
n→∞

1

n
ln fXn(Xn) = H̄p̄ψ (X),

where p̄ψ is the ergodic component of the stationary mean p̄ of p.
Proof: The proof follows immediately from Theorem 8.4.1 and Lemma 8.3.1,
the ergodic theorem for the relative entropy density for the stationary mean. 2

8.5 Ergodic Theorems for Information Densi-
ties.

As an application of the general theorem we prove an ergodic theorem for mutual
information densities for stationary and ergodic sources. The result can be
extended to AMS sources in the same manner that the results of Section 8.3
were extended to those of Section 8.4. As the stationary and ergodic result
suffices for the coding theorems and the AMS conditions are messy, only the
stationary case is considered here. The result is due to Barron [9].

Theorem 8.5.1 Let {Xn, Yn} be a stationary ergodic pair random process with
standard alphabet. Let PXnY n , PXn , and PY n denote the induced distributions
and assume that for all n PXn × PY n � PXnY n and hence the information
densities

in(Xn;Y n) =
dPXnY n

d(PXn × PY n)

are well defined. Assume in addition that both the {Xn} and {Yn} processes have
the finite-gap information property of (8.8) and hence by the comment following
Corollary 7.3.1 there is a K such that both processes satisfy the K-gap property

I(XK ;X−|XK) <∞, I(YK ;Y −|Y K) <∞.

Then

lim
n→∞

1

n
in(Xn;Y n) = Ī(X;Y ); p− a.e..
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Proof: Let Zn = (Xn, Yn). Let MXn = P
(K)
Xn and MY n = P

(K)
Y n denote the Kth

order Markov approximations of {Xn} and {Yn}, respectively. The finite-gap
approximation implies as in Section 8.3 that the densities

fXn =
dPXn

dMXn

and

fY n =
dPY n

dMY n

are well defined. From Theorem 8.2.1

lim
n→∞

1

n
ln fXn(Xn) = H

pX‖p(K)
X

(X0|X−) = I(Xk;X−|Xk) <∞,

lim
n→∞

1

n
ln fY n(Y n) = I(Yk;Y −|Y k) <∞.

Define the measures MZn by MXn ×MY n . Then this is a K-step Markov
source and since

MXn ×MY n � PXn × PY n � PXn,Y n = PZn ,

the density

fZn =
dPZn

dMZn

is well defined and from Theorem 8.2.1 has a limit

lim
n→∞

1

n
ln fZn(Zn) = Hp‖m(Z0|Z−).

If the density in(Xn, Y n) is infinite for any n, then it is infinite for all larger
n and convergence is trivially to the infinite information rate. If it is finite, the
chain rule for densities yields

1

n
in(Xn;Y n) =

1

n
ln fZn(Zn)− 1

n
ln fXn(Xn)− 1

n
ln fY n(Y n)

→
n→∞

Hp‖p(k)(Z0|Z−)−Hp‖p(k)(X0|X−)−Hp‖p(k)(Y0|Y −)

= H̄p‖p(k)(X,Y )− H̄p‖p(k)(X)− H̄p‖p(k)(Y ).

The limit is not indeterminate ( of the form∞−∞) because the two subtracted
terms are finite. Since convergence is to a constant, the constant must also be
the limit of the expected values of n−1in(Xn, Y n), that is, Ī(X;Y ). 2



166 CHAPTER 8. ERGODIC THEOREMS FOR DENSITIES



Chapter 9

Channels and Codes

9.1 Introduction

We have considered a random process or source {Xn} as a sequence of random
entities, where the object produced at each time could be quite general, e.g.,
a random variable, vector, or waveform. Hence sequences of pairs of random
objects such as {Xn, Yn} are included in the general framework. We now focus
on the possible interrelations between the two components of such a pair process.
In particular, we consider the situation where we begin with one source, say
{Xn}, called the input and use either a random or a deterministic mapping to
form a new source {Yn}, called the output. We generally refer to the mapping
as a channel if it is random and a code if it is deterministic. Hence a code is
a special case of a channel and results for channels will immediately imply the
corresponding results for codes. The initial point of interest will be conditions
on the structure of the channel under which the resulting pair process {Xn, Yn}
will inherit stationarity and ergodic properties from the original source {Xn}.
We will also be interested in the behavior resulting when the output of one
channel serves as the input to another, that is, when we form a new channel
as a cascade of other channels. Such cascades yield models of a communication
system which typically has a code mapping (called the encoder) followed by a
channel followed by another code mapping (called the decoder).

A fundamental nuisance in the development is the notion of time. So far we
have considered pair processes where at each unit of time, one random object is
produced for each coordinate of the pair. In the channel or code example, this
corresponds to one output for every input. Interesting communication systems
do not always easily fit into this framework, and this can cause serious problems
in notation and in the interpretation and development of results. For example,
suppose that an input source consists of a sequence of real numbers and let
T denote the time shift on the real sequence space. Suppose that the output
source consists of a binary sequence and let S denote its shift. Suppose also
that the channel is such that for each real number in, three binary symbols are

167



168 CHAPTER 9. CHANNELS AND CODES

produced. This fits our usual framework if we consider each output variable to
consist of a binary three-tuple since then there is one output vector for each
input symbol. One must be careful, however, when considering the stationarity
of such a system. Do we consider the output process to be physically stationary
if it is stationary with respect to S or with respect to S3? The former might
make more sense if we are looking at the output alone, the latter if we are looking
at the output in relation to the input. How do we define stationarity for the pair
process? Given two sequence spaces, we might first construct a shift on the pair
sequence space as simply the cartesian product of the shifts, e.g., given an input
sequence x and an output sequence y define a shift T ∗ by T ∗(x, y) = (Tx, Sy).
While this might seem natural given simply the pair random process {Xn, Yn},
it is not natural in the physical context that one symbol of X yields three
symbols of Y . In other words, the two shifts do not correspond to the same
amount of time. Here the more physically meaningful shift on the pair space
would be T ′(x, y) = (Tx, S3y) and the more physically meaningful questions on
stationarity and ergodicity relate to T ′ and not to T ∗. The problem becomes
even more complicated when channels or codes produce a varying number of
output symbols for each input symbol, where the number of symbols depends
on the input sequence. Such variable rate codes arise often in practice, especially
for noiseless coding applications such as Huffman, Lempel-Ziv, and arithmetic
codes. (See [142] for a survey of noiseless coding.) While we will not treat such
variable rate systems in any detail, they point out the difficulty that can arise
associating the mathematical shift operation with physical time when we are
considering cartesian products of spaces, each having their own shift.

There is no easy way to solve this problem notationally. We adopt the
following view as a compromise which is usually adequate for fixed-rate systems.
We will be most interested in pair processes that are stationary in the physical
sense, that is, whose statistics are not changed when both are shifted by an
equal amount of physical time. This is the same as stationarity with respect
to the product shift if the two shifts correspond to equal amounts of physical
time. Hence for simplicity we will usually focus on this case. More general cases
will be introduced when appropriate to point out their form and how they can
be put into the matching shift structure by considering groups of symbols and
different shifts. This will necessitate occasional discussions about what is meant
by stationarity or ergodicity for a particular system.

The mathematical generalization of Shannon’s original notions of sources,
codes, and channels are due to Khinchine [73] [74]. Khinchine’s results char-
acterizing stationarity and ergodicity of channels were corrected and developed
by Adler [2].

9.2 Channels

Say we are given a source [A,X, µ], that is, a sequence of A-valued random
variables {Xn;n ∈ T } defined on a common probability space (Ω,F , P ) having a
process distribution µ defined on the measurable sequence space (AT ,BAT ).We
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shall let X = {Xn;n ∈ T } denote the sequence-valued random variable, that
is, the random variable taking values in AT according to the distribution µ.
Let B be another alphabet with a corresponding measurable sequence space
(BT ,BBT ).We assume as usual that A and B are standard and hence so are their
sequence spaces and cartesian products. A channel [A, ν,B] with input alphabet
A and output alphabet B (we denote the channel simply by ν when these
alphabets are clear from context) is a family of probability measures {νx;x ∈
AT } on (BT ,BBT ) (the output sequence space) such that for every output event
F ∈ BBT νx(F ) is a measurable function of x. This measurability requirement
ensures that the set function p specified on the joint input/output space (AT ×
BT ), BAT × BBT ) by its values on rectangles as

p(G× F ) =

∫
G

dµ(x)νx(F );F ∈ BBT , G ∈ BAT ,

is well defined. The set function p is nonnegative, normalized, and countably
additive on the field generated by the rectangles G × F , G ∈ BAT , F ∈ BBT .
Thus p extends to a probability measure on the joint input/output space, which
is sometimes called the hookup of the source µ and channel ν. We will often de-
note this joint measure by µν. The corresponding sequences of random variables
are called the input/output process.

Thus a channel is a probability measure on the output sequence space for
each input sequence such that a joint input/output probability measure is well-
defined. The above equation shows that a channel is simply a regular conditional
probability, in particular,

νx(F ) = p((x, y) : y ∈ F |x);F ∈ BBT , x ∈ AT .

We can relate a channel to the notation used previously for conditional
distributions by using the sequence-valued random variables X = {Xn;n ∈ T }
and Y = {Yn;n ∈ T }:

νx(F ) = PY |X(F |x). (9.1)

Eq. (1.26) then provides the probability of an arbitrary input/output event:

p(F ) =

∫
dµ(x)νx(Fx),

where Fx = {y : (x, y) ∈ F} is the section of F at x.
If we start with a hookup p, then we can obtain the input distribution µ as

µ(F ) = p(F ×BT );F ∈ BAT .

Similarly we can obtain the output distribution, say η, via

η(F ) = p(AT × F );F ∈ BBT .

Suppose one now starts with a pair process distribution p and hence also
with the induced source distribution µ. Does there exist a channel ν for which
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p = µν? The answer is yes since the spaces are standard. One can always define
the conditional probability νx(F ) = P (F×AT |X = x) for all input sequences x,
but this need not possess a regular version, that is, be a probability measure for
all x, in the case of arbitrary alphabets. If the alphabets are standard, however,
we have seen that a regular conditional probability measure always exists.

9.3 Stationarity Properties of Channels

We now define a variety of stationarity properties for channels that are related
to, but not the same as, those for sources. The motivation behind the var-
ious definitions is that stationarity properties of channels coupled with those
of sources should imply stationarity properties for the resulting source-channel
hookups.

The classical definition of a stationary channel is the following: Suppose that
we have a channel [A, ν,B] and suppose that TA and TB are the shifts on the
input sequence space and output sequence space, respectively. The channel is
stationary with respect to TA and TB or (TA, TB)-stationary if

νx(T−1
B F ) = νTAx(F ), x ∈ AT , F ∈ BBT . (9.2)

If the transformations are clear from context then we simply say that the chan-
nel is stationary. Intuitively, a right shift of an output event yields the same
probability as the left shift of an input event. The different shifts are required
because in general only TAx and not T−1

A x exists since the shift may not be
invertible and in general only T−1

B F and not TBF exists for the same reason. If
the shifts are invertible, e.g., the processes are two-sided, then the definition is
equivalent to

νTAx(TBF ) = νT−1
A x(T−1

B F ) = νx(F ), all x ∈ AT , F ∈ BBT (9.3)

that is, shifting the input sequence and output event in the same direction does
not change the probability.

The fundamental importance of the stationarity of a channel is contained in
the following lemma.

Lemma 9.3.1 If a source [A,µ], stationary with respect to TA, is connected
to channel [A, ν,B], stationary with respect to TA and TB, then the resulting
hookup µν is also stationary (with respect to the cartesian product shift T =
TA×B = TA × TB defined by T (x, y) = (TAx, TBy)).

Proof: We have that

µν(T−1F ) =

∫
dµ(x)νx((T−1F )x).

Now

(T−1F )x = {y : T (x, y) ∈ F} = {y : (TAx, TBy) ∈ F}
= {y : TBy ∈ FTAx} = T−1

B FTAx
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and hence

µν(T−1F ) =

∫
dµ(x)νx(T−1

B FTAx).

Since the channel is stationary, however, this becomes

µν(T−1F ) =

∫
dµ(x)νTAx(FTAx) =

∫
dµT−1

A (x)νx(Fx),

where we have used the change of variables formula. Since µ is stationary,
however, the right hand side is ∫

dµ(x)νx(F ),

which proves the lemma. 2

Suppose next that we are told that a hookup µν is stationary. Does it then
follow that the source µ and channel ν are necessarily stationary? The source
must be since

µ(T−1
A F ) = µν((TA × TB)−1(F ×BT )) = µν(F ×BT ) = µ(F ).

The channel need not be stationary, however, since, for example, the stationarity
could be violated on a set of µ measure 0 without affecting the proof of the
above lemma. This suggests a somewhat weaker notion of stationarity which is
more directly related to the stationarity of the hookup. We say that a channel
[A, ν,B] is stationary with respect to a source [A,µ] if µν is stationary. We also
state that a channel is stationary µ-a.e. if it satisfies (9.2) for all x in a set of
µ-probability one. If a channel is stationary µ-a.e. and µ is stationary, then
the channel is also stationary with respect to µ. Clearly a stationary channel
is stationary with respect to all stationary sources. The reason for this more
general view is that we wish to extend the definition of stationary channels to
asymptotically mean stationary channels. The general definition extends; the
classical definition of stationary channels does not.

Observe that the various definitions of stationarity of channels immediately
extend to block shifts since they hold for any shifts defined on the input and
output sequence spaces, e.g., a channel stationary with respect to TNA and TKB
could be a reasonable model for a channel or code that puts out K symbols
from an alphabet B every time it takes in N symbols from an alphabet A. We
shorten the name (TNA , T

K
B )-stationary to (N,K)-stationary channel in this case.

A stationary channel (without modifiers) is simply a (1,1)-stationary channel in
this sense.

The most general notion of stationarity that we are interested in is that of
asymptotic mean stationarity We define a channel [A, ν,B] to be asymptotically
mean stationary or AMS for a source [A,µ] with respect to TA and TB if the
hookup µν is AMS with respect to the product shift TA × TB . As in the sta-
tionary case, an immediate necessary condition is that the input source be AMS
with respect to TA. A channel will be said to be (TA, TB)-AMS if the hookup
is (TA, TB)-AMS for all TA-AMS sources.
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The following lemma shows that an AMS channel is indeed a generalization
of the idea of a stationary channel and that the stationary mean of a hookup of
an AMS source to a stationary channel is simply the hookup of the stationary
mean of the source to the channel.

Lemma 9.3.2 Suppose that ν is (TA, TB)-stationary and that µ is AMS with
respect to TA. Let µ̄ denote the stationary mean of µ and observe that µ̄ν is
stationary. Then the hookup µν is AMS with stationary mean

µν = µ̄ν.

Thus, in particular, ν is an AMS channel.

Proof: We have that

(T−iF )x = {y : (x, y) ∈ T−iF} = {y : T i(x, y) ∈ F}
= {y : (T iAx, T

i
By) ∈ F} = {y : T iBy ∈ FT iAx}

= T−iB FT iAx

and therefore since ν is stationary

µν(T−iF ) =

∫
dµ(x)νx(T−iB FT iAx)

=

∫
dµ(x)νT iAx(FT iAx) =

∫
dµT−iA (x)νx(F ).

Therefore

1

n

n−1∑
i=0

µν(T−iF ) =
1

n

n−1∑
i=0

∫
dµT−iA (x)νx(F )

→
n→∞

∫
dµ̄(x)νx(F ) = µ̄ν(F )

from Lemma 6.5.1 of [50]. This proves that µν is AMS and that the stationary
mean is µ̄ν. 2

A final property crucial to quantifying the behavior of random processes is
that of ergodicity. Hence we define a (stationary, AMS) channel ν to be ergodic
with respect to (TA, TB) if it has the property that whenever a (stationary, AMS)
ergodic source (with respect to TA) is connected to the channel, the overall
input/output process is (stationary, AMS) ergodic. The following modification
of Lemma 6.7.4 of [50] is the principal tool for proving a channel to be ergodic.

Lemma 9.3.3 An AMS (stationary) channel [A, ν,B] is ergodic if for all AMS
(stationary) sources µ and all sets of the form F̄ = FA×FB, Ḡ = GA×GB for
rectangles FA, GA ∈ B∞A and FB , GB ∈ B∞B we have that for p = µν

lim
n→∞

1

n

n−1∑
i=0

p(T−iA×BF̄
⋂
Ḡ) = p̄(F̄ )p(Ḡ), (9.4)

where p̄ is the stationary mean of p (p if p is already stationary).
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Proof: The proof parallels that of Lemma 6.7.4 of [50]. The result does not
follow immediately from that lemma since the collection of given sets does not
itself form a field. Arbitrary events F,G ∈ B∞A×B can be approximated ar-
bitrarily closely by events in the field generated by the above rectangles and
hence given ε > 0 we can find finite disjoint rectangles of the given form Fi,
Gi, i = 1, · · · , L such that if F0 =

⋃L
i=1 Fi and G0 =

⋃L
i=1Gi, then p(F∆F0),

p(G∆G0), p̄(F∆F0), and p̄(G∆G0) are all less than ε. Then

| 1
n

n−1∑
k=0

p(T−kF
⋂
G)− p̄(F )p(G)| ≤

| 1
n

n−1∑
k=0

p(T−kF
⋂
G)− 1

n

n−1∑
k=0

p(T−kF0

⋂
G0)|+

| 1
n

n−1∑
k=0

p(T−kF0

⋂
G0)− p̄(F0)p(G0)|+ |p̄(F0)p(G0)− p̄(F )p(G)|.

Exactly as in Lemma 6.7.4 of [50], the rightmost term is bound above by 2ε
and the first term on the left goes to zero as n → ∞. The middle term is the
absolute magnitude of

1

n

n−1∑
k=0

p(T−k
⋃
i

Fi
⋂⋃

j

Gj)− p̄(
⋃
i

Fi)p(
⋃
j

Gj) =

∑
i,j

(
1

n

n−1∑
k=0

p(T−kFi
⋂
Gj)− p̄(Fi)p(Gj)

)
.

Each term in the finite sum converges to 0 by assumption. Thus p is ergodic
from Lemma 6.7.4 of [50]. 2

Because of the specific class of sets chosen, the above lemma considered
separate sets for shifting and remaining fixed, unlike using the same set for
both purposes as in Lemma 6.7.4 of [50]. This was required so that the cross
products in the final sum considered would converge accordingly.

9.4 Examples of Channels

In this section a variety of examples of channels are introduced, ranging from the
trivially simple to the very complicated. The first two channels are the simplest,
the first being perfect and the second being useless (at least for communication
purposes).
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Example 9.4.1: Noiseless Channel

A channel [A, ν,B] is said to be noiseless if A = B and

νx(F ) =

{
1 x ∈ F
0 x 6∈ F

that is, with probability one the channel puts out what goes in. Such a channel
is clearly stationary and ergodic.

Example 9.4.2: Completely Random Channel

Suppose that η is a probability measure on the output space (BT ,BBT ) and
define a channel

νx(F ) = η(F ), F ∈ BBT , x ∈ AT .

Then it is easy to see that the input/output measure satisfies

p(G× F ) = η(F )µ(G);F ∈ BBT , G ∈ BAT ,

and hence the input/output measure is a product measure and the input and
output sequences are therefore independent of each other. This channel is called
a completely random channel or product channel because the output is indepen-
dent of the input. This channel is quite useless because the output tells us
nothing of the input. The completely random channel is stationary (AMS) if
the measure η is stationary (AMS). Perhaps surprisingly, such a channel need
not be ergodic even if η is ergodic since the product of two stationary and er-
godic sources need not be ergodic. (See, e.g., [21].) We shall later see that if η
is also assumed to be weakly mixing, then the resulting channel is ergodic.

A generalization of the noiseless channel that is of much greater interest is
the deterministic channel. Here the channel is not random, but the output is
formed by a general mapping of the input rather than being the input itself.

Example 9.4.3: Deterministic Channel and Sequence Coders

A channel [A, ν,B] is said to be deterministic or nonrandom if each input string
is mapped into a fixed output string, that is, if there is a mapping f : AT → BT

such that

νx(G) =

{
1 f(x) ∈ G
0 f(x) 6∈ G.

The mapping f must be measurable in order to satisfy the measurability as-
sumption of the channel. Note that such a channel can also be written as

νx(G) = 1f−1(G)(x).
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Define a sequence coder as a deterministic channel, that is, a measurable
mapping from one sequence space into another. It is easy to see that for a
deterministic code we have a hookup specified by

p(F ×G) = µ(F
⋂
f−1(G))

and an output process with distribution

η(G) = µ(f−1(G)).

A sequence coder is said to be (TA, TB)-stationary (or just stationary) or
(TNA , T

K
B )-stationary (or just (N,K)-stationary) if the corresponding channel

is. Thus a sequence coder f is stationary if and only if f(TAx) = TBf(x) and
it is (N,K)- stationary if and only if f(TNA x) = TKB f(x).

Lemma 9.4.1 Lemma 9.4.1: A stationary deterministic channel is ergodic.

Proof: From Lemma 9.3.3 it suffices to show that

lim
n→∞

1

n

n−1∑
i=0

p(T−iA×BF
⋂
G) = p(F )P (G)

for all rectangles of the form F = FA × FB , FA ∈ BBT , FB ∈ BAT and
G = GA ×GB . Then

p(T−iA×BF
⋂
G) = p((T−iA FA

⋂
GA)× (T−iB FB

⋂
GB))

= µ((T−iA FA
⋂
GA)

⋂
f−1(T−iB FB

⋂
GB)).

Since f is stationary and since inverse images preserve set theoretic operations,

f−1(T−iB FB
⋂
GB) = T−iA f−1(FB)

⋂
f−1(GB)

and hence

1

n

n−1∑
i=0

p(T−iA×BF
⋂
G) =

1

n

n−1∑
i=0

µ(T−iA (FA
⋂
f−1(FB))

⋂
GA

⋂
f−1(GB))

→
n→∞

µ(FA
⋂
f−1(FB))µ(GA

⋂
f−1(GB))

= p(FA × FB)p(GA ×GB)

since µ is ergodic. This means that the rectangles meet the required condition.
Some algebra then will show that finite unions of disjoint sets meeting the
conditions also meet the conditions and that complements of sets meeting the
conditions also meet them. This implies from the good sets principle (see, for
example, p. 14 of [50]) that the field generated by the rectangles also meets the
condition and hence the lemma is proved. 2
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A stationary sequence coder has a simple and useful structure. Suppose one
has a mapping f : AT → B, that is, a mapping that maps an input sequence into
an output letter. We can define a complete output sequence y corresponding to
an input sequence x by

yi = f(T iAx); i ∈ T , (9.5)

that is, we produce an output, then shift or slide the input sequence by one time
unit, and then we produce another output using the same function, and so on. A
mapping of this form is called an infinite length sliding block code because it pro-
duces outputs by successively sliding an infinite length input sequence and each
time using a fixed mapping to produce the output. The sequence-to-letter map-
ping implies a sequence coder, say f̄ , defined by f̄(x) = {f(T iAx); i ∈ T }. Fur-
thermore, f̄(TAx) = TB f̄(x), that is, a sliding block code induces a stationary
sequence coder. Conversely, any stationary sequence coder f̄ induces a sliding
block code f for which (9.5) holds by the simple identification f(x) = (f̄(x))0,
the output at time 0 of the sequence coder. Thus the ideas of stationary se-
quence coders mapping sequences into sequences and sliding block codes map-
ping sequences into letters by sliding the input sequence are equivalent. We can
similarly define an (N,K)-sliding block code which is a mapping f : AT → BK

which forms an output sequence y from an input sequence x via the construction

yKiK = f(TNiA x).

By a similar argument, (N,K)-sliding block coders are equivalent to (N,K)-
stationary sequence coders. When dealing with sliding block codes we will
usually assume for simplicity that K is 1. This involves no loss in generality
since it can be made true by redefining the output alphabet.

Example 9.4.4: B-processes

The above construction using sliding block or stationary codes provides an easy
description of an important class of random processes that has several nice
properties. A process is said to be a B-process or Bernoulli process if it can be
defined as a stationary coding of an independent identically distributed (i.i.d.)
process. Let µ denote the original distribution of the i.i.d. process and let η
denote the induced output distribution. Then for any output events F and G

η(F
⋂
T−nB G) = µ(f̄−1(F

⋂
T−nB G)) = µ(f̄−1(F )

⋂
T−nA f̄−1(G)),

since f̄ is stationary. But µ is stationary and mixing since it is i.i.d. (see Section
6.7 of [50]) and hence this probability converges to

µ(f̄−1(F ))µ(f̄−1(G)) = η(F )η(G)

and hence η is also mixing. Thus a B-process is mixing of all orders and hence
is ergodic with respect to TnB for all positive integers n.

While codes that depend on infinite input sequences may not at first glance
seem to be a reasonable physical model of a coding system, it is possible for
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such codes to depend on the infinite sequence only through a finite number of
coordinates. In addition, some real codes may indeed depend on an unboundedly
large number of past inputs because of feedback.

Suppose that we consider two-sided processes and that we have a measurable
mapping

φ :
D
×

i=−M
Ai → B

and we define a sliding block code by

f(x) = φ(xi−M , · · · , x0, · · · , xi+D),

then f̄ is a stationary sequence coder. The mapping φ is also called a sliding
block code or a finite-length sliding block code or a finite-window sliding block
code. M is called the memory of the code and D is called the delay of the code
since M past source symbols and D future symbols are required to produce the
current output symbol. The window length or constraint length of the code is
M+D+1, the number of input symbols viewed to produce an output symbol. If
D = 0 the code is said to be causal. If M = 0 the code is said to be memoryless.

There is a problem with the above model if we wish to code a one-sided
source since if we wish to start coding at time 0, there are no input symbols with
negative indices. Hence we either must require the code be memoryless (M = 0)
or we must redefine the code for the first M instances (e.g., by “stuffing” the
code register with arbitrary symbols) or we must only define the output for times
i ≥ M . For two-sided sources a finite-length sliding block code is stationary.
In the one-sided case it is not even defined precisely unless it is memoryless, in
which case it is stationary.

Another case of particular interest is when we have a measurable mapping
γ : AN → BK and we define a sequence coder f(x) = y by

yKnK = (ynK , ynK+1, · · · , y(n+1)K−1) = γ(xNnN ),

that is, the input is parsed into nonoverlapping blocks of length N and each is
successively coded into a block of length K outputs without regard to past or
previous input or output blocks. Clearly N input time units must correspond
to K output time units in physical time if the code is to make sense. A code of
this form is called a block code and it is a special case of an (N,K) sliding block
code. Such a code is trivially (TNA , T

K
A )-stationary.

We now return to genuinely random channels. The next example is perhaps
the most popular model for a noisy channel because of its simplicity.

Example 9.4.5: Memoryless channels

Suppose that qx0(·) is a probability measure on BB for all x0 ∈ A and that for
fixed F ,qx0(F ) is a measurable function of x0. Let ν be a channel specified by
its values on output rectangles by

νx( ×
i∈J

Fi) =
∏
i∈J

qxi(Fi),
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for any finite index set J ⊂ T . Then ν is said to be a memoryless channel.
Intuitively,

Pr(Yi ∈ Fi; i ∈ J |X) =
∏
i∈J

Pr(Yi ∈ Fi|Xi).

For later use we pause to develop a useful inequality for mutual information
between the input and output of a memoryless channel. For contrast we also
describe the corresponding result for a memoryless source and an arbitrary
channel.

Lemma 9.4.2 Let {Xn} be a source with distribution µ and let ν be a channel.
Let {Xn, Yn} be the hookup with distribution p. If the channel is memoryless,
then for any n

I(Xn;Y n) ≤
n−1∑
i=0

I(Xi;Yi)

If instead the source is memoryless, then the inequality is reversed:

I(Xn;Y n) ≥
n−1∑
i=0

I(Xi;Yi).

Thus if both source and channel are memoryless,

I(Xn;Y n) =

n−1∑
i=0

I(Xi;Yi).

Proof: First suppose that the process is discrete. Then

I(Xn;Y n) = H(Y n)−H(Y n|Xn).

Since by construction

PY n|Xn(yn|xn) =

n−1∏
i=0

PY0|X0
(yi|xi)

an easy computation shows that

H(Y n|Xn) =

n−1∑
i=0

H(Yi|Xi).

This combined with the inequality

H(Y n) ≤
n−1∑
i=0

H(Yi)

(Lemma 2.3.2 used several times) completes the proof of the memoryless channel
result for finite alphabets. If instead the source is memoryless, we have

I(Xn;Y n) = H(Xn)−H(Xn|Y n)
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=

n−1∑
i=0

H(Xi)−H(Xn|Y n).

Extending Lemma 2.3.2 to conditional entropy yields

H(Xn|Y n) ≤
n−1∑
i=0

H(Xi|Y n)

which can be further overbounded by using Lemma 2.5.2 (the fact that reducing
conditioning increases conditional entropy) as

H(Xn|Y n) ≤
n−1∑
i=0

H(Xi|Yi)

which implies that

I(Xn;Y n) ≥
n−1∑
i=0

H(Xi)−H(Xi|Yi) =

n−1∑
i=0

I(Xi;Yi),

which completes the proof for finite alphabets.
To extend the result to standard alphabets, first consider the case where the

Y n are quantized to a finite alphabet. If the Yk are conditionally independent
given Xk, then the same is true for q(Yk), k = 0, 1, · · · , n−1. Lemma 5.5.6 then
implies that as in the discrete case, I(Xn;Y n) = H(Y n)−H(Y n|Xn) and the
remainder of the proof follows as in the discrete case. Letting the quantizers
become asymptotically accurate then completes the proof. 2

In fact two forms of memorylessness are evident in a memoryless channel.
The channel is input memoryless in that the probability of an output event
involving {Yi; i ∈ {k, k + 1, · · · ,m}} does not involve any inputs before time k,
that is, the past inputs. The channel is also input nonanticipatory since this
event does not depend on inputs after time m, that is, the future inputs. The
channel is also output memoryless in the sense that for any given input x, output
events involving nonoverlapping times are independent, i.e.,

νx(Y1 ∈ F1

⋂
Y2 ∈ F2) = νx(Y1 ∈ F1)νx(Y2 ∈ F2).

We pin down these ideas in the following examples.

Example 9.4.6: Channels with finite input memory and
anticipation

A channel ν is said to have finite input memory of order M if for all one-sided
events F and all n

νx((Yn, Yn+1, · · · ) ∈ F ) = νx′((Yn, Yn+1, · · · ) ∈ F )
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whenever xi = x′i for i ≥ n −M . In other words, for an event involving Yi’s
after some time n, knowing only the inputs for the same times and M time
units earlier completely determines the output probability. Channels with finite
input memory were introduced by Feinstein [40]. Similarly ν is said to have
finite anticipation of order L if for all one-sided events F and all n

νx((· · · , Yn) ∈ F ) = νx′((· · · , Yn) ∈ F )

provided x′i = xi for i ≤ n+L. That is, at most L future inputs must be known
to determine the probability of an event involving current and past outputs.

Example 9.4.7: Channels with finite output memory

A channel ν is said to have finite output memory of order K if for all one-sided
events F and G and all inputs x, if k > K then

νx((· · · , Yn) ∈ F
⋂

(Yn+k, · · · ) ∈ G) = νx((· · · , Yn) ∈ F )νx((Yn+k, · · · ) ∈ G);

that is, output events involving output samples separated by more than K time
units are independent. Channels with finite output memory were introduced by
Wolfowitz [152].

Channels with finite memory and anticipation are historically important as
the first real generalizations of memoryless channels for which coding theorems
could be proved. Furthermore, the assumption of finite anticipation is physi-
cally reasonable as a model for real-world communication channels. The finite
memory assumptions, however, exclude many important examples, e.g., finite-
state or Markov channels and channels with feedback filtering action. Hence
we will emphasize more general notions which can be viewed as approximations
or asymptotic versions of the finite memory assumption. The generalization of
finite input memory channels requires some additional tools and is postponed
to the next chapter. The notion of finite output memory can be generalized by
using the notion of mixing.

Example 9.4.8: Output mixing channels

A channel is said to be output mixing (or asymptotically output independent
or asymptotically output memoryless) if for all output rectangles F and G and
all input sequences x

lim
n→∞

|νx(T−nF
⋂
G)− νx(T−nF )νx(G)| = 0.

More generally it is said to be output weakly mixing if

lim
n→∞

1

n

n−1∑
i=0

|νx(T−iF
⋂
G)− νx(T−iF )νx(G)| = 0.



9.4. EXAMPLES OF CHANNELS 181

Unlike mixing systems, the above definitions for channels place conditions only
on output rectangles and not on all output events. Output mixing channels
were introduced by Adler [2].

The principal property of output mixing channels is provided by the following
lemma.

Lemma 9.4.3 If a channel is stationary and output weakly mixing, then it is
also ergodic. That is, if ν is stationary and output weakly mixing and if µ is
stationary and ergodic, then also µν is stationary and ergodic.

Proof: The process µν is stationary by Lemma 9.3.1. To prove that it is ergodic
it suffices from Lemma 9.3.3 to prove that for all input/output rectangles of the
form F = FB × FA, FB ∈ BAT , FA ∈ BBT , and G = GB ×GA that

lim
n→∞

1

n

n−1∑
i=0

µν(T−iF
⋂
G) = µν(F )µν(G).

We have that

1

n

n−1∑
i=0

µν(T−iF
⋂
G)−m(F )m(G) =

1

n

n−1∑
i=0

µν((T−iB FB
⋂
GB)× (T−iA FA

⋂
GA))− µν(FB × FA)µν(GB ×GA)

=
1

n

n−1∑
i=0

∫
T−iA FA

⋂
GA

dµ(x)νx(T−iB FB
⋂
GB)− µν(FB × FA)µ(GB ×GA)

=

(
1

n

n−1∑
i=0

(∫
T−iA FA

⋂
GA

dµ(x)νx(T−iB FB
⋂
GB)

−
∫
T−iA FA

⋂
GA

dµ(x)νx(T−iB FB)νx(GB)

))
+

(
1

n

n−1∑
i=0(∫

T−iA FA
⋂
GA

dµ(x)νx(T−iB FB)νx(GB)− µν(FB × FA)µν(GB ×GA)

))
.

The first term is bound above by

1

n

n−1∑
i=0

∫
T−iA FA

⋂
GA

dµ(x)|νx(T−iB FB
⋂
GB)− νx(T−iB FB)νx(GB)| ≤

∫
dµ(x)

1

n

n−1∑
i=0

|νx(T−iB FB
⋂
GB)− νx(T−iFB)νx(GB)|

which goes to zero from the dominated convergence theorem since the integrand
converges to zero from the output weakly mixing assumption. The second term



182 CHAPTER 9. CHANNELS AND CODES

can be expressed using the stationarity of the channel as

∫
FA

dµ(x)νx(GB)
1

n

n−1∑
i=0

1FA(T iAx)νT iAx(FB)− µν(F )µν(G).

The ergodic theorem implies that as n → ∞ the sample average goes to its
expectation ∫

dµ(x)1FA(x)νx(FB) = µν(F )

and hence the above formula converges to 0, proving the lemma. 2

The lemma provides an example of a completely random channel that is also
ergodic in the following corollary.

Corollary 9.4.1 Suppose that ν is a stationary completely random channel de-
scribed by an output measure η. If η is weakly mixing, then ν is ergodic. That
is, if µ is stationary and ergodic and η is stationary and weakly mixing, then
µν = µ× η is stationary and ergodic.

Proof: If η is weakly mixing, then the channel ν defined by νx(F ) = η(F ), all
x ∈ AT , F ∈ BBT is output weakly mixing. Thus ergodicity follows from the
lemma. 2

The idea of a memoryless channel can be extended to a block memoryless
or block independent channel, as described next.

Example 9.4.9: Block Memoryless Channels

Suppose now that we have an integers N and K (usually K = N) and a probabil-
ity measure qxN (·) on BKB for each xN ∈ AN such that qxN (F ) is a measurable
function of xN for each F ∈ BKB . Let ν be specified by its values on output
rectangles by

νx(y : yi ∈ Gi; i = m, · · · ,m+ n− 1) =

b nK c∏
i=0

qxNiN (Gi),

where Gi ∈ BB , all i, where bzc is the largest integer contained in z, and where

Gi =
m+(i+1)K−1

×
j=m+iK

Fj

with Fj = B if j ≥ m+ n. Such channels are called block memoryless channels
or block independent channels. They are a special case of the following class of
channels.
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Example 9.4.10: Conditionally Block Independent Chan-
nels

A conditionally block independent or CBI channel resembles the block memory-
less channel in that for a given input sequence the outputs are block independent.
It is more general, however, in that the conditional probabilities of the output
block may depend on the entire input sequence (or at least on parts of the input
sequence not in the same time block). Thus a channel is CBI if its values on
output rectangles satisfy

νx(y : yi ∈ Fi; i = m, · · · ,m+ n− 1) =

b nK c∏
i=0

νx(y : yNiN ∈ Gi).

where as before

Gi =
m+(i+1)K−1

×
j=m+iK

Fj

with Fj = B if j ≥ m + n. Block memoryless channels are clearly a special
case of CBI channels. These channels have only finite output memory, but
unlike the block memoryless channels they need not have finite input memory
or anticipation.

The primary use of block memoryless channels is in the construction of a
channel given finite-dimensional conditional probabilities, that is, one has prob-
abilities for output K-tuples given input N -tuples and one wishes to model a
channel consistent with these finite-dimensional distributions. The finite dimen-
sional distributions themselves may be the result of an optimization problem or
an estimate based on observed behavior. An immediate problem is that a chan-
nel constructed in this manner may not be stationary, although it is clearly
(N,K)-stationary. The next example shows how to modify a block memoryless
channel so as to produce a stationary channel. The basic idea is to occasion-
ally insert some random spacing between the blocks so as to “stationarize” the
channel.

Before turning to the example we first develop the technical details required
for producing such random spacing.

Random Punctuation Sequences

We demonstrate that we can obtain a sequence with certain properties by sta-
tionary coding of an arbitrary stationary and ergodic process. The lemma is a
variant of a theorem of Shields and Neuhoff [135] as simplified by Neuhoff and
Gilbert [109] for sliding block codings of finite alphabet processes. One of the
uses to which the result will be put is the same as theirs: constructing sliding
block codes from block codes.

Lemma 9.4.4 Suppose that {Xn} is a stationary and ergodic process. Then
given N and δ > 0 there exists a stationary (or sliding block) coding f : AT →
{0, 1, 2} yielding a ternary process {Zn} with the following properties:
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(a) {Zn} is stationary and ergodic.

(b) {Zn} has a ternary alphabet {0, 1, 2} and it can output only N -cells of the
form 011 · · · 1 (0 followed by N − 1 ones) or individual 2’s. In particular,
each 0 is always followed by at exactly N − 1 1’s.

(c) For all integers k

1− δ
N
≤ Pr(ZNk = 011 · · · 1) ≤ 1

N

and hence for any n

Pr(Zn is in an N − cell) ≥ 1− δ.

A process {Zn} with these properties is called an (N, δ)-random blocking
process or punctuation sequence {Zn}.
Proof: A sliding block coding is stationary and hence coding a stationary and
ergodic process will yield a stationary and ergodic process (Lemma 9.4.1) which
proves the first part. Pick an ε > 0 such that εN < δ. Given the stationary
and ergodic process {Xn} (that is also assumed to be aperiodic in the sense
that it does not place all of its probability on a finite set of sequences) we
can find an event G ∈ BAT having probability less than ε. Consider the event
F = G−

⋃N−1
i=1 T−iG, that is, F is the collection of sequences x for which x ∈ G,

but T ix 6∈ G for i = 1, · · · , N − 1. We next develop several properties of this
set.

First observe that obviously µ(F ) ≤ µ(G) and hence

µ(F ) ≤ ε.

The sequence of sets T−iF are disjoint since if y ∈ T−iF , then T iy ∈ F ⊂ G
and T i+ly 6∈ G for l = 1, · · · , N − 1, which means that T jy 6∈ G and hence
T jy 6∈ F for N − 1 ≥ j > i. Lastly we need to show that although F may have
small probability, it is not 0. To see this suppose the contrary, that is, suppose
that µ(G−

⋃N−1
i=1 T−iG) = 0. Then

µ(G
⋂

(
N−1⋃
i=1

T−iG)) = µ(G)− µ(G
⋂

(

N−1⋃
i=1

T−iG)c) = µ(G)

and hence µ(
⋃N−1
i=1 T−iG|G) = 1. In words, if G occurs, then it is certain to

occur again within the next N shifts. This means that with probability 1 the
relative frequency of G in a sequence x must be no less than 1/N since if it
ever occurs (which it must with probability 1), it must thereafter occur at least
once every N shifts. This is a contradiction, however, since this means from the
ergodic theorem that µ(G) ≥ 1/N when it was assumed that µ(G) ≤ ε < 1/N .
Thus it must hold that µ(F ) > 0.

We now use the rare event F to define a sliding block code. The general
idea is simple, but a more complicated detail will be required to handle a special
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case. Given a sequence x, define n(x) to be the smallest i for which T ix ∈ F ;
that is, we look into the future to find the next occurrence of F . Since F has
nonzero probability, n(x) will be finite with probability 1. Intuitively, n(x)
should usually be large since F has small probability. Once F is found, we code
backwards from that point using blocks of a 0 prefix followed by N − 1 1’s. The
appropriate symbol is then the output of the sliding block code. More precisely,
if n(x) = kN + l, then the sliding block code prints a 0 if l = 0 and prints a
1 otherwise. This idea suffices until the event F actually occurs at the present
time, that is, when n(x) = 0. At this point the sliding block code has just
completed printing an N -cell of 0111 · · · 1. It should not automatically start a
new N -cell, because at the next shift it will be looking for a new F in the future
to code back from and the new cells may not align with the old cells. Thus
the coder looks into the future for the next F ,;that is, it again seeks n(x), the
smallest i for which T ix ∈ F . This time n(x) must be greater than or equal to
N since x is now in F and T−iF are disjoint for i = 1, · · ·N − 1. After finding
n(x) = kN + l, the coder again codes back to the origin of time. If l = 0, then
the two codes are aligned and the coder prints a 0 and continues as before. If
l 6= 0, then the two codes are not aligned, that is, the current time is in the
middle of a new code word. By construction l ≤ N − 1. In this case the coder
prints l 2’s (filler poop) and shifts the input sequence l times. At this point
there is an n(x) = kN for such that Tn(x)x ∈ F and the coding can proceed as
before. Note that k is at least one, that is, there is at least one complete cell
before encountering the new F .

By construction, 2’s can occur only following the event F and then no more
than N 2’s can be produced. Thus from the ergodic theorem the relative fre-
quency of 2’s (and hence the probability that Zn is not in an N -block) is no
greater than

lim
n→∞

1

n

n−1∑
i=0

12(Z0(T ix)) ≤ lim
n→∞

1

n

n−1∑
i=0

1F (T ix)N = Nµ(F ) ≤ N δ

N
= δ, (9.6)

that is,

Pr(Zn is in an N − cell) ≥ 1− δ.

Since Zn is stationary by construction,

Pr(ZNk = 011 · · · 1) = Pr(ZN0 = 011 · · · 1) for all k.

Thus

Pr(ZN0 = 011 · · · 1) =
1

N

N−1∑
k=0

Pr(ZNk = 011 · · · 1).

The events {ZNk = 011 · · · 1}, k = 0, 1, . . . , N − 1 are disjoint, however, since
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there can be at most one 0 in a single block of N symbols. Thus

NPr(ZN = 011 · · · 1) =

N−1∑
k=0

Pr(ZNk = 011 · · · 1)

= Pr(

N−1⋃
k=0

{ZNk = 011 · · · 1}). (9.7)

Thus since the rightmost probability is between 1− δ and 1,

1

N
≥ Pr(ZN0 = 011 · · · 1) ≥ 1− δ

N

which completes the proof. 2

The following corollary shows that a finite length sliding block code can be
used in the lemma.

Corollary 9.4.2 Given the assumptions of the lemma, a finite-window sliding
block code exists with properties (a)-(c).

Proof: The sets G and hence also F can be chosen in the proof of the lemma to
be finite dimensional, that is, to be measurable with respect to σ(X−K , · · · , XK)
for some sufficiently large K. Choose these sets as before with δ/2 replacing δ.
Define n(x) as in the proof of the lemma. Since n(x) is finite with probability
one, there must be an L such that if

BL = {x : n(x) > L},

then

µ(BL) <
δ

2
.

Modify the construction of the lemma so that if n(x) > L, then the sliding block
code prints a 2. Thus if there is no occurrence of the desired finite dimensional
pattern in a huge bunch of future symbols, a 2 is produced. If n(x) < L, then f
is chosen as in the proof of the lemma. The proof now proceeds as in the lemma
until (9.6), which is replaced by

lim
n→∞

1

n

n−1∑
i=0

12(Z0(T ix))

≤ lim
n→∞

1

n

n−1∑
i=0

1BL(T ix) + lim
n→∞

1

n

n−1∑
i=0

1F (T ix)N

≤ δ.

The remainder of the proof is the same. 2

Application of the lemma to an i.i.d. source and merging the symbols 1 and
2 in the punctuation process immediately yield the following result since coding
an i.i.d. process yields a B-process which is therefore mixing.
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Corollary 9.4.3 Given an integer N and a δ > 0 there exists an (N, δ)-
punctuation sequence {Zn} with the following properties:

(a) {Zn} is stationary and mixing (and hence ergodic).

(b) {Zn} has a binary alphabet {0, 1} and it can output only N -cells of the form
011 · · · 1 (0 followed by N − 1 ones) or individual ones, that is, each zero
is always followed by at least N − 1 ones.

(c) For all integers k

1− δ
N
≤ Pr(ZNk = 011 · · · 1) ≤ 1

N

and hence for any n

Pr(Zn is in an N − cell) ≥ 1− δ.

Example 9.4.11: Stationarized Block Memoryless Channel

Intuitively, a stationarized block memoryless (SBM) channel is a block memo-
ryless channel with random spacing inserted between the blocks according to a
random punctuation process. That is, when the random blocking process pro-
duces N -cells (which is most of the time), the channel uses the N -dimensional
conditional distribution. When it is not using an N cell, the channel produces
some arbitrary symbol in its output alphabet. We now make this idea precise.
Let N , K, and qxN (·) be as in the previous example. We now assume that
K = N , that is, one output symbol is produced for every input symbol and
hence output blocks have the same number of symbols as input blocks. Given
δ > 0 let γ denote the distribution of an (N, δ)-random blocking sequence {Zn}.
Let µ×γ denote the product distribution on (AT ×{0, 1}T ,BTA×BT{0,1}); that is,

µ× γ is the distribution of the pair process {Xn, Zn} consisting of the original
source {Xn} and the random blocking source {Zn} with the two sources being
independent of one another. Define a regular conditional probability (and hence
a channel) πx,z(F ), F ∈ {BB}T , x ∈ AT , z ∈ {0, 1}T by its values on rectangles
as follows: Given z, let J0(z) denote the collection of indices i for which zi is
not in an N -cell and let J1(z) denote those indices i for which zi = 0, that
is, those indices where N -cells begin. Let q∗ denote a trivial probability mass
function on B placing all of its probability on a reference letter b∗. Given an
output rectangle

F = {y : yj ∈ Fj ; j ∈ J } = ×
j∈J

Fj ,

define

πx,z(F ) =
∏

i∈J
⋂
J0(z)

q∗(Fi)
∏

i∈J
⋂
J1(z)

qxNi (
i+N−1
×
j=i

Fi),

where we assume that Fi = B if i 6∈ J . Connecting the product source µ × γ
to the channel π yields a hookup process {Xn, Zn, Yn} with distribution, say,
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r, which in turn induces a distribution p on the pair process {Xn, Yn} having
distribution µ on {Xn}. If the alphabets are standard, p also induces a regular
conditional probability for Y given X and hence a channel ν for which p = µν.
A channel of this form is said to be an (N, δ)-stationarized block memoryless or
SBM channel.

Lemma 9.4.5 An SBM channel is stationary and ergodic. Thus if a stationary
(and ergodic) source µ is connected to a ν, then the output is stationary (and
ergodic).

Proof: The product source µ× γ is stationary and the channel π is stationary,
hence so is the hookup (µ×γ)π or {Xn, Zn, Yn}. Thus the pair process {Xn, Yn}
must also be stationary as claimed. The product source µ × γ is ergodic from
Corollary 9.4.1 since it can be considered as the input/output process of a
completely random channel described by a mixing (hence also weakly mixing)
output measure. The channel π is output strongly mixing by construction and
hence is ergodic from Lemma 9.4.1. Thus the hookup (µ×γ)π must be ergodic.
This implies that the coordinate process {Xn, Yn} must also be ergodic. This
completes the proof. 2

The block memoryless and SBM channels are principally useful for proving
theorems relating finite-dimensional behavior to sequence behavior and for sim-
ulating channels with specified finite dimensional behavior. The SBM channels
will also play a key role in deriving sliding block coding theorems from block
coding theorems by replacing the block distributions by trivial distributions,
i.e., by finite-dimensional deterministic mappings or block codes.

The SMB channel was introduced by Pursley and Davisson [29] for finite
alphabet channels and further developed by Gray and Saadat [61], who called it
a randomly blocked conditionally independent (RBCI) channel. We opt for the
alternative name because these channels resemble block memoryless channels
more than CBI channels.

We now consider some examples that provide useful models for real-world
channels.

Example 9.4.12: Primitive Channels

Primitive channels were introduced by Neuhoff and Shields [114],[111] as a phys-
ically motivated general channel model. The idea is that most physical channels
combine the input process with a separate noise process that is independent of
the signal and then filter the combination in a stationary fashion. The noise
is assumed to be i.i.d. since the filtering can introduce dependence. The con-
struction of such channels strongly resembles that of the SBM channels. Let γ
be the distribution of an i.i.d. process {Zn} with alphabet W , let µ × γ de-
note the product source formed by an independent joining of the original source
distribution µ and the noise process Zn, let π denote the deterministic channel
induced by a stationary sequence coder f : AT ×W T → BT mapping an in-
put sequence and a noise sequence into an output sequence. Let r = (µ × γ)π
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denote the resulting hookup distribution and {Xn, Zn, Yn} denote the resulting
process. Let p denote the induced distribution for the pair process {Xn, Yn}.
If the alphabets are standard, then p and µ together induce a channel νx(F ),
x ∈ AT , F ∈ BBT . A channel of this form is called a primitive channel.

Lemma 9.4.6 A primitive channel is stationary with respect to any stationary
source and it is ergodic. Thus if µ is stationary and ergodic and ν is primitive,
then µν is stationary and ergodic.

Proof: Since µ is stationary and ergodic and γ is i.i.d. and hence mixing,
µ × ν is stationary and ergodic from Corollary 9.4.1. Since the deterministic
channel is stationary, it is also ergodic from Lemma 9.4.1 and the resulting
triple {Xn, Zn, Yn} is stationary and ergodic. This implies that the component
process {Xn, Yn} must also be stationary and ergodic, completing the proof. 2

Example 9.4.13: Additive Noise Channels

Suppose that {Xn} is a source with distribution µ and that {Wn} is a “noise”
process with distribution γ. Let {Xn,Wn} denote the induced product source,
that is, the source with distribution µ×γ so that the two processes are indepen-
dent. Suppose that the two processes take values in a common alphabet A and
that A has an addition operation +, e.g., it is a semi-group. Define the sliding
block code f by f(x,w) = x0 +w0 and let f̄ denote the corresponding sequence
coder. Then as in the primitive channels we have an induced distribution r on
triples {Xn,Wn, Yn} and hence a distribution on pairs {Xn, Yn} which with µ
induces a channel ν if the alphabets are standard. A channel of this form is
called a additive noise channel or a signal-independent additive noise channel.
If the noise process is a B-process, then this is easily seen to be a special case
of a primitive channel and hence the channel is stationary with respect to any
stationary source and ergodic. If the noise is only known to be stationary, the
channel is still stationary with respect to any stationary source. Unless the
noise is assumed to be at least weakly mixing, however, it is not known if the
channel is ergodic in general.

Example 9.4.14: Markov Channels

We now consider a special case where A and B are finite sets with the same
number of symbols. For a fixed positive integer K, let P denote the space
of all K × K stochastic matrices P = {P (i, j); i, j = 1, 2, · · · ,K}. Using the
Euclidean metric on this space we can construct the Borel field P of subsets of
P generated by the open sets to form a measurable space (P,P). This, in turn,
gives a one-sided or two-sided sequence space (PT ,PT ).

A map φ : AT → PT is said to be stationary if φTA = TPφ. Given a
sequence P ∈ PT , let M(P ) denote the set of all probability measures on
(BT ,BT ) with respect to which Ym, Ym+1, Ym+2, · · · forms a Markov chain with
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transition matrices Pm, Pm+1, · · · for any integer m, that is, λ ∈ M(P ) if and
only if for any m

λ[Ym = ym, · · · , Yn = yn] = λ[Ym = ym]

n−1∏
i=m

Pi(yi, yi+1),

n > m, ym, · · · , yn ∈ B.

In the one-sided case only m = 1 need be verified. Observe that in general the
Markov chain is nonhomogeneous.

A channel [A, ν,B] is said to be Markov if there exists a stationary measur-
able map φ : AT → PT such that νx ∈M(φ(x)), x ∈ AT .

Markov channels were introduced by Kieffer and Rahe [87] who proved that
one-sided and two-sided Markov channels are AMS. Their proof is not included
as it is lengthy and involves techniques not otherwise used in this book. The
channels are introduced for completeness and to show that several important
channels and codes in the literature can be considered as special cases. A variety
of conditions for ergodicity for Markov channels are considered in [60]. Most are
equivalent to one already considered more generally here: A Markov channel is
ergodic if it is output mixing.

The most important special cases of Markov channels are finite state channels
and codes. Given a Markov channel with stationary mapping φ, the channel
is said to be a finite state channel (FSC) if we have a collection of stochastic
matrices Pa ∈ P; a ∈ A and that φ(x)n = Pxn , that is, the matrix produced
by φ at time n depends only on the input at that time, xn. If the matrices
Pa; a ∈ A contain only 0’s and 1’s, the channel is called a finite state code. There
are several equivalent models of finite state channels and we pause to consider
an alternative form that is more common in information theory. (See Gallager
[43], Ch. 4, for a discussion of equivalent models of FSC’s and numerous physical
examples.) An FSC converts an input sequence x into an output sequence y
and a state sequence s according to a conditional probability

Pr(Yk = yk, Sk = sk; k = m, · · · , n|Xi = xi, Si = si; i < m) =
n∏

i=m

P (yi, si|xi, si−1),

that is, conditioned on Xi, Si−1, the pair Yi, Si is independent of all prior inputs,
outputs, and states. This specifies a FSC defined as a special case of a Markov
channel where the output sequence above is here the joint state-output sequence
{yi, si}. Note that with this setup, saying the Markov channel is AMS implies
that the triple process of source, states, and outputs is AMS (and hence obvi-
ously so is the Gallager input-output process). We will adapt the Kieffer-Rahe
viewpoint and call the outputs {Yn} of the Markov channel states even though
they may correspond to state-output pairs for a specific physical model.

In the two-sided case, the Markov channel is significantly more general than
the FSC because the choice of matrices φ(x)i can depend on the past in a very
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complicated (but stationary) way. One might think that a Markov channel is
not a significant generalization of an FSC in the one-sided case, however, be-
cause there stationarity of φ does not permit a dependence on past channel
inputs, only on future inputs, which might seem physically unrealistic. Many
practical communications systems do effectively depend on the future, however,
by incorporating delay in the coding. The prime example of such look-ahead
coders are trellis and tree codes used in an incremental fashion. Such codes in-
vestigate many possible output strings several steps into the future to determine
the possible effect on the receiver and select the best path, often by a Viterbi
algorithm. (See, e.g., Viterbi and Omura [147].) The encoder then outputs only
the first symbol of the selected path. While clearly a finite state machine, this
code does not fit the usual model of a finite state channel or code because of
the dependence of the transition matrix on future inputs (unless, of course, one
greatly expands the state space). It is, however, a Markov channel.

Example 9.4.15: Cascade Channels

We will often wish to connect more than one channel in cascade in order to
form a communication system, e.g., the original source is connected to a de-
terministic channel (encoder) which is connected to a communications channel
which is in turn connected to another deterministic channel (decoder). We now
make precise this idea. Suppose that we are given two channels [A, ν(1), C] and
[C, ν(2), B]. The cascade of ν(1) and ν(2) is defined as the channel [A, ν,B] given
by

νx(F ) =

∫
CT

ν(2)
u (F ) dν(1)

x (u).

In other words, if the original source sequence is X, the output to the first
channel and input to the second is U , and the output of the second channel is

Y , then ν
(1)
x (F ) = PU |X(F |x), νu(G) = PY |U (G|u), and νx(G) = PY |X(G|x).

Observe that by construction X → U → Y is a Markov chain.

Lemma 9.4.7 A cascade of two stationary channels is stationary.

Proof: Let T denote the shift on all of the spaces. Then

νx(T−1F ) =

∫
CT

ν(2)
u (T−1F )dν(1)

x (u)

=

∫
CT

ν(2)
u (F )dν(1)

x T−1(u).

But ν
(1)
x (T−1F ) = νTx

(1)(F ), that is, the measures ν
(1)
x T−1 and ν

(1)
Tx are iden-

tical and hence the above integral is∫
CT

ν(2)
u (F ) dν

(1)
Tx(u) = νTx(F ),

proving the lemma. 2
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Example 9.4.16: Communication System

A communication system consists of a source [A,µ], a sequence encoder f :
AT → BT (a deterministic channel), a channel [B, ν,B′], and a sequence de-

coder g : B′
T → ÂT . The overall distribution r is specified by its values on

rectangles as

r(F1 × F2 × F3 × F4) =

∫
F1

⋂
f−1(F2)

dµ(x)νf(x)(F3

⋂
g−1(F4)).

Denoting the source by {Xn}, the encoded source or channel input process by
{Un}, the channel output process by {Yn}, and the decoded process by {X̂n},
then r is the distribution of the process {Xn, Un, Yn, X̂n}. If we let X,U ,Y , and
X̂ denote the corresponding sequences, then observe that X → U → Y and
U → Y → X̂ are Markov chains. We abbreviate a communication system to
[µ, f, ν, g].

It is straightforward from Lemma 9.4.7 to show that if the source, channel,
and coders are stationary, then so is the overall process.

The following is a basic property of a communication system: If the com-
munication system is stationary, then the mutual information rate between the
overall input and output cannot that exceed that over the channel. The result
is often called the data processing theorem.

Lemma 9.4.8 Suppose that a communication system is stationary in the sense
that the process {Xn, Un, Yn, X̂n} is stationary. Then

Ĩ(U ;Y ) ≥ Ī(X;Y ) ≥ Ī(X; X̂). (9.8)

If {Un} has a finite alphabet or if it has has the K-gap information property
(6.14) and I(UK , Y ) <∞, then

Ī(X; X̂) ≤ Ī(U ;Y ).

Proof: Since {X̂n} is a stationary deterministic encoding of the {Yn}

Ī(X; X̂) ≤ I∗(X;Y ).

From Theorem 6.4.1 the right hand side is bounded above by Ī(X;Y ). For each
n

I(Xn;Y n) ≤ I((Xn, U);Y n)

= I(Y n;U) + I(Xn;Y n|U) = I(Y n;U),

where U = {Un, n ∈ T } and we have used the fact that X → U → Y is
a Markov chain and hence so is XN → U → Y K and hence the conditional
mutual information is 0 (Lemma 5.5.2). Thus

Ī(X;Y ) ≤ lim
n→∞

I(Y n;U) = Ĩ(Y ;U).
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Applying Theorem 6.4.1 then proves that

Ī(X; X̂) ≤ Ĩ(Y ;U).

If {Un} has finite alphabet or has theK-gap information property and I(UK , Y ) <
∞, then from Theorems 6.4.1 or 6.4.3, respectively, Ĩ(Y ;U) = Ī((Y ;U), com-
pleting the proof. 2

The lemma can be easily extended to block stationary processes.

Corollary 9.4.4 Suppose that the process of the previous lemma is not station-
ary, but is (N,K)-stationary in the sense that the vector process {XN

nN , U
K
nK , Y

K
nK , X̂

N
nN}

is stationary. Then

Ī(X; X̂) ≤ K

N
Ī(U ;Y ).

Proof: Apply the previous lemma to the stationary vector sequence to find that

Ī(XN ; X̂N ) ≤ Ī(UK ;Y K).

But

Ī(XN ; X̂N ) = lim
n→∞

1

n
I(XnN ; X̂nN )

which is the limit of the expectation of the information densities n−1iXnN ,X̂nN
which is N times a subsequence of the densities n−1iXn,X̂n , whose expectation

converges to Ī(X;Y ). Thus

Ī(XN ;XN ) = NĪ(X; X̂).

A similar manipulation for Ī(UK ;Y K) completes the proof. 2

9.5 The Rohlin-Kakutani Theorem

The punctuation sequences of the previous section provide a means for convert-
ing a block code into a sliding block code. Suppose, for example, that {Xn}
is a source with alphabet A and γN is a block code, γN : AN → BN . (The
dimensions of the input and output vector are assumed equal to simplify the
discussion.) Typically B is binary. As has been argued, block codes are not sta-
tionary. One way to stationarize a block code is to use a procedure similar to that
used to stationarize a block memoryless channel: Send long sequences of blocks
with occasional random spacing to make the overall encoded process stationary.
Thus, for example, one could use a sliding block code to produce a punctuation
sequence {Zn} as in Corollary 9.4.2 which produces isolated 0’s followed by KN
1’s and occasionally produces 2’s. The sliding block code uses γN to encode a
sequence of K source blocks XN

n , X
N
n+N , · · · , XN

n+(K−1)N if and only if Zn = 0.
For those rare times l when Zl = 2, the sliding block code produces an arbitrary
symbol b∗ ∈ B. The resulting sliding block code inherits many of the proper-
ties of the original block code, as will be demonstrated when proving theorems
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for sliding block codes constructed in this manner. In fact this construction
suffices for source coding theorems, but an additional property will be needed
when treating the channel coding theorems. The shortcoming of the results of
Lemma 9.4.4 and Corollary 9.4.2 is that important source events can depend
on the punctuation sequence. In other words, probabilities can be changed by
conditioning on the occurrence of Zn = 0 or the beginning of a block code word.
In this section we modify the simple construction of Lemma 9.4.4 to effectively
obtain a new punctuation sequence that is approximately independent of certain
prespecified events. The result is a variation of the Rohlin-Kakutani theorem
of ergodic theory [128] [71]. The development here is patterned after that in
Shields [133].

We begin by recasting the punctuation sequence result in different terms.
Given a stationary and ergodic source {Xn} with a process distribution µ and
a punctuation sequence {Zn} as in Section 9.4, define the set F = {x : ZN (x) =
0}, where x ∈ A∞ is a two-sided sequence x = (· · · , x−1, x0, x1, · · · ). Let T
denote the shift on this sequence space. Restating Corollary 9.4.2 yields the
following.

Lemma 9.5.1 Given δ > 0 and an integer N , an L sufficiently large and a
set F of sequences that is measurable with respect to (X−L, · · · , XL) with the
following properties:

(A) The sets T iF , i = 0, 1, · · · , N − 1 are disjoint.

(B)
1− δ
N
≤ µ(F ) ≤ 1

N
.

(C)

1− δ ≤ µ(

N−1⋃
i=0

T iF ).

So far all that has been done is to rephrase the punctuation result in more
ergodic theory oriented terminology. One can think of the lemma as repre-
senting sequence space as a “base” S together with its disjoint shifts T iS; i =
1, 2, · · · , N −1, which make up most of the space, together with whatever is left
over, a set G =

⋃N−1
i=0 T iF , a set which has probability less than δ which will be

called the “garbage set.” This picture is called a tower. The basic construction
is pictured in Figure 9.1.

Next consider a partition P = {Pi; i = 0, 1, · · · , ‖P‖ − 1} of A∞. One
example would be the partition of a finite alphabet sequence space into its
possible outputs at time 0, that is, Pi = {x : x0 = ai} for i = 0, 1, · · · , ‖A‖ − 1.
Another partition would be according to the output of a sliding block coding of
x. The most important example, however, will be when there is a finite collection
of important events that we wish to force to be approximately independent of
the punctuation sequence and P is chosen so that the important events are
unions of atoms of P.

We now can state the main result of this section.
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Figure 9.1: Rohlin-Kakutani Tower

Lemma 9.5.2 Given the assumptions of Lemma 9.5.1, L and F can be chosen
so that in addition to properties (A)-(C) it is also true that

(D)
µ(Pi|F ) = µ(Pi|T lF ); l = 1, 2, · · · , N − 1, (9.9)

µ(Pi|F ) = µ(Pi|
N−1⋃
k=0

T kF ) (9.10)

and

µ(Pi
⋂
F ) ≤ 1

N
µ(Pi). (9.11)

Comment: Eq. (9.11) can be interpreted as stating that Pi and F are approxi-
mately independent since 1/N is approximately the probability of F . Only the
upper bound is stated as it is all we need. Eq. (9.9) also implies that µ(Pi

⋂
F )

is bound below by (µ(Pi)− δ)µ(F ).
Proof: Eq. (9.10) follows from (9.9) since

µ(Pi|
N−1⋃
l=0

T lF ) =
µ(Pi

⋂⋃N−1
l=0 T lF )

µ(
⋃N−1
l=0 T lF )

=

∑N−1
l=0 µ(Pi

⋂
T lF )∑N−1

l=0 µ(T lF )

=

∑N−1
l=0 µ(Pi|T lF )µ(T lF )

Nµ(F )
=

1

N

N−1∑
l=0

µ(Pi|T lF )

= µ(Pi | F )
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Eq. (9.11) follows from (9.10) since

µ(Pi
⋂
F ) = µ(Pi|F )µ(F ) = µ(Pi|

N−1⋃
k=0

T kF )µ(F )

= µ(Pi|
N−1⋃
k=0

T kF )
1

N
µ(

N−1⋃
k=0

T kF ))

=
1

N
µ(Pi

⋂N−1⋃
k=0

T kF ) ≤ 1

N
µ(Pi)

since the T kF are disjoint and have equal probability, The remainder of this
section is devoted to proving (9.9). We begin by reviewing and developing some
needed notation.

Given a partition P, we define the label function

labelP(x) =

‖P‖−1∑
i=0

i1Pi(x),

where as usual 1P is the indicator function of a set P . Thus the label of a
sequence is simply the index of the atom of the partition into which it falls.

As P partitions the input space into which sequences belong to atoms of P,
T−iP partitions the space according to which shifted sequences T ix belong to
atoms of P, that is, x ∈ T−iPl ∈ T−iP is equivalent to T ix ∈ Pl and hence
labelP(T ix) = l. The join

PN =

N−1∨
i=0

T−iP

partitions the space into sequences sharing N labels in the following sense: Each
atom Q of PN has the form

Q = {x : labelP(x) = k0, labelP(Tx) = k1, · · · , labelP(TN−1x) = kN − 1}

for some N tuple of integers k = (k0, · · · , kN −1). For this reason we will index
the atoms of PN as Qk. Thus PN breaks up the sequence space into groups of
sequences which have the same labels for N shifts.

We first construct using Lemma 9.5.1 a huge tower of size KN � N , the
height of the tower to be produced for this lemma. Let S denote the base of
this original tower and let ε by the probability of the garbage set. This height
KN tower with base S will be used to construct a new tower of height N and
a base F with the additional desired property. First consider the restriction of
the partition PN to F defined by PN

⋂
F = {Qk

⋂
F ; all KN -tuples k with

coordinates taking values in {0, 1, · · · , ‖P‖−1}}. PN
⋂
F divides up the original

base according to the labels of NK shifts of base sequences. For each atom
Qk

⋂
F in this base partition, the sets {T l(Qk

⋂
F ); k = 0, 1, · · · ,KN − 1} are

disjoint and together form a column of the tower {T lF ; k = 0, 1, · · · ,KN − 1}.
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A set of the form T l(Qk

⋂
F ) is called the lth level of the column containing it.

Observe that if y ∈ T l(Qk

⋂
F ), then y = T lu for some u ∈ Qk

⋂
F and T lu has

label kl. Thus we consider kl to be the label of the column level T l(Qk

⋂
F ).

This complicated structure of columns and levels can be used to recover the
original partition by

Pj =
⋃

l,k:kl=j

T l(Qk

⋂
F )
⋂

(Pj
⋂
G), (9.12)

that is, Pj is the union of all column levels with label j together with that part
of Pj in the garbage. We will focus on the pieces of Pj in the column levels as
the garbage has very small probability.

We wish to construct a new tower with base F so that the probability of Pi
for any of N shifts of F is the same. To do this we form F dividing each column
of the original tower into N equal parts. We collect a group of these parts to
form F so that F will contain only one part at each level, the N shifts of F will
be disjoint, and the union of the N shifts will almost contain all of the original
tower. By using the equal probability parts the new base will have conditional
probabilities for Pj given T l equal for all l, as will be shown.

Consider the atom Q = Qk

⋂
S in the partition PN

⋂
S of the base of the

original tower. If the source is aperiodic in the sense of placing zero probability
on individual sequences, then the set Q can be divided into N disjoint sets of
equal probability, say W0,W1, · · · ,WN−1. Define the set FQ by

FQ = (

(K−2)N⋃
i=0

T iNW0)
⋃

(

(K−2)N⋃
i=0

T 1+iNW1)
⋃
· · · (

(K−2)N⋃
i=0

TN−1+iNWN−1)

=

N−1⋃
l=0

(K−2)N⋃
i=0

T l+iNWl.

FQ contains (K−2) N shifts of W0, of TW1, · · · of T lWl, · · · and of TN−1WN−1.
Because it only takes N -shifts of each small set and because it does not include
the top N levels of the original column, shifting FQ fewer than N times causes
no overlap, that is, T lFQ are disjoint for j = 0, 1, · · · , N−1. The union of these
sets contains all of the original column of the tower except possibly portions of
the top and bottom N −1 levels (which the construction may not include). The
new base F is now defined to be the union of all of the FQk

⋂
S . The sets T lF

are then disjoint (since all the pieces are) and contain all of the levels of the
original tower except possibly the top and bottom N − 1 levels. Thus

µ(

N−1⋃
l=0

T lF ) ≥ µ(

(K−1)N−1⋃
i=N

T iS) =

(K−1)N−1∑
i=N

µ(S)

≥ K − 2
1− ε
KN

=
1− ε
N
− 2

KN
.

By choosing ε = δ/2 and K large this can be made larger than 1− δ. Thus the
new tower satisfies conditions (A)-(C) and we need only verify the new condition
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(D), that is, (9.9). We have that

µ(Pi|T lF ) =
µ(Pi

⋂
T lF )

µ(F )
.

Since the denominator does not depend on l, we need only show the numerator
does not depend on l. From (9.12) applied to the original tower we have that

µ(Pi
⋂
T lF ) =

∑
j,k:kj=i

µ(T j(Qk

⋂
S)
⋂
T lF ),

that is, the sum over all column levels (old tower) labeled i of the probability
of the intersection of the column level and the lth shift of the new base F . The
intersection of a column level in the jth level of the original tower with any shift
of F must be an intersection of that column level with the jth shift of one of
the sets W0, · · · ,WN−1 (which particular set depends on l). Whichever set is
chosen, however, the probability within the sum has the form

µ(T j(Qk

⋂
S)
⋂
T lF ) = µ(T j(Qk

⋂
S)
⋂
T jWm)

= µ((Qk

⋂
S)
⋂
Wm) = µ(Wm),

where the final step follows sinceWm was originally chosen as a subset ofQk

⋂
S.

Since these subsets were all chosen to have equal probability, this last probability
does not depend on m and hence on l and

µ(T j(Qk

⋂
S)
⋂
T lF ) =

1

N
µ(Qk

⋂
S)

and hence

µ(Pi
⋂
T lF ) =

∑
j,k:kj=i

1

N
µ(Qk

⋂
S),

which proves (9.9) since there is no dependence on l. This completes the proof
of the lemma. 2



Chapter 10

Distortion

10.1 Introduction

We now turn to quantification of various notions of the distortion between ran-
dom variables, vectors and processes. A distortion measure is not a “measure”
in the sense used so far; it is an assignment of a nonnegative real number which
indicates how bad an approximation one symbol or random object is of another;
the smaller the distortion, the better the approximation. If the two objects cor-
respond to the input and output of a communication system, then the distortion
provides a measure of the performance of the system. Distortion measures need
not have metric properties such as the triangle inequality and symmetry, but
such properties can be exploited when available. We shall encounter several
notions of distortion and a diversity of applications, with eventually the most
important application being a measure of the performance of a communica-
tions system by an average distortion between the input and output. Other
applications include extensions of finite memory channels to channels which ap-
proximate finite memory channels and different characterizations of the optimal
performance of communications systems.

10.2 Distortion and Fidelity Criteria

Given two measurable spaces (A,BA) and (B,BB), a distortion measure on
A× B is a nonnegative measurable mapping ρ : A× B → [0,∞) which assigns
a real number ρ(x, y) to each x ∈ A and y ∈ B which can be thought of as the
cost of reproducing x and y. The principal practical goal is to have a number by
which the goodness or badness of communication systems can be compared. For
example, if the input to a communication system is a random variable X ∈ A
and the output is Y ∈ B, then one possible measure of the quality of the system
is the average distortion Eρ(X,Y ). Ideally one would like a distortion measure
to have three properties:

199
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• It should be tractable so that one can do useful theory.

• It should be computable so that it can be measured in real systems.

• It should be subjectively meaningful in the sense that small (large) dis-
tortion corresponds to good (bad) perceived quality.

Unfortunately these requirements are often inconsistent and one is forced
to compromise between tractability and subjective significance in the choice of
distortion measures. Among the most popular choices for distortion measures
are metrics or distances, but many practically important distortion measures
are not metrics, e.g., they are not symmetric in their arguments or they do not
satisfy a triangle inequality. An example of a metric distortion measure that
will often be emphasized is that given when the input space A is a Polish space,
a complete separable metric space under a metric ρ, and B is either A itself
or a Borel subset of A. In this case the distortion measure is fundamental to
the structure of the alphabet and the alphabets are standard since the space is
Polish.

Suppose next that we have a sequence of product spaces An and Bn for
n = 1, 2, · · · . A fidelity criterion ρn, n = 1, 2, · · · is a sequence of distortion
measures on An ×Bn. If one has a pair random process, say {Xn, Yn}, then it
will be of interest to find conditions under which there is a limiting per symbol
distortion in the sense that

ρ∞(x, y) = lim
n→∞

1

n
ρn(xn, yn)

exists. As one might guess, the distortion measures in the sequence often are
interrelated. The simplest and most common example is that of an additive or
single-letter fidelity criterion which has the form

ρn(xn, yn) =

n−1∑
i=0

ρ1(xi, yi).

Here if the pair process is AMS, then the limiting distortion will exist and
it is invariant from the ergodic theorem. By far the bulk of the information
theory literature considers only single-letter fidelity criteria and we will share
this emphasis. We will point out, however, other examples where the basic
methods and results apply. For example, if ρn is subadditive in the sense that

ρn(xn, yn) ≤ ρk(xk, yk) + ρn−k(xn−kk , yn−kk ),

then stationarity of the pair process will ensure that n−1ρn converges from the
subadditive ergodic theorem. For example, if d is a distortion measure on A×B,
then

ρn(xn, yn) =

(
n−1∑
i=0

d(xi, yi)
p

)1/p
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for p > 1 is subadditive from Minkowski’s inequality.
As an even simpler example, if d is a distortion measure on A×B, then the

following fidelity criterion converges for AMS pair processes:

1

n
ρn(xn, yn) =

1

n

n−1∑
i=0

f(d(xi, yi)).

This form often arises in the literature with d being a metric and f being a
nonnegative nondecreasing function (sometimes assumed convex).

The fidelity criteria introduced here all are context-free in that the distortion
between n successive input/output samples of a pair process does not depend
on samples occurring before or after these n-samples. Some work has been
done on context-dependent distortion measures (see, e.g., [94]), but we do not
consider their importance sufficient to merit the increased notational and tech-
nical difficulties involved. Hence we shall consider only context-free distortion
measures.

10.3 Performance

As a first application of the notion of distortion, we define a performance mea-
sure of a communication system. Suppose that we have a communication system
[µ, f, ν, g] such that the overall input/output process is {Xn, X̂n}. For the mo-
ment let p denote the corresponding distribution. Then one measure of the
quality (or rather the lack thereof) of the communication system is the long
term time average distortion per symbol between the input and output as de-
termined by the fidelity criterion. Given two sequences x and x̂ and a fidelity
criterion ρn; n = 1, 2, · · · , define the limiting sample average distortion or se-
quence distortion by

ρ∞(x, y) = lim sup
n→∞

1

n
ρn(xn, yn).

Define the performance of a communication system by the expected value of the
limiting sample average distortion:

∆(µ, f, ν, g) = Epρ∞ = Ep

(
lim sup
n→∞

1

n
ρn(Xn, X̂n)

)
. (10.1)

We will focus on two important special cases. The first is that of AMS sys-
tems and additive fidelity criteria. A large majority of the information theory
literature is devoted to additive distortion measures and this bias is reflected
here. We also consider the case of subadditive distortion measures and systems
that are either two-sided and AMS or are one-sided and stationary. Unhappily
the overall AMS one-sided case cannot be handled as there is not yet a subad-
ditive ergodic theorem for that case. In all of these cases we have that if ρ1 is
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integrable with respect to the stationary mean process p̄, then

ρ∞(x, y) = lim
n→∞

1

n
ρn(xn, yn); p− a.e., (10.2)

and ρ∞ is an invariant function of its two arguments, i.e.,

ρ∞(TAx, TÂy) = ρ∞(x, y); p− a.e.. (10.3)

When a system and fidelity criterion are such that (10.2) and (10.3) are
satisfied we say that we have a convergent fidelity criterion. We henceforth
make this assumption.

Since ρ∞ is invariant, we have from Lemma 6.3.1 of [50] that

∆ = Epρ∞ = Ep̄ρ∞. (10.4)

If the fidelity criterion is additive, then we have from the stationarity of p̄
that the performance is given by

∆ = Ep̄ρ1(X0, Y0). (10.5)

If the fidelity criterion is subadditive, then this is replaced by

∆ = inf
N

1

N
Ep̄ρN (XN , Y N ). (10.6)

Assume for the remainder of this section that ρn is an additive fidelity crite-
rion. Suppose now that we now that p is N -stationary; that is, if T = TA × TÂ
denotes the shift on the input/output space AT × ÂT , then the overall process
is stationary with respect to TN . In this case

∆ =
1

N
EρN (XN , X̂N ). (10.7)

We will have this N stationarity, for example, if the source and channel are
stationary and the coders are N -stationary, e.g., are length N -block codes. More
generally, the source could be N -stationary, the first sequence coder (N,K)-
stationary, the channel K-stationary (e.g., stationary), and the second sequence
coder (K,N)-stationary.

We can also consider the behavior of the N -shift more generally when the
system is only AMS This will be useful when considering block codes. Suppose
now that p is AMS with stationary mean p̄. Then from Theorem 7.3.1 of [50],
p is also TN -AMS with an N -stationary mean, say p̄N . Applying the ergodic
theorem to the N shift then implies that if ρN is p̄N -integrable, then

lim
n→∞

1

n

n−1∑
i=0

ρN (xNiN , y
N
iN ) = ρ(N)

∞ (10.8)

exists p̄N (and hence also p) almost everywhere. In addition, ρ
(N)
∞ is N -invariant

and
Epρ

(N)
∞ = Ep̄Nρ

(N)
∞ = Ep̄NρN (XN , Y N ). (10.9)
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Comparison of (10.2) and (10.9) shows that ρ
(N)
∞ = Nρ∞ p-a.e. and hence

∆ =
1

N
Ep̄NρN (XN , Y N ) =

1

N
Epρ

(N)
∞ = Ep̄ρ1(X0, Y0). (10.10)

Given a notion of the performance of a communication system, we can now
define the optimal performance achievable for trying to communicate a given
source {Xn} with distribution µ over a channel ν: Suppose that E is some class
of sequence coders f : AT → BT . For example, E might consist of all sequence
coders generated by block codes with some constraint or by finite-length sliding
block codes. Similarly let D denote a class of sequence coders g : B′

T → ÂT .
Define the optimal performance theoretically achievable or OPTA function for
the source µ, channel ν, and code classes E and D by

∆∗(µ, ν, E ,D) = inf
f∈E,g∈D

∆([µ, f, ν, g]). (10.11)

The goal of the coding theorems of information theory is to relate the OPTA
function to (hopefully) computable functions of the source and channel.

10.4 The rho-bar distortion

In the previous sections it was pointed out that if one has a distortion measure
ρ on two random objects X and Y and a joint distribution on the two random
objects (and hence also marginal distributions for each), then a natural notion of
the difference between the processes or the poorness of their mutual approxima-
tion is the expected distortion Eρ(X,Y ). We now consider a different question:
What if one does not have a joint probabilistic description of X and Y , but
instead knows only their marginal distributions. What then is a natural no-
tion of the distortion or poorness of approximation of the two random objects?
In other words, we previously measured the distortion between two random
variables whose stochastic connection was determined, possibly by a channel, a
code, or a communication system. We now wish to find a similar quantity for
the case when the two random objects are only described as individuals. One
possible definition is to find the smallest possible distortion in the old sense
consistent with the given information, that is, to minimize Eρ(X,Y ) over all
joint distributions consistent with the given marginal distributions. Note that
this will necessarily give a lower bound to the distortion achievable when any
specific joint distribution is specified.

To be precise, suppose that we have random variables X and Y with distri-
butions PX and PY and alphabets A and B, respectively. Let ρ be a distortion
measure on A × B. Define the ρ̄-distortion (pronounced ρ-bar) between the
random variables X and Y by

ρ̄(PX , PY ) = inf
p∈P

Epρ(X,Y ),

Where P = P(PX , PY ) is the collection of all measures on (A×B,BA×BB)
with PX and PY as marginals; that is,

p(A× F ) = PY (F ); F ∈ BB ,
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and
p(G×B) = PX(G); G ∈ BA.

Note that P is not empty since, for example, it contains the product measure
PX × PY .

Distortion measures of this type have a long history and have been rediscov-
ered many times (see, e.g., Rüschendorf [129]). The original idea was developed
for compact metric spaces by Kantorovich [72] and formed a fundamental part
of the origins of linear programming. Levenshtein [95] and Vasershtein [146]
studied this quantity for the special case where A and B are the real line and ρ
is the Euclidean distance.

When as in these cases the distortion is a metric or distance, the ρ̄-distortion
is called the ρ̄-distance. Ornstein [117] developed the distance and many of its
properties for the special case where A and B were common discrete spaces and
ρ was the Hamming distance. In this case the ρ̄-distance is called the d̄-distance.
R. L. Dobrushin suggested that because of the common suffix in the names of
its originators, this distance between distributions should be called the shtein
or stein distance.

The ρ̄-distortion can be extended to processes in a natural way. Suppose
now that {Xn} is a process with process distribution mX and that {Yn} is a
process with process distribution mY . Let PXn and PY n denote the induced
finite dimensional distributions. A fidelity criterion provides the distortion ρn
between these n dimensional alphabets. Let ρ̄n denote the corresponding ρ̄
distortion between the n dimensional distributions. Then

ρ̄(mX ,mY ) = sup
n

1

n
ρ̄n(PXn , PY n);

that is, the ρ̄-distortion between two processes is the maximum of the ρ̄-distortions
per symbol between n-tuples drawn from the process. The properties of the ρ̄
distance are developed in [57] [120] and a detailed development may be found
in [50] . The following theorem summarizes the principal properties.

Theorem 10.4.1 Suppose that we are given an additive fidelity criterion ρn
with a pseudo-metric per-letter distortion ρ1 and suppose that both distributions
mX and mY are stationary and have the same standard alphabet. Then

(a) limn→∞ n−1ρ̄n(PXn , PY n) exists and equals supn n
−1ρ̄n(PXn , PY n).

(b) ρ̄n and ρ̄ are pseudo-metrics. If ρ1 is a metric, then ρ̄n and ρ̄ are metrics.

(c) If mX and mY are both i.i.d., then ρ̄(mX ,mY ) = ρ̄1(PX0
, PY0

).

(d) Let Ps = Ps(mX ,mY ) denote the collection of all stationary distributions
pXY having mX and mY as marginals, that is, distributions on {Xn, Yn}
with coordinate processes {Xn} and {Yn} having the given distributions.
Define the process distortion measure ρ̄′

ρ̄′(mX ,mY ) = inf
pXY ∈Ps

EpXY ρ(X0, Y0).
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Then
ρ̄(mX ,mY ) = ρ̄′(mX ,mY );

that is, the limit of the finite dimensional minimizations is given by a
minimization over stationary processes.

(e) Suppose that mX and mY are both stationary and ergodic. Define Pe =
Pe(mX ,mY ) as the subset of Ps containing only ergodic processes, then

ρ̄(mX ,mY ) = inf
pXY ∈Pe

EpXY ρ(X0, Y0),

(f) Suppose that mX and mY are both stationary and ergodic. Let GX denote a
collection of generic sequences for mX in the sense of Section 8.3 of [50].
Generic sequences are those along which the relative frequencies of a set of
generating events all converge and hence by measuring relative frequencies
on generic sequences one can deduce the underlying stationary and ergodic
measure that produced the sequence. An AMS process produces generic
sequences with probability 1. Similarly let GY denote a set of generic
sequences for mY . Define the process distortion measure

ρ̄′′(mX ,mY ) = inf
x∈GX ,y∈GY

lim sup
n→∞

1

n

n−1∑
i=0

ρ1(x0, y0).

Then
ρ̄(mX ,mY ) = ρ̄′′(mX ,mY );

that is, the ρ̄ distance gives the minimum long term time average distortion
obtainable between generic sequences from the two sources.

(g) The infima defining ρ̄n and ρ̄′ are actually minima.

10.5 d-bar Continuous Channels

We can now generalize some of the notions of channels by using the ρ̄-distance
to weaken the definitions. The first definition is the most important for chan-
nel coding applications. We now confine interest to the d-bar distance, the
ρ-distance for the special case of the Hamming distance:

ρ1(x, y) = d1(x, y) =

{
0 if x = y

1 if x 6= y.

Suppose that [A, ν,B] is a discrete alphabet channel and let νnx denote the
restriction of the channel to Bn, that is, the output distribution on Y n given
an input sequence x. The channel is said to be d̄-continuous if for any ε > 0
there is an n0 such that for all n > n0 d̄n(νnx , ν

n
x′) ≤ ε whenever xi = x′i for

i = 0, 1, · · · , n. Alternatively, ν is d̄-continuous if

lim sup
n→∞

sup
an∈An

sup
x,x′∈c(an)

d̄n(νnx , ν
n
x′) = 0,
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where c(an) is the rectangle defined as all x with xi = ai; i = 0, 1, · · · , n − 1.
d̄-continuity implies the distributions on output n-tuples Y n given two input
sequences are very close provided that the input sequences are identical over the
same time period and that n is large. This generalizes the notions of 0 or finite
input memory and anticipation since the distributions need only approximate
each other and do not have to be exactly the same.

More generally we could consider ρ̄-continuous channels in a similar manner,
but we will focus on the simpler discrete d̄-continuous channel.

d̄-continuous channels possess continuity properties that will be useful for
proving block and sliding block coding theorems. They are “continuous” in the
sense that knowing the input with sufficiently high probability for a sufficiently
long time also specifies the output with high probability. The following two
lemmas make these ideas precise.

Lemma 10.5.1 Suppose that x, x̄ ∈ c(an) and

d̄(νnx , ν
n
x̄ ) ≤ δ2.

This is the case, for example, if the channel is d̄ continuous and n is chosen
sufficiently large. Then

νnx (Gδ) ≥ νnx̄ (G)− δ

and hence
inf

x∈c(an)
νnx (Gδ) ≥ sup

x∈c(an)

νnx (G)− δ.

Proof: From Theorem 10.4.1 the infima defining the d̄ distance are actually
minima and hence there is a pmf p on Bn ×Bn such that∑

bn∈Bn
p(yn, bn) = νnx (yn)

and ∑
bn∈Bn

p(bn, yn) = νnx̄ (yn);

that is, p has νnx and νnx̄ as marginals, and

1

n
Epdn(Y n, Ȳ n) = d̄(νnx , ν

n
x̄ ).

Using the Markov inequality we can write

νnx (Gδ) = p(Y n ∈ Gδ) ≥ p(Ȳ n ∈ G and dn(Y n, Ȳ n) ≤ nδ)
= 1− p(Ȳ n 6∈ G or dn(Y n, Ȳ n) > nδ)

≥ 1− p(Ȳ n 6∈ G)− p(dn(Y n, Ȳ n) > nδ)

≥ νnx̄ (G)− 1

δ
E(n−1dn(Y n, Ȳ n)) ≥ νnx̄ (G)− δ

proving the first statement. The second statement follows from the first. 2



10.5. D-BAR CONTINUOUS CHANNELS 207

Next suppose that [G,µ, U ] is a stationary source, f is a stationary encoder
which could correspond to a finite length sliding block encoder or to an infinite
length one, ν is a stationary channel, and g is a length m sliding block decoder.
The probability of error for the resulting hookup is defined by

Pe(µ, ν, f, g) = Pr(U0 6= Û0) = µν(E) =

∫
dµ(u)νf(u)(Eu),

where E is the error event {u, y : u0 6= gm(Y−q
m)} and Eu = {y : (u, y) ∈ E} is

the section of E at u.

Lemma 10.5.2 Given a stationary channel ν, a stationary source [G,µ, U ], a
length m sliding block decoder, and two encoders f and φ, then for any positive
integer r

|Pe(µ, ν, f, g)− Pe(µ, ν, φ, g)| ≤
m

r
+ rPr(f 6= φ) +m max

ar∈Ar
sup

x,x′∈c(ar)

d̄r(ν
r
x, ν

r
x′).

Proof: Define Λ = {u : f(u) = φ(u)} and

Λr = {u : f(T iu) = φ(T iu); i = 0, 1 · · · , r − 1} =

r−1⋂
i=0

T iΛ.

From the union bound

µ(Λcr) ≤ rµ(Λc) = rPr(f 6= φ). (10.12)

From stationarity, if g = gm(Y m−q) then

Pe(µ, ν, f, g) =

∫
dµ(u)νf(u)(y : gm(ym−q) 6= u0)

=
1

r

r−1∑
i=0

∫
dµ(u)νf(u)(y : gm(ymi−q) 6= u0)

≤ m

r
+

1

r

r−q∑
i=q

∫
Λr

dµ(u)νrf(u)(y
r : gm(ymi−q) 6= ui) + µ(Λcr). (10.13)

Fix u ∈ Λr and let pu yield d̄r(ν
r
f(u),φ(u)); that is,

∑
wr pu(yr, wr) = νrf(u)(y

r),∑
yr pu(yr, wr) = νrφ(u)(w

r), and

1

r

r−1∑
i=0

pu(yr, wr : yi 6= wi) = d̄r(ν
r
f(u),φ(u)). (10.14)



208 CHAPTER 10. DISTORTION

We have that

1

r

r−q∑
i=q

νrf(u)(y
r : gm(ymi−q) 6= ui)

=
1

r

r−q∑
i=q

pu(yr, wr : gm(ymi−q) 6= ui)

≤ 1

r

r−q∑
i=q

pu(yr, wr : gm(ymi−q) 6= wmi−q) +
1

r

r−q∑
i=q

pu(yr, wr : gm(wmi−q) 6= ui)

≤ 1

r

r−q∑
i=q

pu(yr, wr : yri−q 6= wri−q) + Pe(µ, ν, φ, g)

≤ 1

r

r−q∑
i=q

i−q+m∑
j=i−q

pu(yr, wr : yj 6= wj) + Pe(µ, ν, φ, g)

≤ md̄r(ν
r
f(u), ν

r
φ(u)) + Pe(µ, ν, φ, g),

which with (10.12)-(10.14) proves the lemma. 2

The following corollary states that the probability of error using sliding block
codes over a d̄-continuous channel is a continuous function of the encoder as
measured by the metric on encoders given by the probability of disagreement of
the outputs of two encoders.

Corollary 10.5.1 Given a stationary d̄-continuous channel ν and a finite length
decoder gm : Bm → A, then given ε > 0 there is a δ > 0 so that if f and φ are
two stationary encoders such that Pr(f 6= g) ≤ δ, then

|Pe(µ, ν, f, g)− Pe(µ, ν, φ, g)| ≤ ε.

Proof: Fix ε > 0 and choose r so large that

max
ar

sup
x,x′∈c(ar)

d̄r(ν
r
x, ν

r
x′) ≤ ε

3m

m

r
≤ ε

3
,

and choose δ = ε/(3r). Then Lemma 10.5.2 implies that

|Pe(µ, ν, f, g)− Pe(µ, ν, φ, g)| ≤ ε.

2

Given an arbitrary channel [A, ν,B], we can define for any block length
N a closely related CBI channel [A, ν̃, B] as the CBI channel with the same
probabilities on output N -blocks, that is, the same conditional probabilities for
Y NkN given x, but having conditionally independent blocks. We shall call ν̃ the
N -CBI approximation to ν. A channel ν is said to be conditionally almost block
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independent or CABI if given ε there is an N0 such that for any N ≥ N0 there
is an M0 such that for any x and any N -CBI approximation ν̃ to ν

d̄(ν̃Mx , νMx ) ≤ ε, all M ≥M0,

where νMx denotes the restriction of νx to BNB , that is, the output distribution on
Y N given x. A CABI channel is one such that the output distribution is close (in
a d̄ sense) to that of the N -CBI approximation provided that N is big enough.
CABI channels were introduced by Neuhoff and Shields [111] who provided
several examples alternative characterizations of the class. In particular they
showed that finite memory channels are both d̄-continuous and CABI. Their
principal result, however, requires the notion of the d̄ distance between channels.
Given two channels [A, ν,B] and [A, ν′, B], define the d̄ distance between the
channels to be

d̄(ν, ν′) = lim sup
n→∞

sup
x
d̄(νnx , ν

′N
x ).

Neuhoff and Shields [111] showed that the class of CABI channels is exactly
the class of primitive channels together with the d̄ limits of such channels.

10.6 The Distortion-Rate Function

We close this chapter on distortion, approximation, and performance with the
introduction and discussion of Shannon’s distortion-rate function. This function
(or functional) of the source and distortion measure will play a fundamental role
in evaluating the OPTA functions. In fact, it can be considered as a form of
information theoretic OPTA. Suppose now that we are given a source [A,µ]
and a fidelity criterion ρn; n = 1, 2, · · · defined on A × Â, where Â is called
the reproduction alphabet. Then the Shannon distortion rate function (DRF) is
defined in terms of a nonnegative parameter called rate by

D(R,µ) = lim sup
N→∞

1

N
DN (R,µN )

where

DN (R,µN ) = inf
pN∈RN (R,µN )

EpNρN (XN , Y N ),

where RN (R,µN ) is the collection of all distributions pN for the coordinate
random vectors XN and Y N on the space (AN × ÂN , BNA × BNÂ ) with the
properties that

(1) pN induces the given marginal µN ; that is, pN (ÂN × F ) = µN (F ) for all
F ∈ BNA , and

(2) the mutual information satisfies

1

N
IpN (XN ; X̂N ) ≤ R.
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If RN (R,µN ) is empty, then DN (R,µN ) is ∞. DN is called the Nth order
distortion-rate function.

Lemma 10.6.1 DN (R,µ) and D(R,µ) are nonnegative convex
⋃

functions of
R and hence are continuous in R for R > 0.

Proof: Nonnegativity is obvious from the nonnegativity of distortion. Suppose
that pi ∈ RN (Ri, µ

N ); i = 1, 2 yields

EpiρN (XN , Y N ) ≤ DN (Ri, µ) + ε.

From Corollary 5.5.5 mutual information is a convex
⋃

function of the condi-
tional distribution and hence if p̄ = λp1 + (1− λ)p2, then

Ip̄ ≤ λIp1
+ (1− λ)Ip2

≤ λR1 + (1− λ)R2

and hence p̄ ∈ RN (λR1 + (1− λ)R2) and therefore

DN (λR1 + (1− λ)R2) ≤ Ep̄ρN (XN , Y N )

= λEp1
ρN (XN , Y N ) + (1− λ)Ep2

ρN (XN , Y N )

≤ λDN (R1, µ) + (1− λ)DN (R2, µ).

Since D(R,µ) is the limit of DN (R,µ), it too is convex. It is well known from
real analysis that convex functions are continuous except possibly at their end
points. 2

The following lemma shows that when the underlying source is stationary
and the fidelity criterion is subadditive (e.g., additive), then the limit defining
D(R,µ) is an infimum.

Lemma 10.6.2 If the source µ is stationary and the fidelity criterion is subad-
ditive, then

D(R,µ) = lim
N→∞

1

N
DN (R,µ) = inf

N

1

N
DN (R,µ).

Proof: Fix N and n < N and let pn ∈ Rn(R,µn) yield

Epnρn(Xn, Y n) ≤ Dn(R,µn) +
ε

2

and let pN−n ∈ RN−n(R,µN−n) yield

EpN−nρN−n(XN−n, Y N−n) ≤ DN−n(R,µN−n) +
ε

2
.

pn together with µn implies a regular conditional probability q(F |xn), F ∈ Bn
Â

.

Similarly pN−n and µN−n imply a regular conditional probability r(G|xN−n).
Define now a regular conditional probability t(·|xN ) by its values on rectangles
as

t(F ×G|xN ) = q(F |xn)r(G|xN−nn ); F ∈ Bn
Â
, G ∈ BN−n

Â
.



10.6. THE DISTORTION-RATE FUNCTION 211

Note that this is the finite dimensional analog of a block memoryless channel
with two blocks. Let pN = µN t be the distribution induced by µ and t. Then
exactly as in Lemma 9.4.2 we have because of the conditional independence that

IpN (XN ;Y N ) ≤ IpN (Xn;Y n) + IpN (XN−n
n ;Y N−nn )

and hence from stationarity

IpN (XN ;Y N ) ≤ Ipn(Xn;Y n) + IpN−n(XN−n;Y N−n)

≤ nR+ (N − n)R = NR

so that pN ∈ RN (R,µN ). Thus

DN (R,µN ) ≤ EpNρN (XN , Y N )

≤ EpN
(
ρn(Xn, Y n) + ρN−n(XN−n

n , Y N−nn )
)

= Epnρn(Xn, Y n) + EpN−nρN−n(XN−n, Y N−n)

≤ Dn(R,µn) +DN−n(R,µN−n) + ε.

Thus since ε is arbitrary we have shown that if dn = Dn(R,µn), then

dN ≤ dn + dN−n; n ≤ N ;

that is, the sequence dn is subadditive. The lemma then follows immediately
from Lemma 7.5.1 of [50]. 2

As with the ρ̄ distance, there are alternative characterizations of the distortion-
rate function when the process is stationary. The remainder of this section is
devoted to developing these results. The idea of an SBM channel will play
an important role in relating nth order distortion-rate functions to the process
definitions. We henceforth assume that the input source µ is stationary and
we confine interest to additive fidelity criteria based on a per-letter distortion
ρ = ρ1.

The basic process DRF is defined by

D̄s(R,µ) = inf
p∈R̄s(R,µ)

Epρ(X0, Y0),

where R̄s(R,µ) is the collection of all stationary processes p having µ as an
input distribution and having mutual information rate Īp = Īp(X;Y ) ≤ R. The
original idea of a process rate-distortion function was due to Kolmogorov and
his colleagues [88] [45] (see also [23]). The idea was later elaborated by Marton
[102] and Gray, Neuhoff, and Omura [55].

Recalling that the L1 ergodic theorem for information density holds when
Īp = I∗p ; that is, the two principal definitions of mutual information rate yield
the same value, we also define the process DRF

D∗s(R,µ) = inf
p∈R∗s(R,µ)

Epρ(X0, Y0),
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where R∗s(R,µ) is the collection of all stationary processes p having µ as an
input distribution, having mutual information rate Īp ≤ R, and having Īp = I∗p .
If µ is both stationary and ergodic, define the corresponding ergodic process
DRF’s by

D̄e(R,µ) = inf
p∈R̄e(R,µ)

Epρ(X0, Y0),

D∗e(R,µ) = inf
p∈R∗e(R,µ)

Epρ(X0, Y0),

where R̄e(R,µ) is the subset of R̄s(R,µ) containing only ergodic measures and
R∗e(R,µ) is the subset of R∗s(R,µ) containing only ergodic measures.

Theorem 10.6.1 Given a stationary source which possesses a reference letter
in the sense that there exists a letter a∗ ∈ Â such that

Eµρ(X0, a∗) ≤ ρ∗ <∞. (10.15)

Fix R > 0. If D(R,µ) <∞, then

D(R,µ) = D̄s(R,µ) = D∗s(R,µ).

If in addition µ is ergodic, then also

D(R,µ) = D̄e(R,µ) = D∗e(R,µ).

The proof of the theorem depends strongly on the relations among distortion
and mutual information for vectors and for SBM channels. These are stated
and proved in the following lemma, the proof of which is straightforward but
somewhat tedious. The theorem is proved after the lemma.

Lemma 10.6.3 Let µ be the process distribution of a stationary source {Xn}.
Let ρn; n = 1, 2, · · · be a subadditive (e.g., additive) fidelity criterion. Suppose
that there is a reference letter a∗ ∈ Â for which (10.15) holds. Let pN be a
measure on (AN × ÂN , BNA ×BNÂ ) having µN as input marginal; that is, pN (F ×
ÂN ) = µN (F ) for F ∈ BNA . Let q denote the induced conditional probability
measure; that is, qxN (F ), xN ∈ AN , F ∈ BN

Â
, is a regular conditional probability

measure. (This exists because the spaces are standard.) We abbreviate this
relationship as pN = µNq. Let XN , Y N denote the coordinate functions on
AN × ÂN and suppose that

EpN
1

N
ρN (XN , Y N ) ≤ D (10.16)

and
1

N
IpN (XN ;Y N ) ≤ R. (10.17)

If ν is an (N, δ) SBM channel induced by q as in Example 9.4.11 and if p = µν
is the resulting hookup and {Xn, Yn} the input/output pair process, then

1

N
EpρN (XN , Y N ) ≤ D + ρ∗δ (10.18)
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and

Īp(X;Y ) = I∗p (X;Y ) ≤ R; (10.19)

that is, the resulting mutual information rate of the induced stationary process
satisfies the same inequality as the vector mutual information and the resulting
distortion approximately satisfies the vector inequality provided δ is sufficiently
small. Observe that if the fidelity criterion is additive, the (10.18) becomes

Epρ1(X0, Y0) ≤ D + ρ∗δ.

Proof: We first consider the distortion as it is easier to handle. Since the SBM
channel is stationary and the source is stationary, the hookup p is stationary
and

1

n
Epρn(Xn, Y n) =

1

n

∫
dmZ(z)Epzρn(Xn, Y n),

where pz is the conditional distribution of {Xn, Yn} given {Zn}. Note that the
above formula reduces to Epρ(X0, Y0) if the fidelity criterion is additive because
of the stationarity. Given z, define Jn0 (z) to be the collection of indices of zn

for which zi is not in an N -cell. (See the discussion in Example 9.4.11.) Let
Jn1 (z) be the collection of indices for which zi begins an N -cell. If we define
the event G = {z : z0 begins an N − cell}, then i ∈ Jn1 (z) if T iz ∈ G. From
Corollary 9.4.3 mZ(G) ≤ N−1. Since µ is stationary and {Xn} and {Zn} are
mutually independent,

nEpzρn(Xn, Y n) ≤
∑

i∈Jn0 (z)

Epzρ(Xi, a
∗) +N

∑
i∈Jn1 (z)

Epzρ(XN
i , Y

N
i )

=

n−1∑
i=0

1Gc(T
iz)ρ∗ +

n−1∑
i=0

EpNρN1G(T iz).

Since mZ is stationary, integrating the above we have that

Epρ1(X0, Y0) = ρ∗mZ(Gc) +NmZ(G)EpNρN ≤ ρ∗δ + EpNρN ,

proving (10.18).

Let rm and tm denote asymptotically accurate quantizers on A and Â; that
is, as in Corollary 6.2.1 define

X̂n = rm(X)n = (rm(X0), · · · , rm(Xn−1))

and similarly define Ŷ n = tm(Y )n. Then

I(rm(X)n; tm(Y )n) →
m→∞

I(Xn;Y n)

and

Ī(rm(X); tm(Y )) →
m→∞

I∗(X;Y ).
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We wish to prove that

Ī(X;Y ) = lim
n→∞

lim
m→∞

1

n
I(rm(X)n; tm(Y )n)

= lim
m→∞

lim
n→∞

1

n
I(rm(X)n; tm(Y )n)

= I∗(X;Y )

Since Ī ≥ I∗, we must show that

lim
n→∞

lim
m→∞

1

n
I(rm(X)n; tm(Y )n) ≤ lim

m→∞
lim
n→∞

1

n
I(rm(X)n; tm(Y )n).

We have that

I(X̂n; Ŷ n) = I((X̂n, Zn); Ŷ n)− I(Zn, Ŷ n|X̂n)

and

I((X̂n, Zn); Ŷ n) = I(X̂n; Ŷ n|Zn) + I(Ŷ n;Zn) = I(X̂n; Ŷ n|Zn)

since X̂n and Zn are independent. Similarly,

I(Zn; Ŷ n|X̂n) = H(Zn|X̂n)−H(Zn|X̂n, Ŷ n)

= H(Zn)−H(Zn|X̂n, Ŷ n) = I(Zn; (X̂n, Ŷ n)).

Thus we need to show that

lim
n→∞

lim
m→∞

(
1

n
I(rm(X)n; tm(Y )n|Zn)− 1

n
I(Zn, (rm(X)n, tm(Y )n))

)
≤

lim
m→∞

lim
n→∞

(
1

n
I(rm(X)n; tm(Y )n|Zn)− 1

n
I(Zn, (rm(X)n, tm(Y )n))

)
.

Since Zn has a finite alphabet, the limits of n−1I(Zn, (rm(X)n, tm(Y )n)) are
the same regardless of the order from Theorem 6.4.1. Thus Ī will equal I∗ if we
can show that

Ī(X;Y |Z) = lim
n→∞

lim
m→∞

1

n
I(rm(X)n; tm(Y )n|Zn)

≤ lim
m→∞

lim
n→∞

1

n
I(rm(X)n; tm(Y )n|Zn) = I∗(X;Y |Z). (10.20)

This we now proceed to do. From Lemma 5.5.7 we can write

I(rm(X)n; tm(Y )n|Zn) =

∫
I(rm(X)n; tm(Y )n|Zn = zn) dPZn(zn).

Abbreviate I(rm(X)n; tm(Y )n|Zn = zn) to Iz(X̂
n; Ŷ n). This is simply the

mutual information between X̂n and Ŷ n under the distribution for (X̂n, Ŷ n)
given a particular random blocking sequence z. We have that

Iz(X̂
n; Ŷ n) = Hz(Ŷ

n)−Hz(Ŷ
n|X̂n).
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Given z, let Jn0 (z) be as before. Let Jn2 (z) denote the collection of all indices i
of zi for which zi begins an N cell except for the final such index (which may
begin an N -cell not completed within zn). Thus Jn2 (z) is the same as Jn1 (z)
except that the largest index in the latter collection may have been removed
if the resulting N -cell was not completed within the n-tuple. We have using
standard entropy relations that

Iz(X̂
n; Ŷ n) ≥

∑
i∈Jn0 (z)

(
Hz(Ŷi|Ŷ i)−Hz(Ŷi|Ŷ i, X̂i+1)

)
+

∑
i∈Jn2 (z)

(
Hz(Ŷ

N
i |Ŷ i)−Hz(Ŷ

N
i |Ŷ i, X̂i+N )

)
. (10.21)

For i ∈ Jn0 (z), however, Yi is a∗ with probability one and hence

Hz(Ŷi|Ŷ i) ≤ Hz(Ŷi) ≤ Hz(Yi) = 0

and
Hz(Ŷi|Ŷ i, X̂i+1) ≤ Hz(Ŷi) ≤ Hz(Yi) = 0.

Thus we have the bound

Iz(X̂
n; Ŷ n) ≥

∑
i∈Jn2 (z)

(
Hz(Ŷ

N
i |Ŷ i)−Hz(Ŷ

N
i |Ŷ i, X̂i+N )

)
.

=
∑

i∈Jn2 (z)

(
Iz(Ŷ

N
i ; (Ŷ i, X̂i +N))− Iz(Ŷ Ni ; Ŷ i)

)
≥

∑
i∈Jn2 (z)

(
Iz(Ŷ

N
i ; X̂N

i )− Iz(Ŷ Ni ; Ŷ i)
)
, (10.22)

where the last inequality follows from the fact that I(U ; (V,W )) ≥ I(U ;V ).
For i ∈ Jn2 (z) we have by construction and the stationarity of µ that

Iz(X̂
N
i ; Ŷ Ni ) = IpN (X̂N ; Ŷ N ). (10.23)

As before let G = {z : z0 begins an N − cell}. Then i ∈ Jn2 (z) if T iz ∈ G and
i < n−N and we can write

1

n
Iz(X̂

n; Ŷ n) ≥

1

n
IpN (X̂N ; Ŷ N )

n−N−1∑
i=0

1G(T iz)− 1

n

n−N−1∑
i=0

Iz(Ŷ
N
i ; Ŷ i)1G(T iz).

All of the above terms are measurable functions of z and are nonnegative. Hence
they are integrable (although we do not yet know if the integral is finite) and
we have that

1

n
I(X̂n; Ŷ n) ≥

Ipn(X̂N ; Ŷ N )mZ(G)
n−N
n

− 1

n

n−N−1∑
i=0

∫
dmZ(z)Iz(Ŷ

N
i ; Ŷ i)1G(T iz).
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To continue we use the fact that since the processes are stationary, we can
consider it to be a two sided process (if it is one sided, we can imbed it in a two
sided process with the same probabilities on rectangles). By construction

Iz(Ŷ
N
i ; Ŷ i) = IT iz(Ŷ

N
0 ; (Y−i, · · · , Y−1))

and hence since mZ is stationary we can change variables to obtain

1

n
I(X̂n; Ŷ n) ≥

Ipn(X̂N ; Ŷ N )mZ(G)
n−N
n
− 1

n

n−N−1∑
i=0

∫
dmZ(z)Iz(Ŷ

N
0 ; (Ŷ−i, · · · , Ŷ−1))1G(z).

We obtain a further bound from the inequalities

Iz(Ŷ
N
0 ; (Ŷ−i, · · · , Ŷ−1)) ≤ Iz(Y N0 ; (Y−i, · · · , Y−1)) ≤ Iz(Y N0 ;Y −)

where Y − = (· · · , Y−2, Y−1). Since Iz(Y
N
0 ;Y −) is measurable and nonnegative,

its integral is defined and hence

lim
n→∞

1

n
I(X̂n; Ŷ n|Zn) ≥ Ipn(X̂N ; Ŷ N )mZ(G)−

∫
G

dmZ(z)Iz(Y
N
0 ;Y −).

We can now take the limit as m→∞ to obtain

I∗(X;Y |Z) ≥ Ipn(XN ;Y N )mZ(G)−
∫
G

dmZ(z)Iz(Y
N
0 ;Y −). (10.24)

This provides half of what we need.
Analogous to (10.21) we have the upper bound

Iz(X̂
n; Ŷ n) ≤

∑
i∈Jn1 (z)

(
Iz(Ŷ

N
i ; (Ŷ i, X̂i+N ))− Iz(Ŷ Ni ; Ŷ i)

)
(10.25)

We note in passing that the use of J1 here assumes that we are dealing with a
one sided channel and hence there is no contribution to the information from
any initial symbols not contained in the first N -cell. In the two sided case time
0 could occur in the middle of an N -cell and one could fix the upper bound by
adding the first index less than 0 for which zi begins an N -cell to the above
sum. This term has no affect on the limits. Taking the limits as m→∞ using
Lemma 5.5.1 we have that

Iz(X
n;Y n) ≤

∑
i∈Jn1 (z)

(
Iz(Y

N
i ; (Y i, Xi+N ))− Iz(Y Ni ;Y i)

)
.

Given Zn = zn and i ∈ Jn1 (z), (Xi, Y i) → XN
i → Y Ni forms a Markov chain

because of the conditional independence and hence from Lemma 5.5.2 and Corol-
lary 5.5.3

Iz(Y
N
i , (Y i, Xi+N )) = Iz(X

N
i ;Y Ni ) = IpN (XN ;Y N ).
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Thus we have the upper bound

1

n
Iz(X

n;Y n) ≤ 1

n
IpN (XN ;Y N )

n−1∑
i=0

1G(T iz)− 1

n

n−1∑
i=0

Iz(Y
N
i ;Y i)1G(T iz).

Taking expectations and using stationarity as before we find that

1

n
I(Xn;Y n|Zn) ≤ IpN (XN ;Y N )mZ(G)

− 1

n

n−1∑
i=0

∫
G

dmZ(z)Iz(Y
N
0 ; (Y−i, · · · , Y−1)).

Taking the limit as n→∞ using Lemma 5.6.1 yields

Ī(X;Y |Z) ≤ IpN (XN ;Y N )mZ(G)−
∫
G

dmZ(z)Iz(Y
N
0 ;Y −). (10.26)

Combining this with (10.24) proves that

Ī(X;Y |Z) ≤ I∗(X;Y |Z)

and hence that
Ī(X;Y ) = I∗(X;Y ).

It also proves that

Ī(X;Y ) = Ī(X;Y |Z)− Ī(Z; (X,Y )) ≤ Ī(X;Y |Z)

≤ IpN (XN ;Y N )mZ(G) ≤ 1

N
IpN (XN ;Y N )

using Corollary 9.4.3 to bound mX(G). This proves (10.19). 2

Proof of the theorem: We have immediately that

R∗e(R,µ) ⊂ R∗s(R,µ) ⊂ R̄s(R,µ)

and
R∗e(R,µ) ⊂ R̄e(R,µ) ⊂ R̄s(R,µ),

and hence we have for stationary sources that

D̄s(R,µ) ≤ D∗s(R,µ) (10.27)

and for ergodic sources that

D̄s(R,µ) ≤ D∗s(R,µ) ≤ D∗e(R,µ) (10.28)

and
D̄s(R,µ) ≤ D̄e(R,µ) ≤ D∗e(R,µ). (10.29)
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We next prove that
D̄s(R,µ) ≥ D(R,µ). (10.30)

If D̄s(R,µ) is infinite, the inequality is obvious. Otherwise fix ε > 0 and choose
a p ∈ R̄s(R,µ) for which Epρ1(X0, Y0) ≤ D̄s(R,µ) + ε and fix δ > 0 and choose
m so large that for n ≥ m we have that

n−1Ip(X
n;Y n) ≤ Īp(X;Y ) + δ ≤ R+ δ.

For n ≥ m we therefore have that pn ∈ Rn(R+ δ, µn) and hence

D̄s(R,µ) + ε = Epnρn ≥ Dn(R+ δ, µ) ≥ D(R+ δ, µ).

From Lemma 10.6.1 D(R,µ) is continuous in R and hence (10.30) is proved.
Lastly, fix ε > 0 and choose N so large and pN ∈ RN (R,µN ) so that

EpNρN ≤ DN (R,µN ) +
ε

3
≤ D(R,µ) +

2ε

3
.

Construct the corresponding (N, δ)-SBM channel as in Example 9.4.11 with δ
small enough to ensure that δρ∗ ≤ ε/3. Then from Lemma 10.6.3 we have
that the resulting hookup p is stationary and that Īp = I∗p ≤ R and hence

p ∈ R∗s(R,µ) ⊂ R̄s(R,µ). Furthermore, if µ is ergodic then so is p and hence
p ∈ R∗e(R,µ) ⊂ R̄e(R,µ). From Lemma 10.6.3 the resulting distortion is

Epρ1(X0, Y0) ≤ EpNρN + ρ∗δ ≤ D(R,µ) + ε.

Since ε > 0 this implies the exisitence of a p ∈ R∗s(R,µ) (p ∈ R∗e(R,µ) if
µ is ergodic) yielding Epρ1(X0, Y0) arbitrarily close to D(R,µ. Thus for any
stationary source

D∗s(R,µ) ≤ D(R,µ)

and for any ergodic source

D∗e(R,µ) ≤ D(R,µ).

With (10.27)–(10.30) this completes the proof. 2

The previous lemma is technical but important. It permits the construction
of a stationary and ergodic pair process having rate and distortion near that
of that for a finite dimensional vector described by the original source and a
finite-dimensional conditional probability.



Chapter 11

Source Coding Theorems

11.1 Source Coding and Channel Coding

In this chapter and the next we develop the basic coding theorems of information
theory. As is traditional, we consider two important special cases first and then
later form the overall result by combining these special cases. In the first case
we assume that the channel is noiseless, but it is constrained in the sense that
it can only pass R bits per input symbol to the receiver. Since this is usually
insufficient for the receiver to perfectly recover the source sequence, we attempt
to code the source so that the receiver can recover it with as little distortion as
possible. This leads to the theory of source coding or source coding subject to
a fidelity criterion or data compression, where the latter name reflects the fact
that sources with infinite or very large entropy are “compressed” to fit across the
given communication link. In the next chapter we ignore the source and focus
on a discrete alphabet channel and construct codes that can communicate any of
a finite number of messages with small probability of error and we quantify how
large the message set can be. This operation is called channel coding or error
control coding. We then develop joint source and channel codes which combine
source coding and channel coding so as to code a given source for communication
over a given channel so as to minimize average distortion. The ad hoc division
into two forms of coding is convenient and will permit performance near that of
the OPTA function for the codes considered.

11.2 Block Source Codes for AMS Sources

We first consider a particular class of codes: block codes. For the time being
we also concentrate on additive distortion measures. Extensions to subadditive
distortion measures will be considered later. Let {Xn} be a source with a
standard alphabet A. Recall that an (N,K) block code of a source {Xn} maps
successive nonoverlapping input vectors {XN

nN} into successive channel vectors
UKnK = α(XN

nN ), where α : AN → BK is called the source encoder. We assume

219
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that the channel is noiseless, but that it is constrained in the sense that N source
time units corresponds to the same amount of physical time as K channel time
units and that

K log ||B||
N

≤ R,

where the inequality can be made arbitrarily close to equality by taking N and
K large enough subject to the physical stationarity constraint. R is called the
source coding rate or resolution in bits or nats per input symbol. We may wish
to change the values of N and K, but the rate is fixed.

A reproduction or approximation of the original source is obtained by a
source decoder, which we also assume to be a block code. The decoder is a
mapping β : BK → ÂN which forms the reproduction process {X̂n} via X̂N

nN =
β(UKnK); n = 1, 2, . . .. In general we could have a reproduction dimension
different from that of the input vectors provided they corresponded to the same
amount of physical time and a suitable distortion measure was defined. We will
make the simplifying assumption that they are the same, however.

Because N source symbols are mapped into N reproduction symbols, we
will often refer to N alone as the block length of the source code. Observe that
the resulting sequence coder is N -stationary. Our immediate goal is now the
following: Let E and D denote the collection of all block codes with rate no
greater than R and let ν be the given channel. What is the OPTA function
∆(µ, E , ν,D) for this system? Our first step toward evaluating the OPTA is to
find a simpler and equivalent expression for the current special case.

Given a source code consisting of encoder α and decoder β, define the code-
book to be

C = { all β(uK);uK ∈ BK},
that is, the collection of all possible reproduction vectors available to the re-
ceiver. For convenience we can index these words as

C = {yi; i = 1, 2, . . . ,M},

where N−1 logM ≤ R by construction. Observe that if we are given only
a decoder β or, equivalently, a codebook, and if our goal is to minimize the
average distortion for the current block, then no encoder can do better than
the encoder α∗ which maps an input word xN into the minimum distortion
available reproduction word, that is, define α∗(xN ) to be the uK minimizing
ρN (xN , β(uK)), an assignment we denote by

α∗(xN ) = min
uK

−1ρN (xN , β(uK)).

Observe that by construction we therefore have that

ρN (xN , β(α∗(xN ))) = min
y∈C

ρN (xN , y)

and the overall mapping of xN into a reproduction is a minimum distortion or
nearest neighbor mapping. Define

ρN (xN , C) = min
y∈C

ρN (xN , y).



11.2. BLOCK SOURCE CODES FOR AMS SOURCES 221

To formally prove that this is the best decoder, observe that if the source µ is
AMS and p is the joint distribution of the source and reproduction, then p is also
AMS. This follows since the channel induced by the block code is N -stationary
and hence also AMS with respect to TN . This means that p is AMS with respect
to TN which in turn implies that it is AMS with respect to T (Theorem 7.3.1 of
[50]). Letting p̄ denote the stationary mean of p and p̄N denote the N -stationary
mean, we then have from (10.10) that for any block codes with codebook C

∆ =
1

N
Ep̄NρN (XN , Y N ) ≥ 1

N
Ep̄NρN (XN , C),

with equality if the minimum distortion encoder is used. For this reason we can
confine interest to block codes specified by a codebook: the encoder produces
the index of the minimum distortion codeword for the observed vector and the
decoder is a table lookup producing the codeword being indexed. A code of this
type is also called a vector quantizer or block quantizer. Denote the performance
of the block code with codebook C on the source µ by

ρ(C, µ) = ∆ = Epρ∞.

Lemma 11.2.1 Given an AMS source µ and a block length N code book C,
let µ̄N denote the N -stationary mean of µ (which exists from Corollary 7.3.1
of [50]), let p denote the induced input/output distribution, and let p̄ and p̄N
denote its stationary mean and N -stationary mean, respectively. Then

ρ(C, µ) = Ep̄ρ1(X0, Y0) =
1

N
Ep̄NρN (XN , Y N )

=
1

N
Eµ̄NρN (XN , C) = ρ(C, µ̄N ).

Proof: The first two equalities follow from (10.10), the next from the use of the
minimum distortion encoder, the last from the definition of the performance of
a block code. 2

It need not be true in general that ρ(C, µ) equal ρ(C, µ̄). For example, if µ
produces a single periodic waveform with period N and C consists of a single
period, then ρ(C, µ) = 0 and ρ(C, µ̄) > 0. It is the N -stationary mean and not
the stationary mean that is most useful for studying an N -stationary code.

We now define the operational distortion-rate function (DRF) for block codes
to be

δ(R,µ) = ∆∗(µ, ν, E ,D) = inf
N
δN (R,µ),

δN (R,µ) = inf
C∈K(N,R)

ρ(C, µ),

where ν is the noiseless channel as described previously, E and D are classes
of block codes for the channel, and K(N,R) is the class of all block length N
codebooks C with

1

N
log ||C|| ≤ R.

δ(R,µ) is called the operational block coding distortion-rate function (DRF)
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Corollary 11.2.1 Given an AMS source µ, then for any N and i = 0, 1, . . . , N−
1

δN (R,µT−i) = δN (R, µ̄NT
−i).

Proof: For i = 0 the result is immediate from the lemma. For i 6= 0 it follows
from the lemma and the fact that the N -stationary mean of µT−i is µ̄NT

−i (as
is easily verified from the definitions). 2

Reference Letters

Many of the source coding results will require a technical condition that is
a generalization of reference letter condition of Theorem 10.6.1 for stationary
sources. An AMS source µ is said to have a reference letter a∗ ∈ Â with respect
to a distortion measure ρ = ρ1 on A× Â if

sup
n
EµT−nρ(X0, a

∗) = sup
n
Eµρ(Xn, a

∗) = ρ∗ <∞, (11.1)

that is, there exists a letter for which Eµρ(Xn, a∗) is uniformly bounded above.

If we define for any k the vector a∗k = (a∗, a∗, · · · , a∗) consisting of k a∗’s, then
(11.1) implies that

sup
n
EµT−n

1

k
ρk(Xk, a∗k) ≤ ρ∗ <∞. (11.2)

We assume for convenience that any block code of length N contains the
reference vector a∗N . This ensures that ρN (xN , C) ≤ ρN (xN , a∗N ) and hence
that ρN (xN , C) is bounded above by a µ-integrable function and hence is itself
µ-integrable. This implies that

δ(R,µ) ≤ δN (R,µ) ≤ ρ∗. (11.3)

The reference letter also works for the stationary mean source µ̄ since

lim
n→∞

1

n

n−1∑
i=0

ρ(xi, a
∗) = ρ∞(x,a∗),

µ̄-a.e. and µ-a.e., where a∗ denotes an infinite sequence of a∗. Since ρ∞ is
invariant we have from Lemma 6.3.1 of [50] and Fatou’s lemma that

Eµ̄ρ(X0, a
∗) = Eµ

(
lim
n→∞

1

n

n−1∑
i=0

ρ(Xi, a
∗)

)

≤ lim inf
n→∞

1

n

n−1∑
i=0

Eµρ(Xi, a
∗) ≤ ρ∗.
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Performance and distortion-rate functions

We next develop several basic properties of the performance and the operational
DRFs for block coding AMS sources with additive fidelity criteria.

Lemma 11.2.2 Given two sources µ1 and µ2 and λ ∈ (0, 1), then for any block
code C

ρ(C, λµ1 + (1− λ)µ2) = λρ(C, µ1) + (1− λ)ρ(C, µ2)

and for any N

δN (R, λµ1 + (1− λ)µ2) ≥ λδN (R,µ1) + (1− λ)δN (R,µ2)

and
δ(R, λµ1 + (1− λ)µ2) ≥ λδ(R,µ1) + (1− λ)δ(R,µ2).

Thus performance is linear in the source and the operational DRFs are convex⋂
. Lastly,

δN (R+
1

N
,λµ1 + (1− λ)µ2) ≤ λδN (R,µ1) + (1− λ)δN (R,µ2).

Proof: The equality follows from the linearity of expectation since ρ(C, µ) =
Eµρ(XN , C). The first inequality follows from the equality and the fact that
the infimum of a sum is bounded below by the sum of the infima. The next
inequality follows similarly. To get the final inequality, let Ci approximately
yield δN (R,µi); that is,

ρ(Ci, µi) ≤ δN (R,µi) + ε.

Form the union code C = C1
⋃
C2 containing all of the words in both of the

codes. Then the rate of the code is

1

N
log ||C|| =

1

N
log(||C1||+ ||C2||)

≤ 1

N
log(2NR + 2NR)

= R+
1

N
.

This code yields performance

ρ(C, λµ1 + (1− λ)µ2) = λρ(C, µ1) + (1− λ)ρ(C, µ2)

≤ λρ(C1, µ1) + (1−λ)ρ(C2, µ2) ≤ λδN (R,µ1) +λε+ (1−λ)δN (R,µ2) + (1−λ)ε.

Since the leftmost term in the above equation can be no smaller than δN (R +
1/N, λµ1 + (1− λ)µ2), the lemma is proved. 2

The first and last inequalities in the lemma suggest that δN is very nearly
an affine function of the source and hence perhaps δ is as well. We will later
pursue this possibility, but we are not yet equipped to do so.
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Before developing the connection between the distortion rate functions of
AMS sources and those of their stationary mean, we pause to develop some
additional properties for operational DRFs in the special case of stationary
sources. These results follow Kieffer [77].

Lemma 11.2.3 Suppose that µ is a stationary source. Then

δ(R,µ) = lim
N→∞

δN (R,µ).

Thus the infimum over block lengths is given by the limit so that longer codes
can do better.

Proof: Fix an N and an n < N and choose codes Cn ⊂ Ân and CN−n ⊂ ÂN−n

for which

ρ(Cn, µ) ≤ δn(R,µ) +
ε

2

ρ(CN−n, µ) ≤ δN−n(R,µ) +
ε

2
.

Form the block length N code C = Cn × CN−n. This code has rate no greater
than R and has distortion

Nρ(C, µ) = Emin
y∈C

ρN (XN , y)

= Eyn∈Cnρn(Xn, yn) + EvN−n∈CN−nρN−n(XN−n
n , vN−n)

= Eyn∈Cnρn(Xn, yn) + EvN−n∈CN−nρN−n(XN−n, vN−n)

= nρ(Cn, µ) + (N − n)ρ(CN−n, µ)

≤ nδn(R,µ) + (N − n)δN−n(R,µ) + ε, (11.4)

where we have made essential use of the stationarity of the source. Since ε is
arbitrary and since the leftmost term in the above equation can be no smaller
than NδN (R,µ), we have shown that

NδN (R,µ) ≤ nδn(R,µ) + (N − n)δN−n(R,µ)

and hence that the sequence NδN is subadditive. The result then follows im-
mediately from Lemma 7.5.1 of [50]. 2

Corollary 11.2.2 If µ is a stationary source, then δ(R,µ) is a convex
⋃

func-
tion of R and hence is continuous for R > 0.

Proof: Pick R1 > R2 and λ ∈ (0, 1). Define R = λR1 + (1− λ)R2. For large n
define n1 = bλnc be the largest integer less than λn and let n2 = n− n1. Pick
codebooks Ci ⊂ Âni with rate Ri with distortion

ρ(Ci, µ) ≤ δni(Ri, µ) + ε.
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Analogous to (11.4), for the product code C = C1 × C2 we have

nρ(C, µ) = n1ρ(C1, µ) + n2ρ(C2, µ)

≤ n1δn1
(R1, µ) + n2δn2

(R2, µ) + nε.

The rate of the product code is no greater than R and hence the leftmost term
above is bounded below by nδn(R,µ). Dividing by n we have since ε is arbitrary
that

δn(R,µ) ≤ n1

n
δn1

(R1, µ) +
n2

n
δn2

(R2, µ).

Taking n→∞ we have using the lemma and the choice of ni that

δ(R,µ) ≤ λδ(R1, µ) + (1− λ)δ(R2, µ),

proving the claimed convexity. 2

Corollary 11.2.3 If µ is stationary, then δ(R,µ) is an affine function of µ.

Proof: From Lemma 11.2.2 we need only prove that

δ(R, λµ1 + (1− λ)µ2) ≤ λδ(R,µ1) + (1− λ)δ(R,µ2).

From the same lemma we have that for any N

δN (R+
1

N
,λµ1 + (1− λ)µ2) ≤ λδN (R,µ1) + (1− λ)δN (R,µ2)

For any K ≤ N we have since δN (R,µ) is nonincreasing in R that

δN (R+
1

K
,λµ1 + (1− λ)µ2) ≤ λδN (R,µ1) + (1− λ)δN (R,µ2).

Taking the limit as N →∞ yields from Lemma 11.2.3 that

δ(R+
1

K
,µ) ≤ λδ(R,µ1) + (1− λ)δ(R,µ2).

From Corollary 11.2.2, however, δ is continuous in R and the result follows by
letting K →∞. 2

The following lemma provides the principal tool necessary for relating the
operational DRF of an AMS source with that of its stationary mean. It shows
that the DRF of an AMS source is not changed by shifting or, equivalently, by
redefining the time origin.

Lemma 11.2.4 Let µ be an AMS source with a reference letter. Then for any
integer i δ(R,µ) = δ(R,µT−i).
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Proof: Fix ε > 0 and let CN be a rate R block length N codebook for which
ρ(CN , µ) ≤ δ(R,µ) + ε/2. For 1 ≤ i ≤ N −1 choose J large and define the block
length K = JN code CK(i) by

CK(i) = a∗(N−i) ×
J−2
×
j=0
CN × a∗i,

where a∗l is an l-tuple containing all a∗’s. CK(i) can be considered to be a code
consisting of the original code shifted by i time units and repeated many times,
with some filler at the beginning and end. Except for the edges of the long
product code, the effect on the source is to use the original code with a delay.
The code has at most (2NR)J−1 = 2KR2−NR words; the rate is no greater than
R.

For any K-block xK the distortion resulting from using C(i)
k is given by

KρK(xK , CK(i)) ≤ (N − i)ρN−i(xN−i, a∗(N−i)) + iρi(x
i
K−i, a

∗i). (11.5)

Let {x̂n} denote the encoded process using the block code CK(i). If n is a
multiple of K, then

nρn(xn, x̂n) ≤
b nK c∑
k=0

((N − i)ρN−i(xN−ikK , a∗(N−i)) + iρi(x
i
(k+1)K−i, a

∗i))

+

b nK cJ−1∑
k=0

NρN (xNN−i+kN , CN ).

If n is not a multiple of K we can further overbound the distortion by including
the distortion contributed by enough future symbols to complete a K-block,
that is,

nρn(xn, x̂n) ≤ nγn(x, x̂)

=

b nK c+1∑
k=0

(
(N − i)ρN−i(xN−ikK , a∗(N−i) + iρi(x

i
(k+1)K−i, a

∗i)
)

+

(b nK c+1)J−1∑
k=0

NρN (xNN−i+kN , CN ).
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Thus

ρn(xn, x̂n) ≤ N − i
K

1

n/K

b nK c+1∑
k=0

ρN−i(X
N−i(T kKx), a∗(N−i)

+
i

K

1

n/K

b nK c+1∑
k=0

ρi(X
i(T (k+1)K−ix, a∗i)

+
1

n/N

(b nK c+1)J−1∑
k=0

ρN (XN (T (N−i)+kNx), CN ).

Since µ is AMS these quantities all converge to invariant functions:

lim
n→∞

ρn(xn, x̂n) ≤ N − i
K

lim
m→∞

1

m

m−1∑
k=0

ρN−i(X
N−i(T kKx), a∗(N−i)

+
i

K
lim
m→∞

1

m

m−1∑
k=0

ρi(X
i(T (k+1)K−ix, a∗i)

+ lim
m→∞

1

m

m−1∑
k=0

ρN (XN (T (N−i)+kNx), CN ).

We now apply Fatou’s lemma, a change of variables, and Lemma 11.2.1 to
obtain

δ(R,µT−i) ≤ ρ(CK(i), µT−i)

≤ N − i
K

lim sup
m→∞

1

m

m∑
k=0

EµT−iρN−i(X
N−iT kK , a∗(N−i))

+
i

K
lim
m→∞

1

m

m−1∑
k=0

EµT−iρi(X
iT (k+1)K−i, a∗i)

+ EµT−i lim
m→∞

1

m

m−1∑
k=0

ρN (XNT (N−i)+kN ), CN ).

≤ N − i
K

ρ∗ +
i

K
ρ∗ + Eµ lim

m→∞

1

m

m−1∑
k=1

ρN (XNT kNCN )

≤ N

K
ρ∗ + ρ(CN , µ).

Thus if J and hence K are chosen large enough to ensure that N/K ≤ ε/2, then

δ(R,µT−i) ≤ δ(R,µ),

which proves that δ(R,µT−i) ≤ δ(R,µ). The reverse implication is found in
a similar manner: Let CN be a codebook for µT−i and construct a codebook
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CK(N−i) for use on µ. By arguments nearly identical to those above the reverse
inequality is found and the proof completed. 2

Corollary 11.2.4 Let µ be an AMS source with a reference letter. Fix N and
let µ̄ and µ̄N denote the stationary and N -stationary means. Then for R > 0

δ(R, µ̄) = δ(R, µ̄NT
−i); i = 0, 1, . . . , N − 1.

Proof: It follows from the previous lemma that the δ(R, µ̄NT
−i) are all equal

and hence it follows from Lemma 11.2.2, Theorem 7.3.1 of [50], and Corollary
7.3.1 of [50] that

δ(R, µ̄) ≥ 1

N

N−1∑
i=0

δ(R, µ̄NT
−i) = δ(R, µ̄N ).

To prove the reverse inequality, take µ = µ̄N in the previous lemma and
construct the codes CK(i) as in the previous proof. Take the union code

CK =
⋃N−1
i=0 CK(i) having block length K and rate at most R + K−1 logN .

We have from Lemma 11.2.1 and (11.5) that

ρ(CK , µ̄) =
1

N

N−1∑
i=0

ρ(CK , µ̄NT−i)

≤ 1

N

N−1∑
i=0

ρ(CK(i), µ̄NT
−i) ≤ N

K
ρ∗ + ρ(CN , µ̄N )

and hence as before

δ(R+
1

JN
logN, µ̄) ≤ δ(R, µ̄N ).

From Corollary 11.2.1 δ(R, µ̄) is continuous in R for R > 0 since µ̄ is stationary.
Hence taking J large enough yields δ(R, µ̄) ≤ δ(R, µ̄N ). This completes the
proof since from the lemma δ(R, µ̄NT

−i) = δ(R, µ̄N ). 2

We are now prepared to demonstrate the fundamental fact that the block
source coding operational distortion rate function for an AMS source with an ad-
ditive fidelity criterion is the same as that of the stationary mean process. This
will allow us to assume stationarity when proving the actual coding theorems.

Theorem 11.2.1 If µ is an AMS source and {ρn} an additive fidelity criterion
with a reference letter, then for R > 0

δ(R,µ) = δ(R, µ̄).

Proof: We have from Corollaries 11.2.1 and 11.2.4 that

δ(R, µ̄) ≤ δ(R, µ̄N ) ≤ δN (R, µ̄N ) = δN (R,µ).
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Taking the infimum over N yields

δ(R, µ̄) ≤ δ(R,µ).

Conversely, fix ε > 0 let CN be a block length N codebook for which ρ(CN , µ̄)
≤ δ(R, µ̄) + ε. From Lemma 11.2.1, Corollary 11.2.1, and Lemma 11.2.4

δ(R, µ̄) + ε ≤ ρ(CN , µ̄) =
1

N

N−1∑
i=0

ρ(CN , µ̄NT−i)

≥ 1

N

N−1∑
i=0

δN (R, µ̄NT
−i) =

1

N

N−1∑
i=0

δN (R,µT−i)

≥ 1

N

N−1∑
i=0

δ(R,µT−i) = δ(R,µ),

which completes the proof since ε is arbitrary. 2

Since the DRFs are the same for an AMS process and its stationary mean,
this immediately yields the following corollary from Corollary 11.2.2:

Corollary 11.2.5 If µ is AMS, then δ(R,µ) is a convex function of R and
hence a continuous function of R for R > 0.

11.3 Block Coding Stationary Sources

We showed in the previous section that when proving block source coding the-
orems for AMS sources, we could confine interest to stationary sources. In this
section we show that in an important special case we can further confine inter-
est to only those stationary sources that are ergodic by applying the ergodic
decomposition. This will permit us to assume that sources are stationary and
ergodic in the next section when the basic Shannon source coding theorem is
proved and then extend the result to AMS sources which may not be ergodic.

As previously we assume that we have a stationary source {Xn} with distri-
bution µ and we assume that {ρn} is an additive distortion measure and there
exists a reference letter. For this section we now assume in addition that the
alphabet A is itself a Polish space and that ρ1(r, y) is a continuous function of
r for every y ∈ Â. If the underlying alphabet has a metric structure, then it
is reasonable to assume that forcing input symbols to be very close in the un-
derlying alphabet should force the distortion between either symbol and a fixed
output to be close also. The following theorem is the ergodic decomposition of
the block source coding operational distortion rate function.

Theorem 11.3.1 Suppose that µ is the distribution of a stationary source and
that {ρn} is an additive fidelity criterion with a reference letter. Assume also
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that ρ1(·, y) is a continuous function for all y. Let {µx} denote the ergodic
decomposition of µ. Then

δ(R,µ) =

∫
dµ(x)δ(R,µx),

that is, δ(R,µ) is the average of the operational DRFs of its ergodic components.

Proof: Analogous to the ergodic decomposition of entropy rate of Theorem 2.4.1,
we need to show that δ(R,µ) satisfies the conditions of Theorem 8.9.1 of [50].
We have already seen (Corollary 11.2.3) that it is an affine function. We next see
that it is upper semicontinuous. Since the alphabet is Polish, choose a distance
dG on the space of stationary processes having this alphabet with the property
that G is constructed as in Section 8.2 of [50]. Pick an N large enough and a
length N codebook C so that

δ(R,µ) ≥ δN (R,µ)− ε

2
≥ ρN (C, µ)− ε.

ρN (xN , y) is by assumption a continuous function of xN and hence so is ρN (xN , C) =
miny∈C ρ(xN , y). Since it is also nonnegative, we have from Lemma 8.2.4 of [50]
that if µn → µ then

lim sup
n→∞

EµnρN (XN , C) ≤ EµρN (XN , C).

The left hand side above is bounded below by

lim sup
n→∞

δN (R,µn) ≥ lim sup
n→∞

δ(R,µn).

Thus since ε is arbitrary,

lim sup
n→∞

δ(R,µn) ≤ δ(R,µ)

and hence δ(R,µ) upper semicontinuous in µ and hence also measurable. Since
the process has a reference letter, δ(R,µx) is integrable since

δ(R,µX) ≤ δN (R,µx) ≤ Eµxρ1(X0, a
∗)

which is integrable if ρ1(x0, a
∗) is from the ergodic decomposition theorem.

Thus Theorem 8.9.1 of [50] yields the desired result. 2

The theorem was first proved by Kieffer [77] for bounded continuous additive
distortion measures. The above extension removes the requirement that ρ1 be
bounded.

11.4 Block Coding AMS Ergodic Sources

We have seen that the block source coding operational DRF of an AMS source
is given by that of its stationary mean. Hence we will be able to concentrate on
stationary sources when proving the coding theorem.
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Theorem 11.4.1 Let µ be an AMS ergodic source with a standard alphabet and
{ρn} an additive distortion measure with a reference letter. Then

δ(R,µ) = D(R, µ̄),

where µ̄ is the stationary mean of µ.

Proof: From Theorem 11.2.1 δ(R,µ) = δ(R, µ̄) and hence we will be done if we
can prove that

δ(R, µ̄) = D(R, µ̄).

This will follow if we can show that δ(R,µ) = D(R,µ) for any stationary ergodic
source with a reference letter. Henceforth we assume that µ is stationary and
ergodic.

We first prove the negative or converse half of the theorem. First suppose
that we have a codebook C such that

ρN (C, µ) = Eµ min
y∈C

ρN (XN , y) = δN (R,µ) + ε.

If we let X̂N denote the resulting reproduction random vector and let pN denote
the resulting joint distribution of the input/output pair, then since X̂N has a
finite alphabet, Lemma 5.5.6 implies that

I(XN ; X̂N ) ≤ H(X̂N ) ≤ NR

and hence pN ∈ RN (R,µN ) and hence

δN (R,µ) + ε ≥ EpNρN (XN ; X̂N ) ≥ DN (R,µ).

Taking the limits as N →∞ proves the easy half of the theorem:

δ(R,µ) ≥ D(R,µ).

(Recall that both operational DRF and the Shannon DRF are given by limits
if the source is stationary.)

The fundamental idea of Shannon’s positive source coding theorem is this:
for a fixed block size N , choose a code at random according to a distribution
implied by the distortion-rate function. That is, perform 2NR independent ran-
dom selections of blocks of length N to form a codebook. This codebook is then
used to encode the source using a minimum distortion mapping as above. We
compute the average distortion over this double-random experiment (random
codebook selection followed by use of the chosen code to encode the random
source). We will find that if the code generation distribution is properly chosen,
then this average will be no greater than D(R,µ) + ε. If the average over all
randomly selected codes is no greater than D(R,µ) + ε, however, than there
must be at least one code such that the average distortion over the source dis-
tribution for that one code is no greater than D(R,µ) + ε. This means that
there exists at least one code with performance not much larger than D(R,µ).
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Unfortunately the proof only demonstrates the existence of such codes, it does
not show how to construct them.

To find the distribution for generating the random codes we use the er-
godic process definition of the distortion-rate function. From Theorem 10.6.1
(or Lemma 10.6.3) we can select a stationary and ergodic pair process with
distribution p which has the source distribution µ as one coordinate and which
has

Epρ(X0, Y0) =
1

N
EpNρN (XN , Y N ) ≤ D(R,µ) + ε (11.6)

and which has

Īp(X;Y ) = I∗(X;Y ) ≤ R (11.7)

(and hence information densities converge in L1 from Theorem 6.3.1). Denote
the implied vector distributions for (XN , Y N ), XN , and Y N by pN , µN , and
ηN , respectively.

For any N we can generate a codebook C at random according to ηN as
described above. To be precise, consider the random codebook as a large random
vector C = (W0,W1, · · · ,WM ), whereM = beN(R+ε)c (where natural logarithms
are used in the definition of R), where W0 is the fixed reference vector a∗N and
where the remaining Wn are independent, and where the marginal distributions
for the Wn are given by ηN . Thus the distribution for the randomly selected
code can be expressed as

PC =
M
×
i=1

ηN .

This codebook is then used with the optimal encoder and we denote the resulting
average distortion (over codebook generation and the source) by

∆N = Eρ(C, µ) =

∫
dPC(W)ρ(W, µ) (11.8)

where

ρ(W, µ) =
1

N
EρN (XN ,W) =

1

N

∫
dµN (xN )ρN (xN ,W),

and where

ρN (xN , C) = min
y∈C

ρN (xN , y).

Choose δ > 0 and break up the integral over x into two pieces: one over a
set GN = {x : N−1ρN (xN , a∗N ) ≤ ρ∗ + δ} and the other over the complement
of this set. Then

∆N ≤
∫
GcN

1

N
ρN (xN , a∗N ) dµN (xN )

+
1

N

∫
dPC(W)

∫
GN

dµN (xN )ρN (xN ,W), (11.9)
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where we have used the fact that ρN (xN ,mW) ≤ ρN (xN , a∗N ). Fubini’s theo-
rem implies that because∫

dµN (xN )ρN (xN , a∗N ) <∞

and

ρN (xN ,W) ≤ ρN (xN , a∗N ),

the limits of integration in the second integral of (11.9) can be interchanged to
obtain the bound

∆N ≤
1

N

∫
GcN

ρN (xN , a∗N )dµN (xN )

+
1

N

∫
GN

dµN (xN )

∫
dPC(W)ρN (xN ,W) (11.10)

The rightmost term in (11.10) can be bound above by observing that

1

N

∫
GN

dµN (xN )[

∫
dPC(W)ρN (xN ,W)]

=
1

N

∫
GN

dµN (xN )[

∫
C:ρN (xN ,C)≤N(D+δ)

dPC(W)ρN (xN ,W)

+
1

N

∫
W:ρN (xN ,W)>N(D+δ)

dPC(W)ρN (xN ,W)]

≤
∫
GN

dµN (xN )[D + δ +
1

N
(ρ∗ + δ)

∫
W:ρN (xN ,W)>N(D+δ)

dpC(W)]

where we have used the fact that for x ∈ G the maximum distortion is given by
ρ∗ + δ. Define the probability

P (N−1ρN (xN , C) > D + δ|xN ) =

∫
W:ρN (xN ,W)>N(D+δ)

dpC(W)

and summarize the above bounds by

∆N ≤ D + δ + (ρ∗ + δ)
1

N

∫
dµN (xN )P (N−1ρN (xN , C)

> D + δ|xN ) +
1

N

∫
GcN

dµN (xN )ρN (xN , a∗N ). (11.11)

The remainder of the proof is devoted to proving that the two integrals above
go to 0 as N →∞ and hence

lim sup
N→∞

∆N ≤ D + δ. (11.12)
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Consider first the integral

aN =
1

N

∫
GcN

dµN (xN )ρN (xN , a∗N ) =

∫
dµN (xN )1GcN (xN )

1

N
ρN (xN , a∗N ).

We shall see that this integral goes to zero as an easy application of the ergodic
theorem. The integrand is dominated by N−1ρN (xN , a∗N ) which is uniformly
integrable (Lemma 4.7.2 of [50]) and hence the integrand is itself uniformly
integrable (Lemma 4.4.4 of [50]). Thus we can invoke the extended Fatou lemma
to conclude that

lim sup
N→∞

aN ≤
∫
dµN (xN ) lim sup

N→∞

(
1GcN (xN )

1

N
ρN (xN , a∗N )

)
≤

∫
dµN (xN )(lim sup

N→∞
1GcN (xN ))(lim sup

N→∞

1

N
ρN (xN , a∗N )).

We have, however, that lim supN→∞ 1GcN (xN ) is 0 unless xN ∈ GcN i.o. But this
set has measure 0 since with µN probability 1, an x is produced so that

lim
N→∞

1

N

N−1∑
i=0

ρ(xi, a
∗) = ρ∗

exists and hence with probability one one gets an x which can yield

N−1ρN (xN , a∗N ) > ρ∗ + δ

at most for a finite number of N . Thus the above integral of the product of a
function that is 0 a.e. with a dominated function must itself be 0 and hence

lim sup
N→∞

aN = 0. (11.13)

We now consider the second integral in (11.11):

bN = (ρ∗ + δ)
1

N

∫
dµN (xN )P (N−1ρN (xN , C) > D + δ|xN ).

Recall that P (ρN (xN , C) > D+δ|xN ) is the probability that for a fixed input
block xN , a randomly selected code will result in a minimum distortion codeword
larger than D+ δ. This is the probability that none of the M words (excluding
the reference code word) selected independently at random according to to the
distribution ηN lie within D + δ of the fixed input word xN . This probability
is bounded above by

P (
1

N
ρN (xN , C) > D + δ|xN ) ≤ [1− ηN (

1

N
ρN (xN , Y N ) ≤ D + δ)]M

where

ηN (
1

N
ρN (xN , Y N ) ≤ D + δ)) =

∫
yN : 1

N ρN (xN ,yN )≤D+δ

dηN (yN ).
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Now mutual information comes into the picture. The above probability can be
bounded below by adding a condition:

ηN (
1

N
ρN (xN , Y N ) ≤ D + δ)

≥ ηN (
1

N
ρN (xN , Y N ) ≤ D + δ and

1

N
iN (xN , Y N ) ≤ R+ δ),

where
1

N
iN (xN , yN ) =

1

N
ln fN (xN , yN ),

where

fN (xN , yN ) =
dpN (xN , yN )

d(µN × ηN )(xN , yN )
,

the Radon-Nikodym derivative of pN with respect to the product measure µN ×
ηN . Thus we require both the distortion and the sample information be less
than slightly more than their limiting value. Thus we have in the region of
integration that

1

N
iN (xN ; yN ) =

1

N
ln fN (xN , yN ) ≤ R+ δ

and hence

ηN (ρN (xN , Y N ) ≤ D + δ) ≥
∫
yN :ρN (xN ,yN )≤D+δ,fN (xN ,yN )≤eN(R+δ)

dηN (yN )

≥ e−N(R+δ)

∫
yN :ρN (xN ,yN )≤D+δ,fN (xN ,yN )≤eN(R+δ)

dηN (yN )fN (xN , yN )

which yields the bound

P (
1

N
ρN (xN , C) > D + δ|xN ) ≤ [1− ηN (

1

N
ρN (xN , Y N ) ≤ D + δ)]M

≤ [1−e−N(R+δ)

∫
yN : 1

N ρN (xN ,yN )≤D+δ, 1
N iN (xN ,yN )≤R+δ

dηN (yN )fN (xN , yN )]M ,

Applying the inequality

(1− αβ)M ≤ 1− β + e−Mα

for α, β ∈ [0, 1] yields

P (
1

N
ρN (xN , C) > D + δ|xN ) ≤

1−
∫
yN : 1

N ρN (xN ,yN )≤D+δ, 1
N iN (xN ,yN )≤R+δ

dηN (yN )× fN (xN , yN )

+ e[−Me−N(R+δ)].
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Averaging with respect to the distribution µN yields

bN
ρ∗ + δ

=

∫
dµN (xN )P (ρN (xN , C) > D + δ|xN )

≤
∫
dµN (xN )

(
1−

∫
yN :ρN (xN ,yN )≤N(D+δ), 1

N iN (xN ,yN )≤R+δ

dηN (yN )

×fN (xN , yN ) + e−Me−N(R+δ)
)

= 1−
∫
yN : 1

N ρN (xN ,yN )≤D+δ, 1
N iN (xN ,yN )≤R+δ

d(µN × ηN )(xN , yN )

× fN (xN , yN ) + e−Me−N(R+δ)

= 1 + e−Me−N(R+δ)

−
∫
yN : 1

N ρN (xN ,yN )≤D+δ, 1
N iN (xN ,yN )≤R+δ

dpN (xN , yN )

= 1 + e−Me−N(R+δ)

− pN (yN :
1

N
ρN (xN , yN ) ≤ D + δ,

1

N
iN (xN , yN ) ≤ R+ δ). (11.14)

Since M is bounded below by eN(R+ε) − 1, the exponential term is bounded
above by

e[−e(N(R+ε)e−N(R+δ)+e−N(R+δ)] = e[−eN(ε−δ)+e−N(R+δ)].

If ε > δ, this term goes to 0 as N →∞.
The probability term in (11.14) goes to 1 from the mean ergodic theorem

applied to ρ1 and the mean ergodic theorem for information density since mean
convergence (or the almost everywhere convergence proved elsewhere) implies
convergence in probability. This implies that

lim sup
n→∞

bN = 0

which with (11.13) gives (11.12). Choosing an N so large that ∆N ≤ δ, we
have proved that there exists a block code C with average distortion less than
D(R,µ) + δ and rate less than R+ ε and hence

δ(R+ ε, µ) ≤ D(R,µ) + δ. (11.15)

Since ε and δ can be chosen as small as desired and since D(R,µ) is a continuous
function of R (Lemma 10.6.1), the theorem is proved. 2

The source coding theorem is originally due to Shannon [131] [132], who
proved it for discrete i.i.d. sources. It was extended to stationary and ergodic
discrete alphabet sources and Gaussian sources by Gallager [43] and to station-
ary and ergodic sources with abstract alphabets by Berger [10] [11], but an
error in the information density convergence result of Perez [124] (see Kieffer
[75]) left a gap in the proof, which was subsequently repaired by Dunham [35].
The result was extended to nonergodic stationary sources and metric distortion
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measures and Polish alphabets by Gray and Davisson [53] and to AMS ergodic
processes by Gray and Saadat [61]. The method used here of using a stationary
and ergodic measure to construct the block codes and thereby avoid the block
ergodic decomposition of Nedoma [107] used by Gallager [43] and Berger [11]
was suggested by Pursley and Davisson [29] and developed in detail by Gray
and Saadat [61].

11.5 Subadditive Fidelity Criteria

In this section we generalize the block source coding theorem for stationary
sources to subadditive fidelity criteria. Several of the interim results derived
previously are no longer appropriate, but we describe those that are still valid
in the course of the proof of the main result. Most importantly, we now con-
sider only stationary and not AMS sources. The result can be extended to
AMS sources in the two-sided case, but it is not known for the one-sided case.
Source coding theorems for subadditive fidelity criteria were first developed by
Mackenthun and Pursley [97].

Theorem 11.5.1 Let µ denote a stationary and ergodic distribution of a source
{Xn} and let {ρn} be a subadditive fidelity criterion with a reference letter, i.e.,
there is an a∗ ∈ Â such that

Eρ1(X0, a
∗) = ρ∗ <∞.

Then the operational DRF for the class of block codes of rate less than R is
given by the Shannon distortion-rate function D(R,µ).

Proof: Suppose that we have a block code of length N , e.g., a block encoder
α : AN → BK and a block decoder β : BK → ÂN . Since the source is stationary,
the induced input/output distribution is then N -stationary and the performance
resulting from using this code on a source µ is

∆N = Epρ∞ =
1

N
EpρN (XN , X̂N ),

where {X̂N} is the resulting reproduction process. Let δN (R,µ) denote the
infimum over all codes of length N of the performance using such codes and let
δ(R,µ) denote the infimum of δN over all N , that is, the operational distortion
rate function. We do not assume a codebook/minimum distortion structure
because the distortion is now effectively context dependent and it is not obvious
that the best codes will have this form. Assume that given an ε > 0 we have
chosen for each N a length N code such that

δN (R,µ) ≥ ∆N − ε.

As previously we assume that

K log ||B||
N

≤ R,
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where the constraint R is the rate of the code. As in the proof of the converse
coding theorem for an additive distortion measure, we have that for the resulting
process I(XN ; X̂N ) ≤ RN and hence

∆N ≥ DN (R,µ).

From Lemma 10.6.2 we can take the infimum over all N to find that

δ(R,µ) = inf
N
δN (R,µ) ≥ inf

N
DN (R,µ)− ε = D(R,µ)− ε.

Since ε is arbitrary, δ(R,µ) ≤ D(R,µ), proving the converse theorem.
To prove the positive coding theorem we proceed in an analogous manner

to the proof for the additive case, except that we use Lemma 10.6.3 instead of
Theorem 10.6.1. First pick an N large enough so that

DN (R,µ) ≤ D(R,µ) +
δ

2

and then select a pN ∈ RN (R,µN ) such that

EpN
1

N
ρN (XN , Y N ) ≤ DN (R,µ) +

δ

2
≤ D(R,µ) + δ.

Now then construct as in Lemma 10.6.3 a stationary and ergodic process p
which will have (10.6.4) and (10.6.5) satisfied (the right Nth order distortion
and information). This step taken, the proof proceeds exactly as in the additive
case since the reference vector yields the bound

1

N
ρN (xN , a∗N ) ≤ 1

N

N−1∑
i=0

ρ1(xi, a
∗),

which converges, and since N−1ρN (xN , yN ) converges as N →∞ with p prob-
ability one from the subadditive ergodic theorem. Thus the existence of a code
satisfying (11.15) can be demonstrated (which uses the minimum distortion en-
coder) and this implies the result since D(R,µ) is a continuous function of R
(Lemma 10.6.1). 2

11.6 Asynchronous Block Codes

The block codes considered so far all assume block synchronous communication,
that is, that the decoder knows where the blocks begin and hence can deduce
the correct words in the codebook from the index represented by the channel
block. In this section we show that we can construct asynchronous block codes
with little loss in performance or rate; that is, we can construct a block code
so that a decoder can uniquely determine how the channel data are parsed and
hence deduce the correct decoding sequence. This result will play an important
role in the development in the next section of sliding block coding theorems.
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Given a source µ let δasync(R,µ) denote the operational distortion rate
function for block codes with the added constraint that the decoder be able to
synchronize, that is, correctly parse the channel codewords. Obviously

δasync(R,µ) ≥ δ(R,µ)

since we have added a constraint. The goal of this section is to prove the
following result:

Theorem 11.6.1 Given an AMS source with an additive fidelity criterion and
a reference letter,

δasync(R,µ) = δ(R,µ),

that is, the operational DRF for asynchronous codes is the same as that for
ordinary codes.

Proof: A simple way of constructing a synchronized block code is to use a prefix
code: Every codeword begins with a short prefix or source synchronization word
or, simply, sync word, that is not allowed to appear anywhere else within a word
or as any part of an overlap of the prefix and a piece of the word. The decoder
than need only locate the prefix in order to decode the block begun by the prefix.
The insertion of the sync word causes a reduction in the available number of
codewords and hence a loss in rate, but ideally this loss can be made negligible if
properly done. We construct a code in this fashion by finding a good codebook
of slightly smaller rate and then indexing it by channel K-tuples with this prefix
property.

Suppose that our channel has a rate constraint R, that is, if source N -tuples
are mapped into channel K-tuples then

K log ||B||
N

≤ R,

where B is the channel alphabet. We assume that the constraint is achievable
on the channel in the sense that we can choose N and K so that the physical
stationarity requirement is met (N source time units corresponds to K channel
time units) and such that

||B||K ≈ eNR, (11.16)

at least for large N .
If K is to be the block length of the channel code words, let δ be small and

define k(K) = bδKc + 1 and consider channel codewords which have a prefix
of k(K) occurrences of a single channel letter, say b, followed by a sequence of
K − k(K) channel letters which have the following constraint: no k(K)-tuple
beginning after the first symbol can be bk(K). We permit b’s to occur at the end
of a K-tuple so that a k(K)-tuple of b’s may occur in the overlap of the end of
a codeword and the new prefix since this causes no confusion, e.g., if we see an
elongated sequence of b’s, the actual code information starts at the right edge.
Let M(K) denote the number of distinct channel K-tuples of this form. Since
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M(K) is the number of distinct reproduction codewords that can be indexed
by channel codewords, the codebooks will be constrained to have rate

RK =
lnM(K)

N
.

We now study the behavior of RK as K gets large. There are a total of
||B||K−k(K) K-tuples having the given prefix. Of these, no more than (K −
k(K))||B||K−2k(K) have the sync sequence appearing somewhere within the
word (there are fewer than K − k(K) possible locations for the sync word
and for each location the remaining K − 2k(K) symbols can be anything).
Lastly, we must also eliminate those words for which the first i symbols are b
for i = 1, 2, . . . , k(K)− 1 since this will cause confusion about the right edge of
the sync sequence. These terms contribute

k(K)−1∑
i=1

||B||K−k(K)−i

bad words. Using the geometric progression formula to sum the above series we
have that it is bounded above by

||B||K−k(K)−1

1− 1/||B||
.

Thus the total number of available channel vectors is at least

M(K) ≥ ||B||K−k(K) − (K − k(K))||B||K−2k(K) − ||B||
K−k(K)−1

1− 1/||B||
.

Thus

RK =
1

N
ln ||B||K−k(K) +

1

N
ln

(
1− (K − k(K))||B||−k(K) − 1

||B|| − 1

)

=
K − k(K)

N
ln ||B||+ 1

N
ln

(
||B|| − 2

||B|| − 1
− (K − k(K))||B||−k(K)

)
.

≥ (1− δ)R+ o(N),

where o(N) is a term that goes to 0 as N (and hence K) goes to infinity. Thus
given a channel with rate constraint R and given ε > 0, we can construct for N
sufficiently large a collection of approximately eN(R−ε) channel K-tuples (where
K ≈ NR) which are synchronizable, that is, satisfy the prefix condition.

We are now ready to construct the desired code. Fix δ > 0 and then choose
ε > 0 small enough to ensure that

δ(R(1− ε), µ) ≤ δ(R,µ) +
δ

3
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(which we can do since δ(R,µ) is continuous in R). Then choose an N large
enough to give a prefix channel code as above and to yield a rate R−ε codebook
C so that

ρN (C, µ) ≤ δN (R− ε, µ) +
δ

3

≤ δ(R− ε, µ) +
2δ

3
≤ δ(R,µ) + δ. (11.17)

The resulting code proves the theorem. 2

11.7 Sliding Block Source Codes

We now turn to sliding block codes. For simplicity we consider codes which
map blocks into single symbols. For example, a sliding block encoder will be a
mapping f : AN → B and the decoder will be a mapping g : BK → Â. In the
case of one-sided processes, for example, the channel sequence would be given
by

Un = f(XN
n )

and the reproduction sequence by

X̂n = g(ULn ).

When the processes are two-sided, it is more common to use memory as well
as delay. This is often done by having an encoder mapping f : A2N+1 → B,
a decoder g : B2L+1 → Â, and the channel and reproduction sequences being
defined by

Un = f(X−N , · · · , X0, · · · , XN ),

X̂n = g(U−L, · · · , U0, · · · , UN ).

We shall emphasize the two-sided case.
The final output can be viewed as a sliding block coding of the input:

X̂n = g(f(Xn−L−N , · · · , Xn−L+N ), · · · , f(Xn+L−N , · · · , Xn+L+N ))

= gf(Xn−(N+L), · · · , Xn+(N+L)),

where we use gf to denote the overall coding, that is, the cascade of g and f .
Note that the delay and memory of the overall code are the sums of those for
the encoder and decoder. The overall window length is 2(N + L) + 1

Since one channel symbol is sent for every source symbol, the rate of such a
code is given simply by R = log ||B|| bits per source symbol. The obvious prob-
lem with this restriction is that we are limited to rates which are logarithms of
integers, e.g., we cannot get fractional rates. As previously discussed, however,
we could get fractional rates by appropriate redefinition of the alphabets (or,
equivalently, of the shifts on the corresponding sequence spaces). For example,
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regardless of the code window lengths involved, if we shift l source symbols to
produce a new group of k channel symbols (to yield an (l, k)-stationary encoder)
and then shift a group of k channel symbols to produce a new group of k source
symbols, then the rate is

R =
k

l
log ||B||

bits or nats per source symbol and the overall code fg is l-stationary. The
added notation to make this explicit is significant and the generalization is
straightforward; hence we will stick to the simpler case.

We can define the sliding block operational DRF for a source and channel in
the natural way. Suppose that we have an encoder f and a decoder g. Define
the resulting performance by

ρ(fg, µ) = Eµfgρ∞,

where µfg is the input/output hookup of the source µ connected to the deter-
ministic channel fg and where ρ∞ is the sequence distortion. Define

δSBC(R,µ) = inf
f,g

ρ(fg, µ) = ∆∗(µ, E , ν,D),

where E is the class of all finite length sliding block encoders and D is the
collection of all finite length sliding block decoders. The rate constraint R is
determined by the channel.

Assume as usual that µ is AMS with stationary mean µ̄. Since the cas-
cade of stationary channels fg is itself stationary (Lemma 9.4.7), we have from
Lemma 9.3.2 that µfg is AMS with stationary mean µ̄fg. This implies from
(10.10) that for any sliding block codes f and g

Eµfgρ∞ = Eµ̄fgρ∞

and hence

δSBC(R,µ) = δSBC(R, µ̄).

A fact we now formalize as a lemma.

Lemma 11.7.1 Suppose that µ is an AMS source with stationary mean µ̄ and
let {ρn} be an additive fidelity criterion. Let δSBC(R,µ) denote the sliding block
coding operational distortion rate function for the source and a channel with
rate constraint R. Then

δSBC(R,µ) = δSBC(R, µ̄).

The lemma permits us to concentrate on stationary sources when quantifying
the optimal performance of sliding block codes.

The principal result of this section is the following:
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Theorem 11.7.1 Given an AMS and ergodic source µ and an additive fidelity
criterion with a reference letter,

δSBC(R,µ) = δ(R,µ),

that is, the class of sliding block codes is capable of exactly the same performance
as the class of block codes. If the source is only AMS and not ergodic, then at
least

δSBC(R,µ) ≥ δ(R,µ), (11.18)

Proof: The proof of (11.18) follows that of Shields and Neuhoff [135] for the finite
alphabet case, except that their proof was for ergodic sources and coded only
typical input sequences. Their goal was different because they measured the rate
of a sliding block code by the entropy rate of its output, effectively assuming
that further almost-noiseless coding was to be used. Because we consider a fixed
channel and measure the rate in the usual way as a coding rate, this problem
does not arise here. From the previous lemma we need only prove the result for
stationary sources and hence we henceforth assume that µ is stationary. We first
prove that sliding block codes can perform no better than block codes, that is,
(11.18) holds. Fix δ > 0 and suppose that f : A2N+1 → B and g : B2L+1 → Â
are finite-length sliding block codes for which

ρ(fg, µ) ≤ δSBC(R,µ) + δ.

This yields a cascade sliding block code fg : A2(N+L)+1 → Â which we use to
construct a block codebook. Choose K large (to be specified later). Observe
an input sequence xn of length n = 2(N + L) + 1 + K and map it into a
reproduction sequence x̂n as follows: Set the first and last (N + L) symbols

to the reference letter a∗, that is, xN+L
0 = xN+L

n−N−L = a∗(N+L). Complete the
remaining reproduction symbols by sliding block coding the source word using
the given codes, that is,

x̂i = fg(x
2(N+L)+1
i−(N+L) ); i = N + L+ 1, · · · ,K +N + L.

Thus the long block code is obtained by sliding block coding, except at the
edges where the sliding block code is not permitted to look at previous or future
source symbols and hence are filled with a reference symbol. Call the resulting
codebook C. The rate of the block code is less than R = log ||B|| because n
channel symbols are used to produce a reproduction word of length n and hence
the codebook can have no more that ||B||n possible vectors. Thus the rate
is log ||B|| since the codebook is used to encode a source n-tuple. Using this
codebook with a minimum distortion rule can do no worse (except at the edges)
than if the original sliding block code had been used and therefore if X̂i is the
reproduction process produced by the block code and Yi that produced by the
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sliding block code, we have (invoking stationarity) that

nρ(C, µ) ≤ E(

N+L−1∑
i=0

ρ(Xi, a
∗))+

E(

K+N+L∑
i=N+L

ρ(Xi, Yi)) + E(

K+2(L+N)∑
i=K+N+L+1

ρ(Xi, a
∗))

≤ 2(N + L)ρ∗ +K(δSBC(R,µ) + δ)

and hence

δ(R,µ) ≤ 2(N + L)

2(N + L) +K
ρ∗ +

K

2(N + L) +K
(δSBC(R,µ) + δ).

By choosing δ small enough and K large enough we can make make the right
hand side arbitrarily close to δSBC(R,µ), which proves (11.18).

We now proceed to prove the converse inequality,

δ(R,µ) ≥ δSBC(R,µ), (11.19)

which involves a bit more work.
Before carefully tackling the proof, we note the general idea and an “almost

proof” that unfortunately does not quite work, but which may provide some
insight. Suppose that we take a very good block code, e.g., a block code C of
block length N such that

ρ(C, µ) ≤ δ(R,µ) + δ

for a fixed δ > 0. We now wish to form a sliding block code for the same channel
with approximately the same performance. Since a sliding block code is just a
stationary code (at least if we permit an infinite window length), the goal can be
viewed as “stationarizing” the nonstationary block code. One approach would
be the analogy of the SBM channel: Since a block code can be viewed as a de-
terministic block memoryless channel, we could make it stationary by inserting
occasional random spacing between long sequences of blocks. Ideally this would
then imply the existence of a sliding block code from the properties of SBM
channels. The problem is that the SBM channel so constructed would no longer
be a deterministic coding of the input since it would require the additional input
of a random punctuation sequence. Nor could one use a random coding argu-
ment to claim that there must be a specific (nonrandom) punctuation sequence
which could be used to construct a code since the deterministic encoder thus
constructed would not be a stationary function of the input sequence, that is,
it is only stationary if both the source and punctuation sequences are shifted
together. Thus we are forced to obtain the punctuation sequence from the
source input itself in order to get a stationary mapping. The original proofs
that this could be done used a strong form of the Rohlin-Kakutani theorem
of Section 9.5given by Shields [133]. [56] [58]. The Rohlin-Kakutani theorem
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demonstrates the existence of a punctuation sequence with the property that
the punctuation sequence is very nearly independent of the source. Lemma 9.5.2
is a slightly weaker result than the strong form considered by Shields.

The code construction described above can therefore be approximated by
using a coding of the source instead of an independent process. Shields and
Neuhoff [135] provided a simpler proof of a result equivalent to the Rohlin-
Kakutani theorem and provided such a construction for finite alphabet sources.
Davisson and Gray [27] provided an alternative heuristic development of a sim-
ilar construction. We here adopt a somewhat different tack in order to avoid
some of the problems arising in extending these approaches to general alpha-
bet sources and to nonergodic sources. The principal difference is that we do
not try to prove or use any approximate independence between source and the
punctuation process derived from the source (which is code dependent in the
case of continuous alphabets). Instead we take a good block code and first pro-
duce a much longer block code that is insensitive to shifts or starting positions
using the same construction used to relate block coding performance of AMS
processes and that of their stationary mean. This modified block code is then
made into a sliding block code using a punctuation sequence derived from the
source. Because the resulting block code is little affected by starting time, the
only important property is that most of the time the block code is actually
in use. Independence of the punctuation sequence and the source is no longer
required. The approach is most similar to that of Davisson and Gray [27], but
the actual construction differs in the details. An alternative construction may
be found in Kieffer [80].

Given δ > 0 and ε > 0, choose for large enough N an asynchronous block
code C of block length N such that

1

N
log ||C|| ≤ R− 2ε

and
ρ(C, µ) ≤ δ(R,µ) + δ. (11.20)

The continuity of the block operational distortion rate function and the the-
orem for asynchronous block source coding ensure that we can do this. Next
we construct a longer block code that is more robust against shifts. For i =
0, 1, . . . , N − 1 construct the codes CK(i) having length K = JN as in the proof
of Lemma 11.2.4. These codebooks look like J − 1 repetitions of the codebook
C starting from time i with the leftover symbols at the beginning and end being
filled by the reference letter. We then form the union code CK =

⋃
i CK(i) as in

the proof of Corollary 11.2.4 which has all the shifted versions. This code has
rate no greater than R− 2ε+ (JN)−1 logN . We assume that J is large enough
to ensure that

1

JN
logN ≤ ε (11.21)

so that the rate is no greater than R− ε and that

3

J
ρ∗ ≤ δ. (11.22)
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We now construct a sliding block encoder f and decoder g from the given block
code. From Corollary 9.4.2 we can construct a finite length sliding block code
of {Xn} to produce a two-sided (NJ, γ)-random punctuation sequence {Zn}.
From the lemma P (Z0 = 2) ≤ γ and hence by the continuity of integration
(Corollary 4.4.2 of [50]) we can choose γ small enough to ensure that∫

x:Z0(x)=2

ρ(X0, a
∗) ≤ δ. (11.23)

Recall that the punctuation sequence usually produces 0’s followed by NJ − 1
1’s with occasional 2’s interspersed to make things stationary. The sliding block
encoder f begins with time 0 and scans backward NJ time units to find the first
0 in the punctuation sequence. If there is no such 0, then put out an arbitrary
channel symbol b. If there is such a 0, then the block codebook CK is applied
to the input K-tuple xK−n to produce the minimum distortion codeword

uK = min
y∈CK

−1ρK(xK−n, y)

and the appropriate channel symbol, un, produced by the channel. The sliding
block encoder thus has length at most 2NJ + 1.

The decoder sliding block code g scans left N symbols to see if it finds a
codebook sync sequence (remember the codebook is asynchronous and begins
with a unique prefix or sync sequence). If it does not find one, it produces a
reference letter. (In this case it is not in the middle of a code word.) If it
does find one starting in position −n, then it produces the corresponding length
N codeword from C and then puts out the reproduction symbol in position n.
Note that the decoder sliding block code has a finite window length of at most
2N + 1.

We now evaluate the average distortion resulting from use of this sliding
block code. As a first step we mimic the proof of Lemma 10.6.3 up to the
assumption of mutual independence of the source and the punctuation process
(which is not the case here) to get that for a long source sequence of length n if
the punctuation sequence is z, then

ρn(xn, x̂n) =
∑

i∈Jn0 (z)

ρ(xi, a
∗) +

∑
i∈Jn1 (z)

ρNJ(xNJi , x̂NJi ),

where Jn0 (z) is the collection of all i for which zi is not in an NJ-cell (and hence
filler is being sent) and Jn1 (z) is the collection of all i for which zi is 0 and hence
begins an NJ-cell and hence an NJ length codeword. Each one of these length
NJ codewords contains at most N reference letters at the beginning and N
references letters at the end the end and in the middle it contains all shifts of
sequences of length N codewords from C. Thus for any i ∈ Jn1 (z), we can write
that

ρNJ(xNJi , x̂NJi ) ≤ ρN (xNi , a
∗N ) + ρN (xNi+NJ−N , a

∗N ) +

b iN c+JN−1∑
j=b iN c

ρN (xNj , C).
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This yields the bound

1

n
ρn(xn, x̂n) ≤ 1

n

∑
i∈Jn0 (z)

ρ(xi, a
∗)

+
1

n

∑
i∈Jn1 (z)

(
ρN (xNi , a

∗N ) + ρN (xNi+NJ−N , a
∗N )

)

+
1

n

b nN c∑
j=0

ρN (xNjN , C) =
1

n

n−1∑
i=0

12(zi)ρ(xi, a
∗)

+
1

n

n−1∑
i=0

10(zi)
(
ρN (xNi , a

∗N ) + ρN (xNi+NJ−N , a
∗N )

)
+

1

n

b nN c∑
j=0

ρN (xNjN , C),

where 1a(zi) is 1 if zi = a and 0 otherwise. Taking expectations above we have
that

E(
1

n
ρn(Xn, X̂n)) ≤ 1

n

n−1∑
i=0

E(12(Zi)ρ(Xi, a
∗))

+
1

n

n−1∑
i=0

(10(Zi)
(
ρN (XN

i , a
∗N ) + ρN (XN

i+NJ−N , a
∗N )

)
) +

1

n

b nN c∑
j=0

ρN (XN
jN , C).

Invoke stationarity to write

E(
1

n
ρn(Xn, X̂n)) ≤ E(12(Z0)ρ(X0, a

∗))

+
1

NJ
E(10(Z0)ρ2N + 1(X2N+1, a∗(2N+1))) +

1

N
ρN (XN , C).

The first term is bounded above by δ from (11.23). The middle term can be
bounded above using (11.22) by

1

JN
E(10(Z0)ρ2N+1(X2N+1, a∗(2N+1)) ≤ 1

JN
Eρ2N+1(X2N+1, a∗(2N+1))

=
1

JN
(2N + 1)ρ∗ ≤ (

2

J
+ 1)ρ∗ ≤ δ.

Thus we have from the above and (11.20) that

Eρ(X0, Y0) ≤ ρ(C, µ) + 3δ.

This proves the existence of a finite window sliding block encoder and a finite
window length decoder with performance arbitrarily close to that achievable by
block codes. 2

The only use of ergodicity in the proof of the theorem was in the selection
of the source sync sequence used to imbed the block code in a sliding block
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code. The result would extend immediately to nonergodic stationary sources
(and hence to nonergodic AMS sources) if we could somehow find a single source
sync sequence that would work for all ergodic components in the ergodic de-
composition of the source. Note that the source synch sequence affects only the
encoder and is irrelevant to the decoder which looks for asynchronous codewords
prefixed by channel synch sequences (which consisted of a single channel letter
repeated several times). Unfortunately, one cannot guarantee the existence of a
single source sequence with small but nonzero probability under all of the ergodic
components. Since the components are ergodic, however, an infinite length slid-
ing block encoder could select such a source sequence in a simple (if impractical)
way: Proceed as in the proof of the theorem up to the use of Corollary 9.4.2.
Instead of using this result, we construct by brute force a punctuation sequence
for the ergodic component in effect. Suppose that G = {Gi; i = 1, 2, . . .} is a
countable generating field for the input sequence space. Given δ, the infinite
length sliding block encoder first finds the smallest value of i for which

0 < lim
n→∞

1

n

n−1∑
k=0

1Gi(T
kx),

and

lim
n→∞

1

n

n−1∑
k=0

1Gi(T
kx)ρ(xk, a

∗) ≤ δ,

that is, we find a set with strictly positive relative frequency (and hence strictly
positive probability with respect to the ergodic component in effect) which oc-
curs rarely enough to ensure that the sample average distortion between the
symbols produced when Gi occurs and the reference letter is smaller than δ.
Given N and δ there must exist an i for which these relations hold (apply the
proof of Lemma 9.4.4 to the ergodic component in effect with γ chosen to sat-
isfy (11.23) for that component and then replace the arbitrary set G by a set
in the generating field having very close probability). Analogous to the proof of
Lemma 9.4.4 we construct a punctuation sequence {Zn} using the event Gi in
place of G. The proof then follows in a like manner except that now from the
dominated convergence theorem we have that

E(12(Z0)ρ(X0, a
∗)) = lim

n→∞

1

n

n−1∑
i=0

E(12(Zi)ρ(Xi, a
∗)

= E( lim
n→∞

1

n

n−1∑
i=0

12(Zi)ρ(Xi, a
∗)) ≤ δ

by construction.
The above argument is patterned after that of Davisson and Gray [27] and

extends the theorem to stationary nonergodic sources if infinite window sliding
block encoders are allowed. We can then approximate this encoder by a finite-
window encoder, but we must make additional assumptions to ensure that the
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resulting encoder yields a good approximation in the sense of overall distortion.
Suppose that f is the infinite window length encoder and g is the finite window-
length (say 2L + 1) encoder. Let G denote a countable generating field of
rectangles for the input sequence space. Then from Corollary 4.2.2 applied
to G given ε > 0 we can find for sufficiently large N a finite window sliding
block code r : A2N+1 → B such that Pr(r 6= f ′) ≤ ε/(2L + 1), that is, the two
encoders produce the same channel symbol with high probability. The issue is
when does this imply that ρ(fg, µ) and ρ(rg, µ) are therefore also close, which
would complete the proof. Let r̄ : AT → B denote the infinite-window sliding
block encoder induced by r, i.e., r̄(x) = r(x2N+1

−N ). Then

ρ(fg, µ) = E(ρ(X0, X̂0)) =
∑

b∈B2L+1

∫
x∈Vf (b)

dµ(x)ρ(x0, g(b)),

where
Vf (b) = {x : f(x)2L+1 = b},

where f(x)2L+1 is shorthand for f(xi), i = −L, . . . , L, that is, the channel
(2L+ 1)-tuple produced by the source using encoder x. We therefore have that

ρ(r̄g, µ) ≤
∑

b∈B2L+1

∫
x∈Vf (b)

dµ(x)ρ(x0, g(b))

+
∑

b∈B2L+1

∫
x∈Vr̄(b)−Vf (b)

dµ(x)ρ(x0, g(b))

= ρ(f, µ) +
∑

b∈B2L+1

∫
x∈Vr̄(b)−Vf (b)

dµ(x)ρ(x0, g(b))

≤ ρ(f, µ) +
∑

b∈B2L+1

∫
x∈Vr̄(b)∆Vf (b)

dµ(x)ρ(x0, g(b)).

By making N large enough, however, we can make

µ(Vr̄(f)∆Vf (b))

arbitrarily small simultaneously for all b ∈ Â2L + 1 and hence force all of the
integrals above to be arbitrarily small by the continuity of integration. With
Lemma 11.7.1 and Theorem 11.7.1 this completes the proof of the following
theorem.

Theorem 11.7.2 Theorem 11.7.2: Given an AMS source µ and an additive
fidelity criterion with a reference letter,

δSBC(R,µ) = δ(R,µ),

that is, the class of sliding block codes is capable of exactly the same performance
as the class of block codes.
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The sliding block source coding theorem immediately yields an alternative
coding theorem for a code structure known as trellis encoding source codes
wherein the sliding block decoder is kept but the encoder is replaced by a tree
or trellis search algorithm such as the Viterbi algorithm [41]. The details of
inferring the trellis encoding source coding theorem from the sliding-block source
coding theorem can be found in [52].

11.8 A geometric Interpretation of operational
DRFs

We close this chapter on source coding theorems with a geometric interpretation
of the operational DRFs in terms of the ρ̄ distortion between sources. Suppose
that µ is a stationary and ergodic source and that {ρn} is an additive fidelity
criterion with a fidelity criterion. Suppose that we have a nearly optimal sliding
block encoder and decoder for µ and a channel with rate R, that is, if the overall
process is {Xn, X̂n} and

Eρ(X0, X̂0) ≤ δ(R,µ) + δ.

If the overall hookup (source/encoder/channel/decoder) yields a distribution p
on {Xn, X̂n} and distribution η on the reproduction process {X̂n}, then clearly

ρ̄(µ, η) ≤ δ(R,µ) + δ.

Furthermore, since the channel alphabet is B the channel process must have
entropy rate less than R = log ||B|| and hence the reproduction process must
also have entropy rate less than B from Corollary 4.2.5. Since δ is arbitrary,

δ(R,µ) ≥ inf
η:H̄(η)≤R

ρ̄(µ, η).

Suppose next that p, µ and η are stationary and ergodic and that H̄(η) ≤ R.
Choose a stationary p having µ and η as coordinate processes such that

Epρ(X0, Y0) ≤ ρ̄(µ, ν) + δ.

We have easily that Ī(X;Y ) ≤ H̄(η)≤ R and hence the left hand side is bounded
below by the process distortion rate function D̄s(R,µ). From Theorem 10.6.1
and the block source coding theorem, however, this is just the operational dis-
tortion rate function. We have therefore proved the following:

Theorem 11.8.1 Let µ be a stationary and ergodic source and let {ρn} be an
additive fidelity criterion with a reference letter. Then

δ(R,µ) = inf
η:H̄(η)≤R

ρ̄(µ, η),

that is, the operational DRF (and hence the distortion-rate function) of a sta-
tionary ergodic source is just the “distance” in the ρ̄ sense to the nearest station-
ary and ergodic process with the specified reproduction alphabet and with entropy
rate less than R.
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This result originated in [55].
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Chapter 12

Coding for noisy channels

12.1 Noisy Channels

In the treatment of source coding the communication channel was assumed to
be noiseless. If the channel is noisy, then the coding strategy must be different.
Now some form of error control is required to undo the damage caused by the
channel. The overall communication problem is usually broken into two pieces:
A source coder is designed for a noiseless channel with a given resolution or rate
and an error correction code is designed for the actual noisy channel in order
to make it appear almost noiseless. The combination of the two codes then
provides the desired overall code or joint source and channel code. This division
is natural in the sense that optimizing a code for a particular source may suggest
quite different structure than optimizing it for a channel. The structures must
be compatible at some point, however, so that they can be used together.

This division of source and channel coding is apparent in the subdivision of
this chapter. We shall begin with a basic lemma due to Feinstein [38] which is the
basis of traditional proofs of coding theorems for channels. It does not consider
a source at all, but finds for a given conditional distribution the maximum
number of inputs which lead to outputs which can be distinguished with high
probability. Feinstein’s lemma can be thought of as a channel coding theorem for
a channel which is used only once and which has no past or future. The lemma
immediately provides a coding theorem for the special case of a channel which
has no input memory or anticipation. The difficulties enter when the conditional
distributions of output blocks given input blocks depend on previous or future
inputs. This difficulty is handled by imposing some form of continuity on the
channel with respect to its input, that is, by assuming that if the channel input
is known for a big enough block, then the conditional probability of outputs
during the same block is known nearly exactly regardless of previous or future
inputs. The continuity condition which we shall consider is that of d̄-continuous
channels. Joint source and channel codes have been obtained for more general
channels called weakly continuous channels (see, e.g., Kieffer [81] [82]), but these

253
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results require a variety of techniques not yet considered here and do not follow
as a direct descendent of Feinstein’s lemma.

Block codes are extended to sliding-block codes in a manner similar to that
for source codes: First it is shown that asynchronous block codes can be syn-
chronized and then that the block codes can be “stationarized” by the insertion
of random punctuation. The approach to synchronizing channel codes is based
on a technique of Dobrushin [33].

We consider stationary channels almost exclusively, thereby not including
interesting nonstationary channels such as finite state channels with an arbi-
trary starting state. We will discuss such generalizations and we point out that
they are straightforward for two-sided processes, but the general theory of AMS
channels for one-sided processes is not in a satisfactory state. Lastly, we empha-
size ergodic channels. In fact, for the sliding block codes the channels are also
required to be totally ergodic, that is, ergodic with respect to all block shifts.

As previously discussed, we emphasize digital, i.e., discrete, channels. A
few of the results, however, are as easily proved under somewhat more general
conditions and hence we shall do so. For example, given the background of this
book it is actually easier to write things in terms of measures and integrals than
in terms of sums over probability mass functions. This additional generality
will also permit at least a description of how the results extend to continuous
alphabet channels.

12.2 Feinstein’s Lemma

Let (A,BA) and (B,BB) be measurable spaces called the input space and the
output space, respectively. Let PX denote a probability distribution on (A,BA)
and let ν(F |x), F ∈ BB , x ∈ B denote a regular conditional probability distri-
bution on the output space. ν can be thought of as a “channel” with random
variables as input and output instead of sequences. Define the hookup PXν =
PXY by

PXY (F ) =

∫
dPX(x)ν(Fx|x).

Let PY denote the induced output distribution and let PX × PY denote the
resulting product distribution. Assume that PXY << (PX×PY ) and define the
Radon-Nikodym derivative

f =
dPXY

d(PX × PY )
(12.1)

and the information density

i(x, y) = ln f(x, y).
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We use abbreviated notation for densities when the meanings should be clear
from context, e.g., f instead of fXY . Observe that for any set F∫

F

dPX(x)

(∫
dPY (y)f(x, y)

)
=

∫
F×B

d(PX × PY )(x, y)f(x, y)

=

∫
F×B

dPXY (x, y) = PX(B) ≤ 1

and hence ∫
dPY (y)f(x, y) ≤ 1; PX − a.e. (12.2)

Feinstein’s lemma shows that we can pickM inputs {xi ∈ A; i = 1, 2, . . . ,M},
and a corresponding collection of M disjoint output events {Γi ∈ BB ; i =
1, 2, . . . ,M}, with the property that given an input xi with high probability
the output will be in Γi. We call the collection C = {xi,Γi; i = 1, 2, . . . ,M} a
code with codewords xi and decoding regions Γi. We do not require that the Γi
exhaust B.

The generalization of Feinstein’s original proof for finite alphabets to general
measurable spaces is due to Kadota [70] and the following proof is based on his.

Lemma 12.2.1 Given an integer M and a > 0 there exist xi ∈ A; i = 1, . . . ,M
and a measurable partition F = {Γi; i = 1, . . . ,M} of B such that

ν(Γci |xi) ≤Me−a + PXY (i ≤ a).

Proof: Define G = {x, y : i(x, y) > a} Set ε = Me−a + PXY (i ≤ a) = Me−a +
PXY (Gc). The result is obvious if ε ≥ 1 and hence we assume that ε < 1 and
hence also that

PXY (Gc) ≤ ε < 1

and therefore that

PXY (i > a) = PXY (G) =

∫
dPX(x)ν(Gx|x) > 1− ε > 0.

This implies that the set Ã = {x : ν(Gx|x) > 1− ε and (12.2) holds} must have
positive measure under PX We now construct a code consisting of input points
xi and output sets Γxi . Choose an x1 ∈ Ã and define Γx1

= Gx1
. Next choose

if possible a point x2 ∈ Ã for which ν(Gx2 − Γx1 |x2) > 1 − ε. Continue in this
way until either M points have been selected or all the points in Ã have been
exhausted. In particular, given the pairs {xj ,Γj}; j = 1, 2, . . . , i− 1, satisfying
the condition, find an xi for which

ν(Gxi −
⋃
j<i

Γxj |xi) > 1− ε. (12.3)

If the procedure terminates before M points have been collected, denote the
final point’s index by n. Observe that

ν(Γxi
c|xi) ≤ ν(Gxi

c|xi) ≤ ε; i = 1, 2, . . . , n
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and hence the lemma will be proved if we can show that necessarily n cannot
be strictly less than M . We do this by assuming the contrary and finding a
contradiction.

Suppose that the selection has terminated at n < M and define the set
F =

⋃n
i=1 Γxi ∈ BB . Consider the probability

PXY (G) = PXY (G
⋂

(A× F )) + PXY (G
⋂

(A× F c)). (12.4)

The first term can be bounded above as

PXY (G
⋂

(A× F )) ≤ PXY (A× F ) = PY (F ) =

n∑
i=1

PY (Γxi).

We also have from the definitions and from (12.2) that

PY (Γxi) =

∫
Γxi

dPY (y) ≤
∫
Gxi

dPY (y)

≤
∫
Gxi

f(xi, y)

ea
dPY (y)

≤ e−a
∫
dPY (y)f(xi, y) ≤ e−a

and hence
PXY (G

⋂
(A× F )) ≤ ne−a. (12.5)

Consider the second term of (12.3):

PXY (G
⋂

(A× F c)) =

∫
dPX(x)ν((G

⋂
(A× F c))x|x) (12.6)

=

∫
dPX(x)ν(Gx

⋂
F c|x) (12.7)

=

∫
dPX(x)ν(Gx −

n⋃
i=1

Γi|x). (12.8)

We must have, however, that

ν(Gx −
n⋃
i=1

Γi|x) ≤ 1− ε

with PX probability 1 or there would be a point xn+1 for which

ν(Gxn+1
−
n+1⋃
i=1

Γi|xn+1) > 1− ε,

that is, (12.3) would hold for i = n+ 1, contradicting the definition of n as the
largest integer for which (12.3) holds. Applying this observation to (12.8) yields

PXY (G
⋂

(A× F c)) ≤ 1− ε
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which with (12.4) and (12.5) implies that

PXY (G) ≤ ne−a + 1− ε. (12.9)

From the definition of ε, however, we have also that

PXY (G) = 1− PXY (Gc) = 1− ε+Me−a

which with (12.9) implies that M ≤ n, completing the proof. 2

12.3 Feinstein’s Theorem

Given a channel [A, ν,B] an (M,n, ε) block channel code for ν is a collection
{wi,Γi}; i = 1, 2, . . . ,M , where wi ∈ An, Γi ∈ BnB , all i, with the property that

sup
x∈c(wi)

max
i=1,...,M

νnx (Γi) ≤ ε, (12.10)

where c(an) = {x : xn = an} and where νnx is the restriction of νx to BnB .
The rate of the code is defined as n−1 logM . Thus an (n,M, ε) channel code
is a collection of M input n-tuples and corresponding output cells such that
regardless of the past or future inputs, if the input during time 1 to n is a
channel codeword, then the output during time 1 to n is very likely to lie in
the corresponding output cell. Channel codes will be useful in a communication
system because they permit nearly error free communication of a select group
of messages or codewords. A communication system can then be constructed
for communicating a source over the channel reliably by mapping source blocks
into channel codewords. If there are enough channel codewords to assign to all
of the source blocks (at least the most probable ones), then that source can
be reliably reproduced by the receiver. Hence a fundamental issue for such an
application will be the number of messages M or, equivalently, the rate R of a
channel code.

Feinstein’s lemma can be applied fairly easily to obtain something that re-
sembles a coding theorem for a noisy channel. Suppose that [A, ν,B] is a channel
and [A,µ] is a source and that [A × B, p = µν] is the resulting hookup. De-
note the resulting pair process by {Xn, Yn} For any integer K let pK denote
the restriction of p to (AK × BK , BKA × BKB ), that is, the distribution on in-
put/output K-tuples (XK , Y K). The joint distribution pK together with the
input distribution µK induce a regular conditional probability ν̂K defined by
ν̂K(F |xK) = Pr(Y K ∈ F |XK = xK). In particular,

ν̂K(G|aK) = Pr(Y K ∈ G|XK = aK) =
1

µK(aK)

∫
c(aK)

νKx (G)dµ(x). (12.11)

where c(aK) = {x : xK = aK} is the rectangle of all sequences with a com-
mon K-dimensional output. We call ν̂K the induced K-dimensional channel
of the channel ν and the source µ. It is important to note that the induced
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channel depends on the source as well as on the channel, a fact that will cause
some difficulty in applying Feinstein’s lemma. An exception to this case which
proves to be an easy application is that of a channel without input memory and
anticipation, in which case we have from the definitions that

ν̂K(F |aK) = νx(Y K ∈ F ); x ∈ c(aK),

Application of Feinstein’s lemma to the induced channel yields the following
result, which was proved by Feinstein for stationary finite alphabet channels
and is known as Feinstein’s theorem:

Lemma 12.3.1 Suppose that [A × B,µν] is an AMS and ergodic hookup of a
source µ and channel ν. Let Īµν = Īµν(X;Y ) denote the average mutual infor-
mation rate and assume that Īµν = I∗µν is finite (as is the case if the alphabets
are finite (Theorem 6.4.1) or have the finite-gap information property (Theo-
rem 6.4.3)). Then for any R < Īµν and any ε > 0 there exists for sufficiently
large n a code {wni ; Γi; i = 1, 2, . . . ,M}, where M = benRc, wni ∈ An, and
Γi ∈ BnB, with the property that

ν̂n(Γci |wni ) ≤ ε, i = 1, 2, . . . ,M. (12.12)

Comment: We shall call a code {wi,Γi; i = 1, 2, . . . ,M} which satisfies (12.12)
for a channel input process µ a (µ,M, n, ε)-Feinstein code. The quantity n−1 logM
is called the rate of the Feinstein code.
Proof: Let η denote the output distribution induced by µ and ν. Define the
information density

in =
dpn

(dµn × ηn)

and define

δ =
Īµν −R

2
> 0.

Apply Feinstein’s lemma to the n-dimensional hookup (µν)n with M = benRc
and a = n(R+ δ) to obtain a code {wi,Γi}; i = 1, 2, . . . ,M with

max
i
ν̂n(Γci |wni ) ≤ Me−n(R+δ) + pn(in ≤ n(R+ δ))

= benRce−n(R+δ) + p(
1

n
in(Xn;Y n) ≤ R+ δ) (12.13)

and hence

max
i
ν̂n(Γci |wni ) ≤ e−nδ + p(

1

n
in(Xn;Y n) ≤ Īµν − δ). (12.14)

From Theorem 6.3.1 n−1in converges in L1 to Īµν and hence it also converges
in probability. Thus given ε we can choose an n large enough to ensure that the
right hand side of (12.13) is smaller than ε, which completes the proof of the
theorem. 2
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We said that the lemma “resembled” a coding theorem because a real coding
theorem would prove the existence of an (M,n, ε) channel code, that is, it would
concern the channel ν itself and not the induced channel ν̂, which depends on a
channel input process distribution µ. The difference between a Feinstein code
and a channel code is that the Feinstein code has a similar property for an
induced channel which in general depends on a source distribution, while the
channel code has this property independent of any source distribution and for
any past or future inputs.

Feinstein codes will be used to construct block codes for noisy channels. The
simplest such construction is presented next.

Corollary 12.3.1 Suppose that a channel [A, ν,B] is input memoryless and
input nonanticipatory (see Section 9.4).Then a (µ,M, n, ε)-Feinstein code for
some channel input process µ is also an (M,n, ε)-code.

Proof: Immediate since for a channel without input memory and anticipation
we have that νnx (F ) = νnu (F ) if xn = un. 2

The principal idea of constructing channel codes from Feinstein codes for
more general channels will be to place assumptions on the channel which ensure
that for sufficiently large n the channel distribution νnx and the induced finite
dimensional channel ν̂n(·|xn) are close. This general idea was proposed by
McMillan [104] who suggested that coding theorems would follow for channels
that were sufficiently continuous in a suitable sense.

The previous results did not require stationarity of the channel, but in a
sense stationarity is implicit if the channel codes are to be used repeatedly (as
they will be in a communication system). Thus the immediate applications of
the Feinstein results. will be to stationary channels.

The following is a rephrasing of Feinstein’s theorem that will be useful.

Corollary 12.3.2 Suppose that [A × B,µν] is an AMS and ergodic hookup
of a source µ and channel ν. Let Īµν = Īµν(X;Y ) denote the average mutual
information rate and assume that Īµν = I∗µν is finite. Then for any R < Īµν and

any ε > 0 there exists an n0 such that for all n ≥ n0 there are (µ, benRc, n, ε)-
Feinstein codes.

As a final result of the Feinstein variety, we point out a variation that applies
to nonergodic channels.

Corollary 12.3.3 Suppose that [A × B,µν] is an AMS hookup of a source µ
and channel ν. Suppose also that the information density converges a.e. to a
limiting density

i∞ = lim
n→∞

1

n
in(Xn;Y n).

(Conditions for this to hold are given in Theorem 8.5.1.) Then given ε > 0
and δ > 0 there exists for sufficiently large n a [µ,M, n, ε + µν(i∞ ≤ R + δ)]
Feinstein code with M = benRc.
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Proof: Follows from the lemma and from Fatou’s lemma which implies that

lim sup
n→∞

p(
1

n
in(Xn;Y n) ≤ a) ≤ p(i∞ ≤ a).

2

12.4 Channel Capacity

The form of the Feinstein lemma and its corollaries invites the question of how
large R (and hence M) can be made while still getting a code of the desired
form. From Feinstein’s theorem it is seen that for an ergodic channel R can be
any number less than Ī(µν) which suggests that if we define the quantity

CAMS, e = sup
AMS and ergodic µ

Īµν , (12.15)

then if Īµν = I∗µν (e.g., the channel has finite alphabet), then we can construct
for some µ a Feinstein code for µ with rate R arbitrarily near CAMS, e. CAMS, e is
an example of a quantity called an information rate capacity or, simply, capacity
of a channel. We shall encounter a few variations on this definition just as there
were various ways of defining distortion-rate functions for sources by considering
either vectors or processes with different constraints. In this section a few of
these definitions are introduced and compared.

A few possible definitions of information rate capacity are

CAMS = sup
AMS µ

Īµν , (12.16)

Cs = sup
stationary µ

Īµν , (12.17)

Cs, e = sup
stationary and ergodic µ

Īµν , (12.18)

Cns = sup
n−stationary µ

Īµν , (12.19)

Cbs = sup
block stationary µ

Īµν = sup
n

sup
n−stationary µ

Īµν . (12.20)

Several inequalities are obvious from the definitions:

CAMS ≥ Cbs ≥ Cns ≥ Cs ≥ Cs, e (12.21)

CAMS ≥ CAMS,e ≥ Cs, e. (12.22)

In order to relate these definitions we need a variation on Lemma 12.3.1 de-
scribed in the following lemma.

Lemma 12.4.1 Given a stationary finite-alphabet channel [A, ν,B], let µ be
the distribution of a stationary channel input process and let {µx} be its ergodic
decomposition. Then

Īµν =

∫
dµ(x)Īµxν . (12.23)
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Proof: We can write

Īµν = h1(µ)− h2(µ)

where

h1(µ) = H̄η(Y ) = inf
n

1

n
Hη(Y n)

is the entropy rate of the output, where η is the output measure induced by µ
and ν, and where

h2(µ) = H̄µν(Y |X) = lim
n→∞

1

n
Hµν(Y n|Xn)

is the conditional entropy rate of the output given the input. If µk → µ on any
finite dimensional rectangle, then also ηk → η and hence

Hηk(Y n)→ Hη(Y n)

and hence it follows as in the proof of Corollary 2.4.1 that h1(µ) is an upper
semicontinuous function of µ. It is also affine because H̄η(Y ) is an affine function
of η (Lemma 2.4.2) which is in turn a linear function of µ. Thus from Theorem
8.9.1 of [50]

h1(µ) =

∫
dµ(x)h1(µx).

h2(µ) is also affine in µ since h1(µ) is affine in µ and Īµν is affine in µ (since it
is affine in µν from Lemma 6.2.2). Hence we will be done if we can show that
h2(µ) is upper semicontinuous in µ since then Theorem 8.9.1 of [50] will imply
that

h2(µ) =

∫
dµ(x)h2(µx)

which with the corresponding result for h1 proves the lemma. To see this observe
that if µk → µ on finite dimensional rectangles, then

Hµkν(Y n|Xn)→ Hµν(Y n|Xn). (12.24)

Next observe that for stationary processes

H(Y n|Xn) ≤ H(Y m|Xn) +H(Y n−mm |Xn)

≤ H(Y m|Xm) +H(Y n−mm |Xn−m
m )

= H(Y m|Xm) +H(Y n−m|Xn−m)

which as in Section 2.4 implies that H(Y n|Xn) is a subadditive sequence and
hence

lim
n→∞

1

n
H(Y n|Xn) = inf

n

1

n
H(Y n|Xn).

Coupling this with (12.24) proves upper semicontinuity exactly as in the proof
of Corollary 2.4.1, which completes the proof of the lemma. 2
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Lemma 12.4.2 If a channel ν has a finite alphabet and is stationary, then all
of the above information rate capacities are equal.

Proof: From Theorem 6.4.1 Ī = I∗ for finite alphabet processes and hence from
Lemma 6.2.2 and Lemma 9.3.2 we have that if µ is AMS with stationary mean
µ̄, then

Īµν = Īµν = Īµ̄ν

and thus the supremum over AMS sources must be the same as that over sta-
tionary sources. The fact that Cs ≤ Cs, e follows immediately from the previous
lemma since the best stationary source can do no better than to put all of
its measure on the ergodic component yielding the maximum information rate.
Combining these facts with (12.21)–(12.22) proves the lemma. 2

Because of the equivalence of the various forms of information rate capacity
for stationary channels, we shall use the symbol C to represent the information
rate capacity of a stationary channel and observe that it can be considered as
the solution to any of the above maximization problems.

Shannon’s original definition of channel capacity applied to channels without
input memory or anticipation. We pause to relate this definition to the process
definitions. Suppose that a channel [A, ν,B] has no input memory or antici-
pation and hence for each n there are regular conditional probability measures
ν̂n(G|xn); x ∈ An, G ∈ BnB , such that

νnx (G) = ν̂n(G|xn).

Define the finite-dimensional capacity of the ν̂n by

Cn(ν̂n) = sup
µn

Iµnν̂n(Xn;Y n),

where the supremum is over all vector distributions µn on An. Define the
Shannon capacity of the channel µ by

CShannon = lim
n→∞

1

n
Cn(ν̂n)

if the limit exists. Suppose that the Shannon capacity exists for a channel ν
without memory or anticipation. Choose N large enough so that CN is very
close to CShannon and let µN approximately yield CN . Then construct a block
memoryless source using µN . A block memoryless source is AMS and hence if
the channel is AMS we must have an information rate

Īµν(X;Y ) = lim
n→∞

1

n
Iµν(Xn;Y n) = lim

k→∞

1

kN
Iµν(XkN ;Y kN ).

Since the input process is block memoryless, we have from Lemma 9.4.2 that

I(XkN ;Y kN ) ≥
k∑
i=0

I(XN
iN ;Y NiN ).
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If the channel is stationary then {Xn, Yn} is N -stationary and hence if

1

N
IµN ν̂N (XN ;Y N ) ≥ CShannon − ε,

then
1

kN
I(XkN ;Y kN ) ≥ CShannon − ε.

Taking the limit as k →∞ we have that

CAMS = C ≥ Ī(X;Y ) = lim
k→∞

1

kN
I(XkN ;Y kN ) ≥ CShannon − ε

and hence

C ≥ CShannon.

Conversely, pick a stationary source µ which nearly yields C = Cs, that is,

Īµν ≥ Cs − ε.

Choose n0 sufficiently large to ensure that

1

n
Iµν(Xn;Y n) ≥ Īµν − ε ≥ Cs − 2ε.

This implies, however, that for n ≥ n0

Cn ≥ Cs − 2ε,

and hence application of the previous lemma proves the following lemma.

Lemma 12.4.3 Given a finite alphabet stationary channel ν with no input
memory or anticipation,

C = CAMS = Cs = Cs, e = CShannon.

The Shannon capacity is of interest because it can be numerically computed
while the process definitions are not always amenable to such computation.

With Corollary 12.3.2 and the definition of channel capacity we have the
following result.

Lemma 12.4.4 If ν is an AMS and ergodic channel and R < C, then there is
an n0 sufficiently large to ensure that for all n ≥ n0 there exist (µ, benRc, n, ε)
Feinstein codes for some channel input process µ.

Corollary 12.4.1 Suppose that [A, ν,B] is an AMS and ergodic channel with
no input memory or anticipation. Then if R < C, the information rate capac-
ity or Shannon capacity, then for ε > 0 there exists for sufficiently large n a
(benRc, n, ε) channel code.
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Proof: Follows immediately from Corollary 12.3.3 by choosing a stationary and
ergodic source µ with Īµν ∈ (R,C). 2

There is another, quite different, notion of channel capacity that we intro-
duce for comparison and to aid the discussion of nonergodic stationary channels.
Define for an AMS channel ν and any λ ∈ (0, 1) the quantile

C∗(λ) = sup
AMS µ

sup{r : µν(i∞ ≤ r) < λ)},

where the supremum is over all AMS channel input processes and i∞ is the
limiting information density (which exists because µν is AMS and has finite
alphabet). Define the information quantile capacity C∗ by

C∗ = lim
λ→0

C∗(λ).

The limit is well defined since the C∗(λ) are bounded and nonincreasing. The
information quantile capacity was introduced by Winkelbauer [151] and its prop-
erties were developed by him and by Kieffer [76]. Fix an R < C∗ and define
δ = (C∗−R)/2. Given ε > 0 we can find from the definition of C∗ an AMS chan-
nel input process µ for which µν(i∞ ≤ R + δ) ≤ ε. Applying Corollary 12.3.3
with this δ and ε/2 then yields the following result for nonergodic channels.

Lemma 12.4.5 If ν is an AMS channel and R < C∗, then there is an n0 suf-
ficiently large to ensure that for all n ≥ n0 there exist (µ, fenRf, n, ε) Feinstein
codes for some channel input process µ.

We close this section by relating C and C∗ for AMS channels.

Lemma 12.4.6 Given an AMS channel ν,

C ≥ C∗.

Proof: Fix λ > 0. If r < C∗(λ) there is a µ such that λ > µν(i∞ ≤ r) =
1− µν(i∞ > r) ≥ 1Īµν/r, where we have used the Markov inequality. Thus for
all r < C∗ we have that Īµν ≥ r(1− µν(i∞ ≤ r)) and hence

C ≥ Īµν ≥ C∗(λ)(1− λ) →
λ→0

C∗.

2

It can be shown that if a stationary channel is also ergodic, then C = C∗ by
using the ergodic decomposition to show that the supremum defining C(λ) can
be taken over ergodic sources and then using the fact that for ergodic µ and ν,
i∞ equals Īµν with probability one. (See Kieffer [76].)

12.5 Robust Block Codes

Feinstein codes immediately yield channel codes when the channel has no in-
put memory or anticipation because the induced vector channel is the same



12.5. ROBUST BLOCK CODES 265

with respect to vectors as the original channel. When extending this technique
to channels with memory and anticipation we will try to ensure that the in-
duced channels are still reasonable approximations to the original channel, but
the approximations will not be exact and hence the conditional distributions
considered in the Feinstein construction will not be the same as the channel
conditional distributions. In other words, the Feinstein construction guarantees
a code that works well for a conditional distribution formed by averaging the
channel over its past and future using a channel input distribution that approx-
imately yields channel capacity. This does not in general imply that the code
will also work well when used on the unaveraged channel with a particular past
and future input sequence. We solve this problem by considering channels for
which the two distributions are close if the block length is long enough.

In order to use the Feinstein construction for one distribution on an actual
channel, we will modify the block codes slightly so as to make them robust in
the sense that if they are used on channels with slightly different conditional
distributions, their performance as measured by probability of error does not
change much. In this section we prove that this can be done. The basic technique
is due to Dobrushin [33] and a similar technique was studied by Ahlswede and
Gács [4]. (See also Ahlswede and Wolfowitz [5].) The results of this section are
due to Gray, Ornstein, and Dobrushin [59].

A channel block length n code {wi,Γi; i = 1, 2, . . . ,M will be called δ-
robust (in the Hamming distance sense) if the decoding sets Γi are such that the
expanded sets

(Γi)δ ≡ {yn :
1

n
dn(yn,Γi) ≤ δ}

are disjoint, where
dn(yn,Γi) = min

un∈Γi
dn(yn, un)

and

dn(yn, un) =

n−1∑
i=0

dH(yi, ui)

and dH(a, b) is the Hamming distance (1 if a 6= b and 0 if a = b). Thus the code
is δ robust if received n-tuples in a decoding set can be changed by an average
Hamming distance of up to δ without falling in a different decoding set. We
show that by reducing the rate of a code slightly we can always make a Feinstein
code robust.

Lemma 12.5.1 Let {wi′,Γ′i; i = 1, 2, . . . ,M ′} be a (µ, enR
′
, n, ε)-Feinstein code

for a channel ν. Given δ ∈ (0, 1/4) and

R < R′ − h2(2δ)− 2δ log(||B|| − 1),

where as before h2(a) is the binary entropy function −a log a− (1−a) log(1−a),
there exists a δ-robust (µ, benRc, n, εn)-Feinstein code for ν with

εn ≤ ε+ e−n(R′−R−h2(2δ)−2δ log(||B||−1)−3/n).
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Proof: For i = 1, 2, . . . ,M ′ let ri(y
n) denote the indicator function for (Γi)2δ.

For a fixed yn there can be at most

2δn∑
i=0

(
n

i

)
(||B|| − 1)i = ||B||n

2δn∑
i=0

(
n

i

)
(1− 1

||B||
)i

(1

||B||
)n−i

n-tuples bn ∈ Bn such that n−1dn(yn, bn) ≤ 2δ. Set p = 1 − 1/||B|| and apply
Lemma 2.3.5 to the sum to obtain the bound

||B||n
2δn∑
i=0

(
n

k

)
(1− 1

||B||
)i(

1

||B||
)n−i ≤ ||B||ne−nh2(2δ||p)

= e−nh2(2δ||p)+n log ||B||,

where

h2(2δ||p) = 2δ ln
2δ

p
+ (1− 2δ) ln

1− 2δ

1− p

= −h2(δ) + 2δ ln
||B||
||B|| − 1

+ (1− 2δ) ln ||B||

= −h2(δ) + ln ||B|| − 2δ ln(||B|| − 1).

Combining this bound with the fact that the Γi are disjoint we have that

M ′∑
i=1

ri(y
n) ≤

2δn∑
i=0

(
n

i

)
(||B|| − 1)i ≤ e−n(h2(2δ)+2δ ln(||B||−1).

Set M = benRc and select 2M subscripts k1, · · · , k2M from {1, · · · ,M ′} by
random equally likely independent selection without replacement so that each
index pair (kj , km); j,m = 1, . . . , 2M ; j 6= m, assumes any unequal pair with
probability (M ′(M ′ − 1))−1. We then have that

E

 1

2M

2M∑
j=1

2M∑
m=1,m 6=j

ν̂(Γ′kj

⋂
(Γ′km)2δ|w′kj )


=

1

2M

2M∑
j=1

2M∑
m=1,m6=j

M ′∑
k=1

M ′∑
i=1,i6=k

1

M ′(M ′ − 1)

∑
yn∈Γ′k

ν̂(yn|w′k)ri(y
n)

≤ 1

2M

2M∑
j=1

2M∑
m=1,m6=j

M ′∑
k=1

1

M ′(M ′ − 1)

∑
yn∈Γ′k

ν̂(yn|w′k)

M ′∑
i=1,i6=k

ri(y
n)

≤ 2M

M − 1
en(h2(2δ)+2δ log(||B||−1)

≤ 4e−n(R′−R−h2(2δ)−2δ log(||B||−1) ≡ λn,
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where we have assumed that M ′ ≥ 2 so that M ′ − 1 ≥ M ′/2. Analogous to
a random coding argument, since the above expectation is less than λn, there
must exist a fixed collection of subscripts i1, · · · , i2M ′ such that

1

2M

2M∑
j=1

2M∑
m=1,m 6=j

ν̂(Γ′ij

⋂
(Γ′im)2δ|wi′j) ≤ λn.

Since no more than half of the above indices can exceed twice the expected
value, there must exist indices k1, · · · , kM ∈ {j1, · · · , j2M} for which

M∑
m=1,m 6=j

ν̂(Γ′kj

⋂
(Γ′km)2δ|w′kj ) ≤ 2λn; i = 1, 2, . . . ,M.

Define the code {wi,Γi; i = 1, . . . ,M} by wi = w′ki and

Γi = Γ′ki −
M ′⋃

m=1,m 6=i

(Γ′km)2δ.

The (Γi)δ are obviously disjoint since we have removed from Γ′ki all words within
2δ of a word in any other decoding set. Furthermore, we have for all i =
1, 2, . . . ,M that

1− ε ≤ ν̂(Γ′ki |w
′
ki)

= ν̂(Γ′ki

⋂⋃
m6=i

(Γ′km)2δ

 |w′ki) + ν̂(Γ′ki

⋂⋃
m 6=i

(Γ′km)2δ

c

|w′ki)

≤
∑
m6=i

ν̂(Γ′ki

⋂
(Γ′km)2δ|w′ki) + ν̂(Γi|wi)

< 2λn + ν̂(Γi|wi)

and hence

ν̂(Γi|wi) ≥ 1− ε− 8e−n(R′−R−h2(2δ)−2δ log(||B||−1),

which proves the lemma. 2

Corollary 12.5.1 Let ν be a stationary channel and let Cn be a sequence of
(µn, benR

′c, n, ε/2) Feinstein codes for n ≥ n0. Given an R > 0 and δ > 0 such
that R < R′ − h2(2δ) − 2δ log(||B|| − 1), there exists for n1 sufficiently large a
sequence C′n; n ≥ n1, of δ-robust (µn, benRc, n, ε) Feinstein codes.

Proof: The corollary follows from the lemma by choosing n1 so that

e−n1(R′−R−h2(2δ)−2δ ln(||B||−1)−3/n1) ≤ ε

2
.

2

Note that the sources may be different for each n and that n1 does not
depend on the channel input measure.
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12.6 Block Coding Theorems for Noisy Chan-
nels

Suppose now that ν is a stationary finite alphabet d̄-continuous channel. Sup-
pose also that for n ≥ n1 we have a sequence of δ-robust (µn, benRc, n, ε) Fe-
instein codes {wi,Γi} as in the previous section. We now quantify the perfor-
mance of these codes when used as channel block codes, that is, used on the
actual channel ν instead of on an induced channel. As previously let ν̂n be the
n-dimensional channel induced by µn and the channel ν, that is, for µnn(an) > 0

ν̂n(G|an) = Pr(Y n ∈ G|Xn = an) =
1

µnn(an)

∫
c(an)

νnx (G) dµ(x), (12.25)

where c(an) is the rectangle {x : x ∈ AT ; xn = an}, an ∈ An, and where
G ∈ BnB . We have for the Feinstein codes that

max
i
ν̂n(Γci |wi) ≤ ε.

We use the same codewords wi for the channel code, but we now use the ex-
panded regions (Γi)δ for the decoding regions. Since the Feinstein codes were
δ-robust, these sets are disjoint and the code well defined. Since the channel is
d̄-continuous we can choose an n large enough to ensure that if xn = x̄n, then

d̄n(νnx , ν
n
x̄ ) ≤ δ2.

Suppose that we have a Feinstein code such that for the induced channel

ν̂(Γi|wi) ≥ 1− ε.

Then if the conditions of Lemma 10.5.1 are met and µn is the channel input
source of the Feinstein code, then

ν̂n(Γi|wi) =
1

µnn(wi)

∫
c(wi)

νnx (Γi) dµ(x) ≤ sup
x∈c(wi)

νnx (Γi)

≤ inf
x∈c(wi)

νnx ((Γi)δ) + δ

and hence

inf
x∈c(wi)

νnx ((Γi)δ) ≥ ν̂n(Γi|wi)− δ ≥ 1− ε− δ.

Thus if the channel block code is constructed using the expanded decoding sets,
we have that

max
i

sup
x∈c(wi)

νx((Γi)
c
δ) ≤ ε+ δ;

that is, the code {wi, (Γi)δ} is a (benRc, n, ε + δ) channel code. We have now
proved the following result.
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Lemma 12.6.1 Let ν be a stationary d̄-continuous channel and Cn; n ≥ n0, a
sequence of δ-robust (µn, benRc, n, ε) Feinstein codes. Then for n1 sufficiently
large and each n ≥ n1 there exists a (benRc, n, ε+ δ) block channel code.

Combining the lemma with Lemma 12.4.4 and Lemma 12.4.5 yields the
following theorem.

Theorem 12.6.1 Let ν be an AMS ergodic d̄-continuous channel. If R < C
then given ε > 0 there is an n0 such that for all n ≥ n0 there exist (benRc, n, ε)
channel codes. If the channel is not ergodic, then the same holds true if C is
replaced by C∗.

Up to this point the channel coding theorems have been “one shot” theorems
in that they consider only a single use of the channel. In a communication
system, however, a channel will be used repeatedly in order to communicate a
sequence of outputs from a source.

12.7 Joint Source and Channel Block Codes

We can now combine a source block code and a channel block code of com-
parable rates to obtain a block code for communicating a source over a noisy
channel. Suppose that we wish to communicate a source {Xn} with a distri-
bution µ over a stationary and ergodic d̄-continuous channel [B, ν, B̂]. The
channel coding theorem states that if K is chosen to be sufficiently large, then
we can reliably communicate length K messages from a collection of beKRc
messages if R < C. Suppose that R = C − ε/2. If we wish to send the
given source across this channel, then instead of having a source coding rate of
(K/N) log ||B|| bits or nats per source symbol for a source (N,K) block code, we
reduce the source coding rate to slightly less than the channel coding rate R, say
Rsource = (K/N)(R − ε/2) = (K/N)(C − ε). We then construct a block source
codebook C of this rate with performance near δ(Rsource, µ). Every codeword
in the source codebook is assigned a channel codeword as index. The source is
encoded by selecting the minimum distortion word in the codebook and then
inserting the resulting channel codeword into the channel. The decoder then
uses its decoding sets to decide which channel codeword was sent and then puts
out the corresponding reproduction vector. Since the indices of the source code
words are accurately decoded by the receiver with high probability, the repro-
duction vector should yield performance near that of δ((K/N)(C− ε), µ). Since
ε is arbitrary and δ(R,µ) is a continuous function of R, this implies that the
OPTA for block coding µ for ν is given by δ((K/N)C, µ), that is, by the OPTA
for block coding a source evaluated at the channel capacity normalized to bits
or nats per source symbol. Making this argument precise yields the block joint
source and channel coding theorem.

A joint source and channel (N,K) block code consists of an encoder α :
AN → BK and decoder β : B̂K → ÂN . It is assumed that N source time units
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correspond to K channel time units. The block code yields sequence coders
ᾱ : AT → BT and β̄ : B̂T → ÂT defined by

ᾱ(x) = {α(xNiN ); all i}
β̄(x) = {β(xNiN ); all i}.

Let E denote the class of all such codes (all N and K consistent with the phys-
ical stationarity requirement). Let ∆∗(µ, ν, E) denote the block coding OPTA
function and D(R,µ) the distortion-rate function of the source with respect to
an additive fidelity criterion {ρn}. We assume also that ρn is bounded, that is,
there is a finite value ρmax such that

1

n
ρn(xn, x̂n) ≤ ρmax

for all n. This assumption is an unfortunate restriction, but it yields a simple
proof of the basic result.

Theorem 12.7.1 Let {Xn} be a stationary source with distribution µ and let
ν be a stationary and ergodic d̄-continuous channel with channel capacity C.
Let {ρn} be a bounded additive fidelity criterion. Given ε > 0 there exists for
sufficiently large N and K (where K channel time units correspond to N source
time units) an encoder α : AN → BK and decoder β : B̂K → ÂN such that
if ᾱ : AT → BT and β̄ : B̂T → ÂT are the induced sequence coders, then the
resulting performance is bounded above as

∆(µ, ᾱ, ν, β̄) = EρN (XN , X̂N ) ≤ δ(K
N
C,µ) + ε.

Proof: Given ε, choose γ > 0 so that

δ(
K

N
(C − γ), µ) ≤ δ(K

N
C,µ) +

ε

3

and choose N large enough to ensure the existence of a source codebook C of
length N and rate Rsource = (K/N)(C − γ) with performance

ρ(C, µ) ≤ δ(Rsource, µ) +
ε

3
.

We also assume that N and hence K is chosen large enough so that for a
suitably small δ (to be specified later) there exists a channel (beKRc,K, δ) code,
with R = C − γ/2. Index the beNRsourcec words in the source codebook by the
beK(C−γ/2c channel codewords. By construction there are more indices than
source codewords so that this is possible. We now evaluate the performance of
this code.

Suppose that there are M words in the source codebook and hence M of the
channel words are used. Let x̂i and wi denote corresponding source and channel
codewords, that is, if x̂i is the minimum distortion word in the source codebook



12.7. JOINT SOURCE AND CHANNEL BLOCK CODES 271

for an observed vector, then wi is transmitted over the channel. Let Γi denote
the corresponding decoding region. Then

EρN (XN , X̂N ) =

M∑
i=1

M∑
j=1

∫
x:α(xN )=wi

dµ(x)νKx (Γj)ρN (xN , x̂j)

=

M∑
i=1

∫
x:α(xN )=wi

dµ(x)νKx (Γi)ρN (xN , x̂i)

+

M∑
i=1

M∑
j=1,j 6=i

∫
x:α(xN )=wi

dµ(x)νKx (Γj)ρN (xN , x̂j)

≤
M∑
i=1

∫
x:α(xN )=wi

dµ(x)ρN (xN , x̂i)

+

M∑
i=1

M∑
j=1,J 6=i

∫
x:α(xN )=wi

dµ(x)νKx (Γj)ρN (xN , x̂j)

The first term is bounded above by δ(Rsource, µ) + ε/3 by construction. The
second is bounded above by ρmax times the channel error probability, which is
less than δ by assumption. If δ is chosen so that ρmaxδ is less than ε/2, the
theorem is proved. 2

Theorem 12.7.2 Let {Xn} be a stationary source source with distribution µ
and let ν be a stationary channel with channel capacity C. Let {ρn} be a
bounded additive fidelity criterion. For any block stationary communication sys-
tem (µ, f, ν, g), the average performance satisfies

∆(µ, f, ν, g) ≤
∫
x

dµ̄(x)D(C, µ̄x),

where µ̄ is the stationary mean of µ and {µ̄x} is the ergodic decomposition of
µ̄, C is the capacity of the channel, and D(R,µ) the distortion-rate function.

Proof: Suppose that the process {XN
nN , U

K
nK , Y KnK , X̂

N
nN} is stationary and con-

sider the overall mutual information rate Ī(X; X̂). From the data processing
theorem (Lemma 9.4.8)

Ī(X; X̂) ≤ K

N
Ī(U ;Y ) ≤ K

N
C.

Choose L sufficiently large so that

1

n
I(Xn; X̂n) ≤ K

N
C + ε

and

Dn(
K

N
C + ε, µ) ≥ D(

K

N
C + ε, µ)− δ
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for n ≥ L. Then if the ergodic component µx is in effect, the performance can
be no better than

EµxρN (Xn, X̂N ) ≥ inf
pN∈RN (KN C+ε,µNx )

ρN (XN , X̂N ) ≥ DN (
K

N
C + ε, µx)

which when integrated yields a lower bound of∫
dµ(x)D(

K

N
C + ε, µx)− δ.

Since δ and ε are arbitrary, the lemma follows from the continuity of the distor-
tion rate function. 2

Combining the previous results yields the block coding operational DRF for
stationary sources and stationary and ergodic d̄-continuous channels.

Corollary 12.7.1 Let {Xn} be a stationary source with distribution µ and let
ν be a stationary and ergodic d̄-continuous process with channel capacity C. Let
{ρn} be a bounded additive fidelity criterion. The block coding operational DRF
is given by

∆∗(µ, ν, E ,D) =

∫
dµ̄(x)D(C, µ̄x).

12.8 Synchronizing Block Channel Codes

As in the source coding case, the first step towards proving a sliding block coding
theorem is to show that a block code can be synchronized, that is, that the de-
coder can determine (at least with high probability) where the block code words
begin and end. Unlike the source coding case, this cannot be accomplished by
the use of a simple synchronization sequence which is prohibited from appearing
within a block code word since channel errors can cause the appearance of the
sync word at the receiver by accident. The basic idea still holds, however, if the
codes are designed so that it is very unlikely that a non-sync word can be con-
verted into a valid sync word. If the channel is d̄-continuous, then good robust
Feinstein codes as in Corollary 12.5.1 can be used to obtain good codebooks
. The basic result of this section is Lemma 12.8.1 which states that given a
sequence of good robust Feinstein codes, the code length can be chosen large
enough to ensure that there is a sync word for a slightly modified codebook;
that is, the synch word has length a specified fraction of the codeword length
and the sync decoding words never appear as a segment of codeword decod-
ing words. The technique is due to Dobrushin [33] and is an application of
Shannon’s random coding technique. The lemma originated in [59].

The basic idea of the lemma is this: In addition to a good long code, one
selects a short good robust Feinstein code (from which the sync word will be
chosen) and then performs the following experiment. A word from the short
code and a word from the long code are selected independently and at random.
The probability that the short decoding word appears in the long decoding word
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is shown to be small. Since this average is small, there must be at least one short
word such that the probability of its decoding word appearing in the decoding
word of a randomly selected long code word is small. This in turn implies
that if all long decoding words containing the short decoding word are removed
from the long code decoding sets, the decoding sets of most of the original long
code words will not be changed by much. In fact, one must remove a bit more
from the long word decoding sets in order to ensure the desired properties are
preserved when passing from a Feinstein code to a channel codebook.

Lemma 12.8.1 Assume that ε ≤ 1/4 and {Cn;n ≥ n0} is a sequence of ε-robust
{τ,M(n), n, ε/2} Feinstein codes for a d̄-continuous channel ν having capacity
C > 0. Assume also that h(2ε) + 2ε log(||B|| − 1) < C, where B is the channel
output alphabet. Let δ ∈ (0, 1/4). Then there exists an n1 such that for all
n ≥ n1 the following statements are true.

(A) If Cn = {vi,Γi; i = 1, . . . ,M(n)}, then there is a modified codebook Wn =
{wi;Wi; i = 1, . . . ,K(n)} and a set of K(n) indices Kn = {k1, · · · , kK(n) ⊂
{1, · · · ,M(n)} such that wi = vki , Wi ⊂ (Γi)ε2 ; i = 1, . . . ,K(n), and

max
1≤j≤K(n)

sup
x∈c(wj)

νnx (W c
j ) ≤ ε. (12.26)

(B) There is a sync word σ ∈ Ar, r = r(n) = dδne = smallest integer larger
than δn, and a sync decoding set S ∈ BrB such that

sup
x∈c(σ)

νrx(Sc) ≤ ε. (12.27)

and such that no r-tuple in S appears in any n-tuple in Wi; that is, if
G(br) = {yn : yri = br some i = 0, . . . , n − r} and G(S) =

⋃
br∈S G(br),

then
G(S)

⋂
Wi = ∅, i = 1, . . . ,K(n). (12.28)

(C) We have that
||{k : k 6∈ Kn}|| ≤ εδM(n). (12.29)

The modified codeWn has fewer words than the original code Cn, but (12.29)
ensures that Wn cannot be much smaller since

K(n) ≥ (1− εδ)M(n). (12.30)

Given a codebook Wn = {wi,Wi; i = 1, . . . ,K(n)}, a sync word σ ∈ Ar,
and a sync decoding set S, we call the length n+ r codebook {σ × wi, S ×Wi;
i = 1, . . . ,K(n)} a prefixed or punctuated codebook.
Proof: Since ν is d̄-continuous, n2 can be chosen so large that for n ≥ n2

max
an∈An

sup
x,x′∈c(an)

d̄n(νnx , ν
n
x′) ≤ (

δε

2
)2. (12.31)
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From Corollary 12.5.1 there is an n3 so large that for each r ≥ n3 there exists
an ε/2-robust (τ, J, r, ε/2)-Feinstein code Cs = {sj , Sj : j = 1, . . . , J}; J ≥ 2rRs ,
where Rs ∈ (0, C − h(2ε) − 2ε log(||B|| − 1)). Assume that n1 is large enough
to ensure that δn1 ≥ n2; δn1 ≥ n3, and n1 ≥ n0. Let 1F denote the indicator
function of the set F and define λn by

λn = J−1
J∑
j=1

1

M(n)

M(n)∑
i=1

ν̂n(G((Sj)ε)
⋂

Γi|vi)

= J−1
J∑
j=1

1

M(n)

M(n)∑
i=1

∑
b′∈(Sj)ε

∑
yn∈Γi

ν̂n(yn|vi)1G(b′)(y
n)

= J−1 1

M(n)

M(n)∑
i=1

∑
yn∈Γi

ν̂n(yn|vi)

 J∑
j=1

∑
b′∈(Sj)ε

1G(b′)(y
n)

 . (12.32)

Since the (Sj)ε are disjoint and a fixed yn can belong to at most n− r ≤ n sets
G(br), the bracket term above is bound above by n and hence

λn ≤
n

J

1

M(n)

M(n)∑
i=1

ν̂n(yn|vi) ≤
n

J
≤ n2−rRs ≤ n2−δnRs →

n→∞
0

so that choosing n1 also so that n12−δnRs ≤ (δε)2h we have that λn ≤ (δε)2 if
n ≥ n1. From (12.32) this implies that for n ≥ n1 there must exist at least one
j for which

M(n)∑
i=1

ν̂n(G((Sj)ε)
⋂

Γi|vi) ≤ (δε)2

which in turn implies that for n ≥ n1 there must exist a set of indices Kn ⊂
{1, · · · ,M(n)} such that

ν̂n(G((Sj)ε)
⋂

Γi|vi) ≤ δε, i ∈ Kn,

||{i : i 6∈ Kn}|| ≤ δε.

Define σ = sj ; S = (Sj)ε/2, wi = vki , and Wi = (Γki
⋂
G((Sj)ε)

c)εδ; i =
1, . . . ,K(n). We then have from Lemma 12.6.1 and (12.31) that if x ∈ c(σ),
then since εδ ≤ ε/2

νrx(S) = νrx((Sj)ε/2) ≥ ν̂r(Sj |σ)− ε

2
≥ 1− ε,

proving (12.27). Next observe that if yn ∈ (G((Sj)ε)
c)εδ, then there is a bn ∈

G((Sj)ε)
c such that dn(yn, bn) ≤ εδ and thus for i = 0, 1, . . . , n− r we have that

dr(y
r
i , b

r
i ) ≤

n

r

εδ

2
≤ ε

2
.
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Since bn ∈ G((Sj)ε)
c, it has no r-tuple within ε of an r-tuple in Sj and hence

the r-tuples yri are at least ε/2 distant from Sj and hence yn ∈ H((S)ε/2)c). We
have therefore that (G((Sj)ε)

c)εδ ⊂ G((Sj)ε)
c and hence

G(S)
⋂
Wi = G((Sj)ε)

⋂
(Γki

⋂
G((Sj)ε)

c)δε

⊂ G((Sj)ε/2)
⋂

(G((Sj)ε)
c)δε = ∅,

completing the proof. 2

Combining the preceding lemma with the existence of robust Feinstein codes
at rates less than capacity (Lemma 12.6.1) we have proved the following syn-
chronized block coding theorem.

Corollary 12.8.1 Le ν be a stationary ergodic d̄-continuous channel and fix
ε > 0 and R ∈ (0, C). Then there exists for sufficiently large blocklength N , a
length N codebook {σ×wi, S×Wi; i = 1, . . . ,M}, M ≥ 2NR, σ ∈ Ar, wi ∈ An,
r + n = N , such that

sup
x∈c(σ)

νrx(Sc) ≤ ε,

max
i≤j≤M

νnx (W c
j ) ≤ ε,

Wj

⋂
G(S) = ∅.

Proof: Choose δ ∈ (0, ε/2) so small that C − h(2δ) − 2δ log(||B|| − 1) > (1 +
δ)R(1 − log(1 − δ2)) and choose R′ ∈ ((1 + δ)R(1 − log(1 − δ2)), C − h(2δ) −
2δ log(||B|| − 1). From Lemma 12.6.1 there exists an n0 such that for n ≥
n0 there exist δ-robust (τ, µ, n, δ) Feinstein codes with M(n) ≥ 2nR

′
. From

Lemma 12.8.1 there exists a codebook {wi,Wi; i = 1, . . . ,K(n)}, a sync word
σ ∈ Ar, and a sync decoding set S ∈ BrB , r = dδne such that

max
j

sup
x∈c(wj)

νnx (W c
j ) ≤ 2δ ≤ ε,

sup
x∈c(σ)

νrx(S) ≤ 2δ ≤ ε,

G(S)
⋂
Wj = ∅; j = 1, . . . ,K(n), and from (12.30)

M = K(n) ≥ (1− δ2)M(n).

Therefore for N = n+ r

N−1 logM ≥ (ndnδe)−1 log((1− δ2)2nR
′
)

=
nR′ + log(1− δ2)

n+ nδ

=
R′ + n−1 log(1− δ2)

1 + δ

≥ R′ + log(1− δ2)

1 + δ
≥ R,

completing the proof. 2
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12.9 Sliding Block Source and Channel Coding

Analogous to the conversion of block source codes into sliding block source
codes, the basic idea of constructing a sliding block channel code is to use a
punctuation sequence to stationarize a block code and to use sync words to
locate the blocks in the decoded sequence. The sync word can be used to
mark the beginning of a codeword and it will rarely be falsely detected during
a codeword. Unfortunately, however, an r-tuple consisting of a segment of
a sync and a segment of a codeword may be erroneously detected as a sync
with nonnegligible probability. To resolve this confusion we look at the relative
frequency of sync-detects over a sequence of blocks instead of simply trying to
find a single sync. The idea is that if we look at enough blocks, the relative
frequency of the sync-detects in each position should be nearly the probability
of occurrence in that position and these quantities taken together give a pattern
that can be used to determine the true sync location. For the ergodic theorem
to apply, however, we require that blocks be ergodic and hence we first consider
totally ergodic sources and channels and then generalize where possible.

Totally Ergodic Sources

Lemma 12.9.1 Let ν be a totally ergodic stationary d̄-continuous channel. Fix
ε, δ > 0 and assume that CN = {σ × wi;S ×Wi; i = 1, . . . ,K} is a prefixed
codebook satisfying (12.26)–(12.28). Let γn : GN → CN assign an N -tuple in the
prefixed codebook to each N -tuple in GN and let [G,µ, U ] be an N -stationary, N -
ergodic source. Let c(an) denote the cylinder set or rectangle of all sequences u =
(· · · , u−1, u0, u1, · · · ) for which un = an. There exists for sufficiently large L
(which depends on the source) a sync locating function s : BLN → {0, 1, . . . , N−
1} and a set Φ ∈ BmG , m = (L+1)N , such that if um ∈ Φ and γN (UNLN ) = σ×wi,
then

inf
x∈c(γm(um))

νx(y : s(yLN ) = θ, θ = 0, . . . , N−1; yLN ∈ S×Wi) ≥ 1−3ε. (12.33)

Comments: The lemma can be interpreted as follows. The source is block en-
coded using γN . The decoder observes a possible sync word and then looks
“back” in time at previous channel outputs and calculates s(yLN ) to obtain the
exact sync location, which is correct with high probability. The sync locator
function is constructed roughly as follows: Since µ and ν are N -stationary and
N -ergodic, if γ̄ : A∞ → B∞ is the sequence encoder induced by the length
N block code γN , then the encoded source µγ̄−1 and the induced channel
output process η are all N -stationary and N -ergodic. The sequence zj =
η(T jc(S))); j = . . . ,−1, 0, 1, . . . is therefore periodic with period N . Fur-
thermore, zj can have no smaller period than N since from (12.26)–(12.28)
η(T jc(S)) ≤ ε, j = r + 1, . . . , n − r and η(c(S)) ≥ 1 − ε. Thus defining the
sync pattern {zj ; j = 0, 1, . . . , N − 1}, the pattern is distinct from any cyclic
shift of itself of the form {zk, · · · , zN−1, z0, · · · , xk−1}, where k ≤ N − 1. The
sync locator computes the relative frequencies of the occurrence of S at in-
tervals of length N for each of N possible starting points to obtain, say, a
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vector ẑN = (ẑ0, ẑ1, · · · , ẑN−1). The ergodic theorem implies that the ẑi will
be near their expectation and hence with high probability (ẑ0, · · · , ẑN−1) =
(zθ, zθ+1, · · · , zN−1, z0, · · · , zθ−1), determining θ. Another way of looking at
the result is to observe that the sources ηT j ; j = 0, . . . , N − 1 are each N -
ergodic and N -stationary and hence any two are either identical or orthogonal
in the sense that they place all of their measure on disjoint N -invariant sets.
(See, e.g., Exercise 1, Chapter 6 of [50].) No two can be identical, however,
since if ηT i = ηT j for i 6= j; 0 ≤ i, j ≤ N − 1, then η would be periodic with
period |i − j| strictly less than N , yielding a contradiction. Since membership
in any set can be determined with high probability by observing the sequence
for a long enough time, the sync locator attempts to determine which of the
N distinct sources ηT j is being observed. In fact, synchronizing the output
is exactly equivalent to forcing the N sources ηT j ; j = 0, 1, . . . , N − 1 to be
distinct N -ergodic sources. After this is accomplished, the remainder of the
proof is devoted to using the properties of d̄-continuous channels to show that
synchronization of the output source when driven by µ implies that with high
probability the channel output can be synchronized for all fixed input sequences
in a set of high µ probability.

The lemma is stronger (and more general) than the similar results of Nedoma
[108] and Vajda [143], but the extra structure is required for application to
sliding block decoding.

Proof: Choose ζ > 0 so that ζ < ε/2 and

ζ <
1

8
min

i,j:zi 6=zj
|zi − zj |. (12.34)

For α > 0 and θ = 0, 1, . . . , N − 1 define the sets ψ(θ, α) ∈ BLNB and ψ̃(θ, α) ∈
BmB , m = (L+ 1)N by

ψ(θ, α) = {yLN : | 1

L− 1

L−2∑
i=0

1S(yrj+iN )− zθ+j | ≤ α; j = 0, 1, . . . , N − 1}

ψ̃(θ, α) = Bθ × ψ(θ, α)×BN−θ.

From the ergodic theorem L can be chosen large enough so that

η(

N−1⋂
θ=0

T−θc(ψ(θ, ζ))) = ηm(

N−1⋂
θ=0

ψ̃(θ, ζ)) ≥ 1− ζ2. (12.35)

Assume also that L is large enough so that if xi = x′i, i = 0, . . . ,m− 1 then

d̄m(νmx , ν
m
x′ ) ≤ (

ζ

N
)2. (12.36)
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From (12.35)

ζ2 ≥ ηm((

N−1⋂
θ=0

ψ̃(θ, ζ))c) =
∑

am∈Gm

∫
c(am)

dµ(u)νmγ̄(u)((

N−1⋂
θ=0

ψ̃(θ, ζ)c))

=
∑

am∈Gm
µm(am)ν̂((

N−1⋂
θ=0

ψ̃(θ, ζ))c|γm(am))

and hence there must be a set Φ ∈ BmB such that

ν̂m((

N−1⋂
θ=0

ψ̃(θ, ζ))c|γm(am)) ≤ ζ, am ∈ Φ, (12.37)

µm(Φ) ≤ ζ. (12.38)

Define the sync locating function s : BLN → {0, 1, · · · , N − 1} as follows:
Define the set ψ(θ) = {yLN ∈ (ψ(θ, ζ))2ζ/N} and then define

s(yLN ) =

{
θ yLN ∈ ψ(θ)

1 otherwise

We show that s is well defined by showing that ψ(θ) ⊂ ψ(θ, 4ζ), which sets are
disjoint for θ = 0, 1, . . . , N − 1 from (12.34). If yLN ∈ ψ(θ), there is a bLN ∈
ψ(θ, ζ) for which dLN (yLN , bLN ) ≤ 2ζ/N and hence for any j ∈ {0, 1, · · · , N−1}
at most LN(2ζ/N) = 2ζL of the consecutive nonoverlapping N -tuples yNj+iN ,

i = 0, 1, . . . , L− 2, can differ from the corresponding bNj+iN and therefore

| 1

L− 1

L−2∑
i=0

1S(yrj+iN )− zθ+j | ≤ |
1

L− 1

L−2∑
i=0

1S(brj+iN )− zθ+j |+ 2ζ ≤ 3ζ

and hence yLN ∈ ψ(θ, 4ζ). If ψ̃(θ) is defined to be Bθ × ψ(θ) × BN−θ ∈ BmB ,
then we also have that

(

N−1⋂
θ=0

ψ̃(θ, ζ))ζ/N ⊂
N−1⋂
θ=0

ψ̃(θ)

since if yn ∈ (
⋂N−1
θ=0 ψ̃(θ, ζ))ζ/N , then there is a bm such that bLNθ ∈ ψ(θ, ζ);

θ = 0, 1, . . . , N − 1 and dm(ym, bm) ≤ ζ/N for θ = 0, 1, . . . , N − 1. This implies
from Lemma 12.6.1 and (12.36)–(12.38) that if x ∈ γm(am) and am ∈ Φ, then

νmx (

N−1⋂
θ=0

ψ̃(θ)) ≥ νmx ((

N−1⋂
θ=0

ψ̃(θ, ζ))ζ/N )

≥ ν̂(

N−1⋂
θ=0

ψ̃(θ, ζ)|γm(am))− ζ

N

≥ 1− ζ − ζ

N
≥ 1− ε. (12.39)
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To complete the proof, we use (12.26)–(12.28) and (12.39) to obtain for
am ∈ Φ and γm(aNL

N ) = σ × wi that

νx(y : s(yLNθ ) = θ, θ = 0, 1, . . . , N − 1; yNLN ∈ S ×Wi)

≥ νmx (

N−1⋂
θ=0

ψ(θ))− νNT−NLx(S ×W c
i ) ≥ 1− ε− 2ε.

2

Next the prefixed block code and the sync locator function are combined
with a random punctuation sequence of Lemma 9.5.2 to construct a good sliding
block code for a totally ergodic source with entropy less than capacity.

Lemma 12.9.2 Given a d̄-continuous totally ergodic stationary channel ν with
Shannon capacity C, a stationary totally ergodic source [G,µ, U ] with entropy
rate H(µ) < C, and δ > 0, there exists for sufficiently large n, m a sliding block
encoder f : Gn → A and decoder g : Bm → G such that Pe(µ, ν, f, g) ≤ δ.

Proof: Choose R, H̄ < R < C, and fix ε > 0 so that ε ≤ δ/5 and ε ≤ (R−H̄)/2.
ChooseN large enough so that the conditions and conclusions of Corollary 12.8.1
hold. Construct first a joint source and channel block encoder γN as follows:
From the asymptotic equipartition property (Lemma 3.2.1 or Section 3.5)there
is an n0 large enough to ensure that for N ≥ n0 the set

GN = {uN : |N−1hN (u)− H̄| ≥ ε}
= {uN : e−N(H̄+ε) ≤ µ(uN )

≤ e−N(H̄−ε)} (12.40)

has probability
µUN (GN ) ≥ 1− ε. (12.41)

Observe that if M ′ = ||GN ||, then

2N(H̄−ε) ≤M ′ ≤ 2N(H̄+ε) ≤ 2N(R−ε). (12.42)

Index the members of GN as βi; i = 1, . . . ,M ′. If uN = βi, set γN (uN )
= σ×wi. Otherwise set γN (uN ) = σ×wM ′+1. Since for large N , 2N(R−ε) +1 ≤
2NR, γN is well defined. γN can be viewed as a synchronized extension of the
almost noiseless code of Section 3.5. Define also the block decoder ψN (yN ) = βi
if yN ∈ S × Wi; i = 1, . . . ,M ′. Otherwise set ψN (yN ) = β∗, an arbitrary
reference vector. Choose L so large that the conditions and conclusions of
Lemma 12.9.1 hold for C and γN . The sliding block decoder gm : Bm → G,
m = (L+ 1)N , yielding decoded process Ûk = gm(Y mk−NL) is defined as follows:

If s(yk−NL, · · · , yk− 1) = θ, form bN = ψN (yk−θ, · · · , yk−θ−N ) and set Ûk(y) =
gm(yk−NL, · · · , yk+N ) = bθ, the appropriate symbol of the appropriate block.

The sliding block encoder f will send very long sequences of block words
with random spacing to make the code stationary. Let K be a large number
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satisfying Kε ≥ L+ 1 so that m ≤ εKN and recall that N ≥ 3 and L ≥ 1. We
then have that

1

KN
≤ 1

3K
≤ ε

6
. (12.43)

Use Corollary 9.4.2 to produce a (KN, ε) punctuation sequence Zn using a
finite length sliding block code of the input sequence. The punctuation process
is stationary and ergodic, has a ternary output and can produce only isolated
0’s followed by KN 1’s or individual 2’s. The punctuation sequence is then used
to convert the block encoder γN into a sliding block coder: Suppose that the
encoder views an input sequence u = · · · , u−1, u0, u1, · · · and is to produce a
single encoded symbol x0. If u0 is a 2, then the encoder produces an arbitrary
channel symbol, say a∗. If x0 is not a 2, then the encoder inspects u0, u−1, u−2

and so on into the past until it locates the first 0. This must happen within KN
input symbols by construction of the punctuation sequence. Given that the first
1 occurs at, say, Zl = 1,, the encoder then uses the block code γN to encode
successive blocks of inputN -tuples until the block including the symbol at time 0
is encoded. The sliding block encoder than produces the corresponding channel
symbol x0. Thus if Zl = 1, then for some J < Kx0 = (γN (ul+JN ))l mod N where
the subscript denotes that the (l mod N)th coordinate of the block codeword is
put out. The final sliding block code has a finite length given by the maximum
of the lengths of the code producing the punctuation sequence and the code
imbedding the block code γN into the sliding block code.

We now proceed to compute the probability of the error event {u, y : Û0(y) 6=
U0(u)} = E. Let Eu denote the section {y : Û0(y) 6= U0(u)}, f̄ be the sequence
coder induced by f , and F = {u : Z0(u) = 0}. Note that if u ∈ T−1F ,
then Tu ∈ F and hence Z0(Tu) = Z1(u) since the coding is stationary. More
generally, if uT−iF , then Zi = 0. By construction any 1 must be followed by
KN 1’s and hence the sets T−iF are disjoint for i = 0, 1, . . . ,KN −1 and hence
we can write

Pe = Pr(U0 6= Û0) = µν(E) =

∫
dµ(u)νf̄(u)(Eu)

≤
LN−1∑
i=0

∫
T−iF

dµ(u)νf̄(u)(Eu) +
KN−1∑
i=LN

∫
T−iF

dµ(u)νf̄(u)(Eu)

+

∫
(
⋃KN−1
i=0 T−iF )c

dµ(u)

= LNµ(F ) +

KN−1∑
i=LN

∫
T−iF

dµ(u)νf̄(u)(Eu) + εa

≤ 2ε+

KN−1∑
i=LN

∑
akN∈GkN

∫
u′∈T−i(F

⋂
c(aKN))

dµ(u′)νf̄(u′)(y
′ : U0(u′) 6= Û0(u′)),

(12.44)

where we have used the fact that µ(F ) ≤ (KN)−1 (from Corollary 9.4.2) and
hence LNµ(F ) ≤ L/K ≤ ε. Fix i = kN + j; 0 ≤ j ≤ N − 1 and define
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u = T j+LNu′ and y = T j+LNy′, and the integrals become∫
u′∈T−i(F

⋂
c(aKN ))

dµ(u′)×

νf̄(u′)(y
′ : U0(u′) 6= gm(Y m−NL(y′))

=

∫
u∈T−(k−L)N (F

⋂
c(aKN ))

dµ(u′)×

νf̄(T−(j+LN)u)(y :U0(T j+LNu) 6= gm(Y−NL
m(T j+NLy)))

=

∫
u∈T−(k−L)N (F

⋂
c(aKN ))

dµ(u′)×

νf̄(T−(j+LN)u)(y : uj+LN 6= gm(ymj ))

=

∫
u∈T−(k−L)N (F

⋂
c(aKN ))

dµ(u′)

× νf̄(T−(j+LN)u)(y : uNLN = ψN (yNLN ) or s(yLNj 6= j)). (12.45)

If uNLN = βj ∈ GN , then uNLN = ψN (yNLN ) if yNLN ∈ S × Wi. If u ∈
T−(k−L)Nc(aKN ), then um = am(k−L)N and hence from Lemma 12.9.1 and sta-
tionarity we have for i = kN + j that∑

aKN∈GKN

∫
T−i(c(aKN )

⋂
F )

dµ(u)νf̄(u)(Eu)

≤ 3ε×
∑

aKN ∈ GKN
am(k−L)N ∈ Φ

⋂
(GLN ×GN )

µ(T−(k−L)N (c(aKN )
⋂
F ))

+
∑

aKN ∈ GKN
am(k−L)N 6∈ Φ

⋂
(GLN ×GN )

µ(T−(k−L)N (c(aKN )
⋂
F ))

≤ 3ε×
∑

aKN∈GKN
µ(c(aKN )

⋂
F ))

+
∑

am
(k−L)N

∈Φc
⋃

(GLN×GN )c

µ(c(aKN )
⋂
F ))

≤ 3εµ(F ) + µ(c(Φc)
⋂
F ) + µ(c(GN )

⋂
F ). (12.46)

Choose the partition in Lemmas 9.5.1–9.5.2 to be that generated by the sets
c(Φc) and c(GN ) (the partition with all four possible intersections of these sets
or their complements). Then the above expression is bounded above by

3ε

NK
+

ε

NK
+

ε

NK
≤ 5

ε

NK

and hence from (12.44)
Pe ≤ 5ε ≤ δ (12.47)
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which completes the proof. 2

The lemma immediately yields the following corollary.

Corollary 12.9.1 If ν is a stationary d̄-continuous totally ergodic channel with
Shannon capacity C, then any totally ergodic source [G,µ, U ] with H(µ) < C is
admissible.

Ergodic Sources

If a prefixed blocklength N block code of Corollary 12.9.1 is used to block encode
a general ergodic source [G,µ, U ], then successive N -tuples from µ may not be
ergodic, and hence the previous analysis does not apply. From the Nedoma
ergodic decomposition [107] (see, e.g., [50], p. 232), any ergodic source µ can be
represented as a mixture of N -ergodic sources, all of which are shifted versions
of each other. Given an ergodic measure µ and an integer N , then there exists
a decomposition of µ into M N -ergodic, N -stationary components where M
divides N , that is, there is a set Π ∈ B∞G such that

TMΠ = Π (12.48)

µ(T iΠ
⋂
T jΠ) = 0; i, j ≤M, i 6= j (12.49)

µ(

M−1⋃
i=0

T iΠ) = 1

µ(Π) =
1

M
,

such that the sources [G,µi, U ], where πi(W ) = µ(W |T iΠ) = Mµ(W
⋂
T iΠ)

are N -ergodic and N -stationary and

µ(W ) =
1

M

M−1∑
i=0

πi(W ) =
1

M

M−1∑
i=0

µ(W
⋂
T iΠ). (12.50)

This decomposition provides a method of generalizing the results for totally
ergodic sources to ergodic sources. Since µ(·|Π) is N -ergodic, Lemma 12.9.2 is
valid if µ is replaced by µ(·|Π). If an infinite length sliding block encoder f is
used, it can determine the ergodic component in effect by testing for T−iΠ in
the base of the tower and insert i dummy symbols and then encode using the
length N prefixed block code. In other words, the encoder can line up the block
code with a prespecified one of the N -possible N -ergodic modes. A finite length
encoder can then be obtained by approximating the infinite length encoder by
a finite length encoder. Making these ideas precise yields the following result.

Theorem 12.9.1 If ν is a stationary d̄-continuous totally ergodic channel with
Shannon capacity C, then any ergodic source [G,µ, U ] with H(µ) < C is admis-
sible.
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Proof: Assume that N is large enough for Corollary 12.8.1 and (12.40)–(12.42)
to hold. From the Nedoma decomposition

1

M

M−1∑
i=0

µN (GN |T iΠ) = µN (GN ) ≥ 1− ε.

and hence there exists at least one i for which µN (GN |T iΠ) ≥ 1− ε; that is, at
least one N -ergodic mode must put high probability on the set GN of typical
N -tuples for µ. For convenience relabel the indices so that this good mode is
µ(·|Π) and call it the design mode. Since µ(·|Π) is N -ergodic and N -stationary,
Lemma 12.9.1 holds with µ replaced by µ(·|Π); that is, there is a source/channel
block code (γN , ψN ) and a sync locating function s : BLN → {0, 1, · · · ,M − 1}
such that there is a set Φ ∈ Gm; m = (L + 1)N , for which (12.33) holds and
µm(Φ|Π) ≥ 1− ε. The sliding block decoder is exactly as in Lemma 12.9.1. The
sliding block encoder, however, is somewhat different. Consider a punctuation
sequence or tower as in Lemma 9.5.2, but now consider the partition generated
by Φ, GN , and T iΠ, i = 0, 1, . . . ,M − 1. The infinite length sliding block
code is defined as follows: If u 6∈

⋃NK−1
k=0 T kF , then f(u) = a∗, an arbitrary

channel symbol. If u ∈ T i(F
⋂
T−jΠ) and if i < j, set f(u) = a∗ (these

are spacing symbols to force alignment with the proper N -ergodic mode). If
j ≤ i ≤ KN − (M − j), then i = j + kN + r for some 0 ≤ k ≤ (K − 1)N ,
r ≤ N − 1. Form GN (uNj+kN ) = aN and set f(u) = ar. This is the same

encoder as before, except that if u ∈ T jΠ, then block encoding is postponed for
j symbols (at which time u ∈ Π). Lastly, if KN − (M − j) ≤ i ≤ KN − 1, then
f(u) = a∗.

As in the proof of Lemma 12.9.2

Pe(µ, ν, f, gm) =

∫
dµ(u)νf(u)(y : U0(u) 6= gm(Y m−LN (y)))

≤ 2ε+

KN−1∑
i=LN

∫
u ∈ T iFdµ(u)νf(u)(y : U0(u) 6= Û0(y))

= 2ε+

KN−1∑
i=LN

M−1∑
j=0

∑
aKN∈GKN∫

u∈T i(c(aKN )
⋂
F

⋂
T−jΠ)

dµ(u)νf(u)(y : U0(u) 6= Û0(y))

≤ 2ε+

M−1∑
j=0

KN−(M−j)∑
i=LN+j

∑
aKN∈GKN∫

u∈T i(c(aKN )
⋂
F

⋂
T−jΠ)

dµ(u)νf(u)(y : U0(u) 6= Û0(y))

+

M−1∑
j=0

Mµ(F
⋂
T−jΠ), (12.51)
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where the rightmost term is

M

M−1∑
j=0

µ(F
⋂
T−jΠ) ≤ M

KN
≤ 1

K
≤ ε.

Thus

Pe(µ, ν, f, gm) ≤ 3ε+

M−1∑
j=0

KN−(M−j)∑
i=LN+j

∑
aKN∈GKN∫

u∈T i(c(aKN )
⋂
F

⋂
T−jΠ)

dµ(u)νf(u)(y : U0(u) 6= Û0(y)).

Analogous to (12.45) (except that here i = j + kN + r, u = T−(LN+r)u′)

∫
u′∈T i(c(aKN )

⋂
F

⋂
T−jΠ)

dµ(u′)νf(u′)(y
′ : U0(u′) = gm(Y m−LN (y′)))

≤
∫
T j+(k−L)N (c(aKN )

⋂
F

⋂
T−jΠ)

dµ(u)×

νf(T i+LNu)(y : uNLN 6= ψN (yNLN )ors(yLNr ) 6= r).

Thus since u ∈ T j+(k−L)N (c(aKN )
⋂
F
⋂
T−jΠ implies um = amj+(k−L)N , anal-

ogous to (12.46) we have that for i = j + kN + r

∑
aKN∈GKN

∫
T i(c(aKN )

⋂
F

⋂
T−jΠ)

dµ(u)νf(u)(y : U0(u) 6= gm(Y−LN
m(y)))

= ε
∑

aKN :am
j+(k−L)N

∈Φ

µ(T j+(k−L)N (c(aKN )
⋂
F
⋂
T−jΠ))

+
∑

aKN :am
j+(k−L)N

6∈Φ

µ(T j+(k−L)N (c(aKN )
⋂
F
⋂
T−jΠ))

= ε
∑

aKN :am
j+(k−L)N

∈Φ

µ(c(aKN )
⋂
F
⋂
T−jΠ)

+
∑

aKN :am
j+(k−L)N

6∈Φ

µ(c(aKN )
⋂
F
⋂
T−jΠ)

= εµ(T−(j+(k−L)N)c(Φ)
⋂
F
⋂
T−jΠ)

+ µ(T−(j+(k−L)N)c(Φ)c
⋂
F
⋂
T−jΠ).

From Lemma 9.5.2 (the Rohlin-Kakutani theorem), this is bounded above
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by

ε
µ(T−(j+(k−L)N)c(Φ)

⋂
T−jΠ)

KN
+
µ(T−(j+(k−L)N)c(Φ)c

⋂
T−jΠ)

KN

= ε
µ(T−(j+(k−L)N)c(Φ)|T−jΠ)µ(Π)

KN
+
µ(T−(j+(k−L)N)c(Φ)c|T−jΠ)µ(Π)

KN

= εµ(c(Φ)|Π)
µ(Π)

KN
µ(c(Φ)c|Π)

µ(Π)

KN
+ ≤ 2ε

MKN
.

With (12.50)–(12.51) this yields

Pe(µ, ν, f, gm) ≤ 3ε+
MKN2ε

MKN
≤ 5ε, (12.52)

which completes the result for an infinite sliding block code.
The proof is completed by applying Corollary 10.5.1, which shows that by

choosing a finite length sliding block code f0 from Lemma 4.2.4 so that Pr(f 6=
f0) is sufficiently small, then the resulting Pe is close to that for the infinite
length sliding block code. 2

In closing we note that the theorem can be combined with the sliding block
source coding theorem to prove a joint source and channel coding theorem simi-
lar to Theorem 12.7.1, that is, one can show that given a source with distortion
rate function D(R) and a channel with capacity C, then sliding block codes
exist with average distortion approximately D(C).
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[8] E. Ayanŏglu and R. M. Gray. The design of joint source and channel trellis
waveform coders. IEEE Trans. Inform. Theory, IT-33:855–865, November
1987.

[9] A. R. Barron. The strong ergodic theorem for densities: generalized
Shannon-McMillan-Breiman theorem. Ann. Probab., 13:1292–1303, 1985.

[10] T. Berger. Rate distortion theory for sources with abstract alphabets and
memory. Inform. and Control, 13:254–273, 1968.

[11] T. Berger. Rate Distortion Theory. Prentice-Hall Inc., Englewood
Cliffs,New Jersey, 1971.

[12] T. Berger. Multiterminal source coding. In G. Longo, editor, The In-
formation Theory Approach to Communications, volume 229 of CISM
Courses and Lectures, pages 171–231. Springer-Verlag, Vienna and New
York, 1978.

287



288 BIBLIOGRAPHY

[13] E. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968.

[14] E. Berlekamp, editor. Key Papers in the Development of Coding Theory.
IEEE Press, New York, 1974.

[15] P. Billingsley. Ergodic Theory and Information. Wiley, New York, 1965.

[16] G. D. Birkhoff. Proof of the ergodic theorem. Proc. Nat. Acad. Sci.,
17:656–660, 1931.

[17] R. E. Blahut. Computation of channel capacity and rate-distortion func-
tions. IEEE Trans. Inform. Theory, IT-18:460–473, 1972.

[18] R. E. Blahut. Theory and Practice of Error Control Codes. Addison
Wesley, Reading, Mass., 1987.

[19] L. Breiman. The individual ergodic theorem of information theory. Ann.
of Math. Statist., 28:809–811, 1957.

[20] L. Breiman. A correction to ‘The individual ergodic theorem of informa-
tion theory’. Ann. of Math. Statist., 31:809–810, 1960.

[21] J. R. Brown. Ergodic Theory and Topological Dynamics. Academic Press,
New York, 1976.

[22] J. A. Bucklew. A large deviation theory proof of the abstract alphabet
source coding theorem. IEEE Trans. Inform. Theory, IT-34:1081–1083,
1988.

[23] T. M. Cover, P. Gacs, and R. M. Gray. Kolmogorov’s contributions to
information theory and algorithmic complexity. Ann. Probab., 17:840–865,
1989.

[24] I. Csiszár. Information-type measures of difference of probability distri-
butions and indirect observations. Studia Scientiarum Mathematicarum
Hungarica, 2:299–318, 1967.

[25] I. Csiszár. I-divergence geometry of probability distributions and mini-
mization problems. Ann. Probab., 3(1):146–158, 1975.

[26] I. Csiszár and J. Körner. Coding Theorems of Information Theory. Aca-
demic Press/Hungarian Academy of Sciences, Budapest, 1981.

[27] L. D. Davisson and R.M. Gray. A simplified proof of the sliding-block
source coding theorem and its universal extension. In Conf. Record 1978
Int’l. Conf. on Comm. 2, pages 34.4.1–34.4.5, Toronto, 1978.

[28] L. D. Davisson, R. J. McEliece, M. B. Pursley, and M. S. Wallace. Efficient
universal noiseless source codes. IEEE Trans. Inform. Theory, IT-27:269–
279, 1981.



BIBLIOGRAPHY 289

[29] L. D. Davisson and M. B. Pursley. An alternate proof of the coding the-
orem for stationary ergodic sources. In Proceedings of the Eighth Annual
Princeton Conference on Information Sciences and Systems, 1974.

[30] M. Denker, C. Grillenberger, and K. Sigmund. Ergodic Theory on Compact
Spaces, volume 57 of Lecture Notes in Mathematics. Springer-Verlag, New
York, 1970.

[31] J.-D. Deushcel and D. W. Stroock. Large Deviations, volume 137 of Pure
and Applied Mathematics. Academic Press, Boston, 1989.

[32] R. L. Dobrushin. A general formulation of the fundamental Shannon
theorem in information theory. Uspehi Mat. Akad. Nauk. SSSR, 14:3–104,
1959. Translation in Transactions Amer. Math. Soc, series 2,vol. 33,323–
438.

[33] R. L. Dobrushin. Shannon’s theorems for channels with synchronization
errors. Problemy Peredaci Informatsii, 3:18–36, 1967. Translated in Prob-
lems of Information Transmission, vol.,3,11–36 (1967),Plenum Publishing
Corporation.

[34] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain
Markov process expectations for large time. J. Comm. Pure Appl. Math.,
28:1–47, 1975.

[35] J. G. Dunham. A note on the abstract alphabet block source coding
with a fidelity criterion theorem. IEEE Trans. Inform. Theory, IT-24:760,
November 1978.

[36] P. Elias. Two famous papers. IRE Transactions on Information Theory,
page 99, 1958.

[37] R. M. Fano. Transmission of Information. Wiley, New York, 1961.

[38] A. Feinstein. A new basic theorem of information theory. IRE Transac-
tions on Information Theory, pages 2–20, 1954.

[39] A. Feinstein. Foundations of Information Theory. McGraw-Hill, New
York, 1958.

[40] A. Feinstein. On the coding theorem and its converse for finite-memory
channels. Inform. and Control, 2:25–44, 1959.

[41] G. D. Forney, Jr. The Viterbi algorithm. Proc. IEEE, 61:268–278, March
1973.

[42] N. A. Friedman. Introduction to Ergodic Theory. Van Nostrand Reinhold
Company, New York, 1970.

[43] R. G. Gallager. Information Theory and Reliable Communication. John
Wiley & Sons, New York, 1968.



290 BIBLIOGRAPHY

[44] A. El Gamal and T. Cover. Multiple user information theory. Proc. IEEE,
68:1466–1483, 1980.

[45] I. M. Gelfand, A. N. Kolmogorov, and A. M. Yaglom. On the general
definitions of the quantity of information. Dokl. Akad. Nauk, 111:745–
748, 1956. (In Russian.).

[46] A. Gersho and V. Cuperman. Vector quantization: A pattern-matching
technique for speech coding. IEEE Communications Magazine, 21:15–21,
December 1983.

[47] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic Publishers, Boston, 1992.

[48] R. M. Gray. Tree-searched block source codes. In Proceedings of the 1980
Allerton Conference, Allerton IL, Oct. 1980.

[49] R. M. Gray. Vector quantization. IEEE ASSP Magazine, 1,No. 2:4–29,
April 1984.

[50] R. M. Gray. Probability, Random Processes, and Ergodic Properties.
Springer-Verlag, New York, 1988.

[51] R. M. Gray. Spectral analysis of quantization noise in a single-loop sigma-
delta modulator with dc input. IEEE Trans. Comm., COM-37:588–599,
1989.

[52] R. M. Gray. Source Coding Theory. Kluwer Academic Press, Boston,
1990.

[53] R. M. Gray and L. D. Davisson. Source coding without the ergodic as-
sumption. IEEE Trans. Inform. Theory, IT-20:502–516, 1974.

[54] R. M. Gray and J. C. Kieffer. Asymptotically mean stationary measures.
Ann. Probab., 8:962–973, 1980.

[55] R. M. Gray, D. L. Neuhoff, and J. K. Omura. Process definitions of dis-
tortion rate functions and source coding theorems. IEEE Trans. Inform.
Theory, IT-21:524–532, 1975.

[56] R. M. Gray, D. L. Neuhoff, and D. Ornstein. Nonblock source coding with
a fidelity criterion. Ann. Probab., 3:478–491, 1975.

[57] R. M. Gray, D. L. Neuhoff, and P. C. Shields. A generalization of ornstein’s
d-bar distance with applications to information theory. Ann. Probab.,
3:315–328, April 1975.

[58] R. M. Gray and D. S. Ornstein. Sliding-block joint source/noisy-channel
coding theorems. IEEE Trans. Inform. Theory, IT-22:682–690, 1976.



BIBLIOGRAPHY 291

[59] R. M. Gray, D. S. Ornstein, and R. L. Dobrushin. Block
synchronization,sliding-block coding, invulnerable sources and zero error
codes for discrete noisy channels. Ann. Probab., 8:639–674, 1980.

[60] R. M. Gray, M. Ostendorf, and R. Gobbi. Ergodicity of Markov channels.
IEEE Trans. Inform. Theory, 33:656–664, September 1987.

[61] R. M. Gray and F. Saadat. Block source coding theory for asymptotically
mean stationary sources. IEEE Trans. Inform. Theory, 30:64–67, 1984.

[62] P. R. Halmos. Lectures on Ergodic Theory. Chelsea, New York, 1956.

[63] G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge
Univ. Press, London, 1952. Second Edition,1959.

[64] R. V. L. Hartley. Transmission of information. Bell System Tech. J.,
7:535–563, 1928.

[65] E. Hoph. Ergodentheorie. Springer-Verlag, Berlin, 1937.
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point de vue de la théorie des martingales. In Transactions First Prague
Conf. on Information Theory, Stat. Decision Functions,and Random Pro-
cesses, pages 183–208. Czech. Acad. Sci. Publishing House, 1957.



BIBLIOGRAPHY 295

[122] A. Perez. Sur la convergence des incertitudes,entropies et informations
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