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1 Introduction

This document collects errata of the Second Edition of Entropy and Information
Theory with occasional reference to the free updated hard cover original First
Edition. Some of the errors and typos are inherited from the First Edition,
but were not caught in time to be fixed in the 2011 publication of the Second
Edition. Errors that were caught in time have been corrected in the final version
of the First Edition, Corrected, and are included here as corrections.

Added citations and references are given local numbers. Equations relating
to existing numbered equations in the book are given the numbers used in the
book with the exception of the two complete proofs that are included.

I thank the several readers who have pointed out the errors, suggested cor-
rections, and reported simple typos. These include David Rosenberg, Yevgeny
Seldin, John Duchi, Wei Mao, Segismundo Izquierdo, Raul Caram de Assis,
Weiying Wang, and Jun Muramatsu. Dr Maramatsu in particular motivated
my revisiting the First Edition and belatedly publishing an updated Errata
for the Seccond Edition when he provided me with numerous corrections and
comments on both Entropy and Information Theory and on my earlier book
Probability, Random Processes, and Ergodic Properties.

2 Simple typos

page xx Equation (2) should read

I(X,Y ) = H(X)−H(X|Y ) = H(Y ) = H(Y |X)

page 4 Eq. (1.12)∫
G
ghdP = m(G

⋂
H); all G ∈ G.

should be∫
G
gdP = m(G

⋂
H); all G ∈ G.

page 23 Final paragraph.

Line 4:

(BT,BAT). should be (AT,BAT).
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Line 7:

(AT,BT
B) should be (BT,BT

B)

page 85 In the bottom equation of the first group of equations change f(X,Y ))
to f(X,Y ); that is, remove the extra right paren. The same error occurs
twice in the equation at the bottom of the page.

page 240 Lemma 9.2 (10.6.2 in First Edition) Replace the first equation

D(R,µ) = lim
N→∞

DN (R,µ) = inf
N

1

N
DN (R,µ).

by

D(R,µ) = lim
N→∞

1

N
DN (R,µ) = inf

N

1

N
DN (R,µ).

page 249 The two citations of Lemma 9.2 below the middle of the page should
be to Lemma 9.4.

page 333 Third line from bottom. B should be R.

3 Proof of the Entropy Ergodic Theorem

2023 Notes on proof: The suggestion to use the Ornstein and Weiss approach
for the entropy ergodic theorem for discrete stationary and ergodic sources was
made to me by Paul C. Shields during the writing of the original version of the
first edition of this book during the late 1980s. The First Edition of the book
was published in 1990. My original proof however, had a critical technical error
(pointed out in these notes). Some time in the early 2000s Paul informed me
that he had noted an error in my proof, but that he knew how to fix it and
that we should discuss it. Unfortunately we never did. Paul suffered a brain
aneurism in fall 2006 and his mathematics activity diminished steadily after
that. We were in touch by email until 2008, but the error was never brought
up.

As a result, my error propagated into the second edition of the book pub-
lished in 2011. In September 2012 Wei Mao, then a Ph.D. student at Cal Tech,
wrote to me regarding a mistake in a counting argument I made in my proof as
given in the Second Edition. During our email exchange, she found that I had
omitted an important detail used by Paul in [2] in his 1987 proof of the result
for binary sources, and that the addition of two constraints on the construction
used in the proof would fix the problem she found with my proof. I had intended
in 2013 to correct the First Edition and incorporate the corrected version into
an Errata for the Second Edition. But it did not get done at that time, likely
because I retired from Stanford that year and moved twice before settling in
Rockport, Massachusetts. I forgot the corrections and Errata until in April
2023 when Dr. Jun Muramatsu of NTT pointed out several typos and mistakes
in the Second Edition. He had earlier reported a collection of suggested correc-
tions in my earlier book, Probability, Random Processes, and Ergodic Processes
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which motivated me to return to correct the online First Edition of that book
and to update the online Errata for the Probability book. So I decided to do
the same with the Entropy and Information Theory Book. Dr. Muramatsu
provided a collection of typos and errors for the Entropy book as well.

Scouring my notes, correspondence, and email for the Entropy book I realized
that I had never published the Errata for the Second Edition as intended in 2013
and I had not updated the First Edition to fix the reported mistakes and a few
I had found since its 2011 publication.. Hence I have finally in spring 2023
made an effort to update the First Edition and to post online the Errata for the
Second.

The most important error was in the entropy ergodic theorem, Lemma 3.2.1
in the First Edition, Lemma 4.2 in the second. Many other proofs of the result
exist, but the point here was to present a version of the Ornstein-Weiss approach
proof of the result consistent with the context of the book as inspired by Paul
Shields.

The following proof follows my original notation and construction reason-
ably closely with some changes made for clarity based on hindsight. I missed
two key constraints, which are now incorporated into the proof given here. I
have also tried to improve the clarity of the development which involved slight
modifications in the notation and the addition of several comments. Revisiting
the math after a decade has been a challenge, but it has been fun to rekindle
fond memories of Paul Shields.

I am indebted to Dr. Wei Mao for subsequently bringing the problem and
the corrections to my attention. I apologize for taking so long to respond and
acknowledge her contribution.

Proof: Define
hn(x) = − lnm(Xn)(x) = − lnm(xn)

and

h(x) = lim inf
n→∞

1

n
hn(x) = lim inf

n→∞

− lnm(xn)

n
.

Since m((x0, · · · , xn−1)) ≤ m((x1, · · · , xn−1)), we have that

hn(x) ≥ hn−1(Tx).

Dividing by n and taking the limit infimum of both sides shows that h(x) ≥
h(Tx). Since the n−1hn are nonnegative and uniformly integrable (Lemma 3.7,we
can use Fatou’s lemma to deduce that h and hence also hT are integrable with
respect to m. Integrating with respect to the stationary measure m yields∫

dm(x)h(x) =

∫
dm(x)h(Tx)

which can only be true if

h(x) = h(Tx);m− a.e.,
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that is, if h is an invariant function with m-probability one. If h is invariant
almost everywhere, however, it must be a constant with probability one since
m is ergodic (Lemma 6.7.1 of [1], Lemma 7.12 in the Second Edition). Since it
has a finite integral (bounded by H̄m(X)), h must also be finite. Henceforth we
consider h to be a finite constant.

The Lemma will be proved by demonstrating that the limit supremum of
hn/n equals the limit infimum h with probability 1. We proceed with steps
that resemble those of the proof of the ergodic theorem in Section 7.2 of [1] and
Section 8.1 of the Second Edition.

Fix ϵ > 0. We also choose for later use a δ > 0 small enough to have the
following properties: If A is the alphabet of X0 and ||A|| is the finite cardinality
of the alphabet, then

δ ln ||A|| < ϵ, (1)

and
−δ ln δ − (1− δ) ln(1− δ) ≡ h2(δ) < ϵ. (2)

The latter property is possible since h2(δ) → 0 as δ → 0.

Tentatively define the random variable n(x) to be the smallest integer n ≥ 1
for which n−1hn(x) ≤ h + ϵ. By definition of the limit infimum there must be
infinitely many n for which this is true and hence with probability one n(x) is
everywhere finite.

For later use the definition of n(x) is modified to force a minimum value

M ≥ δ

3
;

that is, redefine

n(x) = min{n ≥M : n−1hn(x) ≤ h+ ϵ}

This modification does not effect the finiteness of n.
The random variable nmaps single-sided sequences of the form x = (x0, x1, · · · )

with xi ∈ A, a finite alphabet, into a collection of positive integers. Since n(x)
is finite with probability 1 and since

∑
k Pr(n = k) = 1, given δ there must be

an N = N(δ) so large that

Pr(n ≥ N) ≤ δ

2
.

Define a set of “bad” infinite sequences B = {x : n(x) ≥ N} with indicator
function

1B(x) =

{
1 x ∈ B

0 otherwise
.

The inequality for the bad set B can be stated as

m(B) = Em(1B) ≤
δ

2
.
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From the definition of n, membership of an infinite sequence x in B can be
determined from its first N samples xN since if n(x) does not find an n ≥ M
for which the inequality n−1hn(x

n) ≤ ϵ by the time N when it sees all of
xN = (x0, . . . , xN−1), then it must be true that n(x) ≥ N and hence x ∈ B.

Define the set C of N -tuples xN which are prefixes of x ∈ B so that

IB(x) = 1C(x
N )

C (and B) can be characterized by defining a set S(ℓ) ⊂ Aℓ of good sample
entropy ℓ-tuples by

S(ℓ) = {aℓ : m(al) ≥ e−ℓ(h+ϵ) or− 1

ℓ
lnm(al) ≤ h+ ϵ} (3)

and observing that

IB(x) = 1C(x
N ) =

{
1 xℓ ̸∈ S(ℓ); ℓ = 1, 2, . . . , N − 1

0 otherwise
.

A random process {ℓn;n ∈ Z+} (ℓ for “length”) with alphabet the positive
integers is defined by applying n to shifts of x; that is,

ℓn(x) = n(Tnx) = ℓ(xn, xn+1, . . . );n = 0, 1, . . .

In particular ℓ0(x) = n(x). The process ℓn is a sliding-block (stationary) cod-
ing of the process X = {Xn} described by a stationary and ergodic process
distribution m and hence the process ℓn is also stationary and ergodic.

The process ℓn provides a means of carving up or parsing an infinite se-
quence x into consecutive non-overlapping variable length blocks which have
good sample entropy; that is, finding a sequence of time indices ni; i ∈ Z+ and

a sequence of source sample vectors x
ℓni
ni ; i = 1, 2, . . . . This parsing of the se-

quence into consecutive contiguous blocks of the source implies a partition of
the time indices Z+ into a collection of disjoint sets Ii = {ni, . . . , ni + ℓni

− 1}
of length ℓni

having good sample entropy; that is,

x
ℓni
ni ∈ S(ℓni

)

as in (3):

m(x
ℓni
ni ) ≥ e−ℓni

(h+ϵ) or− 1

ℓni

lnm(x
ℓni
ni ) ≤ h+ ϵ.

As a simplistic example of the partition of time indices consider

0, 1, 2, 3, 4︸ ︷︷ ︸, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14︸ ︷︷ ︸, 15, 16, 17, 18, 19, 20︸ ︷︷ ︸, 21, 22, 23︸ ︷︷ ︸ . . .
Here the minimum length isM = 4 and only the beginning of a possibly infinite
length sequence is given. Here, also, the atoms of the partition are adjacent in
the sequence. All of the short blocks correspond to good sample entropy blocks
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and there are no gaps between the blocks. Unfortunately this simple structure
is insufficient for the proof of lemma.

The overall goal of proving the entropy ergodic theorem following the Ornstein-
Weiss-Sheilds approach is based on a finite version of the above parsing of an
infinite sequence and the corresponding partition of the time indices. This can
be achieved a block decomposition of an L-dimensional sample vector XL into
good sample entropy blocks with block lengths constrained to be neither too
large or too small and by inserting gap indices following each good block and
indicating when no acceptable good blocks are available at a particular time
index.

Given δ and N , choose L so that

L ≥ N

δ/3
≫ N.

A long block xL ∈ AL is parsed into a sequence of non-overlapping relatively

short blocks of length no greater than N of the form xℓ̃ini
= (xni

, . . . , xni+ℓ̃i−1)
for which either

ℓ̃i = ℓni
≤ N, hence xℓ̃ini

∈ S(ℓ̃) and ℓ̃ ≥M,

or
ℓ̃i = 1, hence i is a gap index and x1ni

∈ A.

Blocks with M ≤ ℓi < N are called acceptable good sample entropy blocks or
simply good blocks (or good ℓ-blocks). Blocks with ℓi = 1 are called a “gap
blocks.”

The parsing of xN induces a partition of the time index set ZL into sets

ZL =
⋃
i

Ii

Ii = [ni, ni + ℓ̃i − 1].

Gap indices occur in three types:

Gap type 1 ni is the first time index following a good block, that is, M ≤
ℓ̃i−1 = ℓni−1

< N . These blocks ensure that good blocks are separated by
at least one gap block. 1

Gap type 2 No good block is available at time ni, that is ℓni ≥ N . (by
definition ℓn ≥M for all n). Equivalently, xNni

∈ C.

Gap type 3 ni > L−N ; that is, xNni
is no longer a sub-vector of xL so mem-

bership xNni
∈ C can not be tested.

1This important constraint was missing from my original proof.
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A simplistic example of the partition of time indices for the modified con-
struction is

0, 1, 2, 3, 4︸ ︷︷ ︸ 5︸︷︷︸ 6, 7, 8, 9, 10, 11, 12︸ ︷︷ ︸ 13︸︷︷︸ 14︸︷︷︸ 15, 16, 17, 18, 19, 20︸ ︷︷ ︸ 21︸︷︷︸ 22︸︷︷︸ 23︸︷︷︸ .
In the example, the total blocklength is 23 and the remaining blocks have length
1 (gap blocks) or a length between M = 4 and N = 7. The non-gap blocks have
the good sample entropy property. In addition to the stated constraints, the
above picture and the construction show a gap index at the end of each non-gap
block. Thus good blocks are always separated by at least on unit length gap
index. Gap indices also occur when for a specified initial index no satisfactory
length meeting the constraints can be found. Indices at the end of the block are
gap indices when there are insufficient indices left to see a full N samples of the
end of the L-block.

A block decomposition of xL with the desired properties can be obtained by
induction:

Step 1 Initialize

n0 = 0

ℓ̃0 =

{
ℓ0 if M ≤ ℓ0 ≤ N

1 otherwise, xN ∈ C

Step 2 Loop Given (ni, ℓ̃i), find (ni+1, ℓ̃i+1). ,

ni+1 =

{
ni + 1 ni + ℓ̃i = ni + 1 if ℓ̃i = 1

ni + ℓ̃i + 1 otherwise, index ni follows a good block ending at ni + ℓ̃i − 1

If ni + 1 > L−N , go to Step 3. Otherwise

ℓ̃i+1 =

{
ℓni+1

if M ≤ ℓnI+1
≤ N

1 otherwise, xNni+1
∈ C

Step 3 Finish For k = 1 . . . , L− ni set ni+k = ni + k, ℓ̃i+k = 1.

Recall that ℓn is stationary and ergodic and hence with probability 1 the
relative frequency of of ℓn ≥ N will be small.

lim
n→∞

1

n

n−1∑
k=0

1B(T
ix) =

1

n

n−1∑
k=0

1C(x
N
k ) = m(B) ≤ δ

2
. (4)

Define a set GL of “good” L-tuples

GL = {xL :
1

L−N

L−N−1∑
n=0

1C(x
N
n ) ≤ δ

3
}.
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GL is a collection of L-tuples which have fewer than δ(L −N)/3 ≤ δL/3 time
indices n for which xNn ∈ C; that is, ℓn ≥ N . From (4) the sample average
must converge to m(B) ≤ δ/3 as L → ∞ with probability one and hence also
in probability. Thus with probability 1 there is an L0 = L0(x) such that

1

L−N

L−N−1∑
i=0

1C(x
N
i ) ≤ δ

3
; for all L > L0(x). (5)

This follows simply because if the limit is less than δ/2, there must be an L0

so large that for larger L the time average is at least no greater than 2δ/2 = δ.
We can restate (5) as follows: with probability 1 xL ∈ GL for all but a finite
number of L. Stating this in negative fashion, we have one of the key properties
required by the proof: If xL ∈ GL for all but a finite number of L, then xL

cannot be in the complement GcL infinitely often, that is,

m(x : xL ∈ GcL i.o.) = 0 (6)

Counting

The next step is to count the number ∥GL∥ of L-tuples in GL, which will allow
a specification of how large L or how small δ must be chosen to complete the
proof. This involves counting the number of possible gap indices and the number
of good (acceptable sample entropy) vectors whose location in time and length
are determined by the type 1 gap indices.

For an xL ∈ GL there can be no more than L/M good blocks in the block
decomposition and hence no more than L/M type 1 gap indices. The choice of
M ≥ 3/δ ensures that the number of type 1 gap indices is no greater than Lδ/3.

By construction, there can be no more than Lδ/3 type two gap indices.
There can be no more than N type 3 gap indices. The choice of L ≥ 3N/δ

bounds above the number of type 3 indices by Lδ/3.
Thus the the number of gap indices is bound above by Lδ. These Lδ indices

can occur in any of at most ∑
k≤δL

(
L

k

)
≤ eLh2(δ) (7)

where we have used Lemma 3.6Eq. (7) provides an upper bound on the number
of ways that a sequence in GL can be parsed by the given rules.

Each pattern specifies the type two indices which in turn specify the location
of the good blocks xℓini

∈ S(ℓi) for which

m(xℓini
) ≥ e−ℓi(h+ϵ).

Given ℓi probabilities sum to one:

1 =
∑

aℓi∈Aℓi

m(ali) ≥
∑

aℓi∈S(ℓi)

m(ali) ≥ ∥S(ℓi)∥e−ℓi(h+ϵ)
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whence
∥S(ℓi)∥ ≤ eℓi(h+ϵ).

Each of the fewer than eLh2(δ) patterns has no more than∏
i

∥S(ℓi)∥ ≤ e
∑

i ℓi(h+ϵ) ≤ eL(h+ϵ)

possible patterns of good blocks.
Combining the counts for the number of patterns of gap indices and the

number of possibilities for gap indices and good blocks yields

||GL|| ≤ eh2(δ)L||A||δLeL(h+ϵ) = eL(h2(δ)+δ ln ||A||+h+ϵ)

Since δ satisfies (1)–(2),
||GL|| ≤ eL(h+3ϵ). (8)

This bound provides the second key result in the proof of the lemma. We
now combine (8) and (6) to complete the proof.

Let BL denote a collection of L-tuples that are bad in the sense of having
too large a sample entropy or, equivalently, too small a probability; that is if
xL ∈ BL, then

m(xL) ≤ e−L(h+5ϵ)

or, equivalently, for any x with prefix xL

hL(x) ≥ h+ 5ϵ.

The upper bound on ||GL|| provides a bound on the probability of BL
⋂
GL:

m(BL
⋂
GL) =

∑
xL∈BL

⋂
GL

m(xL) ≤
∑

xL∈GL

e−L(h+5ϵ)

≤ ||GL||e−L(h+5ϵ) ≤ e−ϵL.

Recall now that the above bound is true for a fixed ϵ > 0 and for all L ≥ L1.
Thus

∞∑
L=1

m(BL
⋂
GL) =

L1−1∑
L=1

m(BL
⋂
GL) +

∞∑
L=L1

m(BL
⋂
GL)

≤ L1 +

∞∑
L=L1

e−ϵL <∞

and hence from the Borel-Cantelli lemma (Lemma 4.6.3 of [1]) m(x : xL ∈
BL

⋂
GL i.o.) = 0. We also have from (6), however, thatm(x : xL ∈ GcL i.o. ) =

0 and hence xL ∈ GL for all but a finite number of L. Thus xL ∈ BL i.o. if
and only if xL ∈ BL

⋂
GL i.o. As this latter event has zero probability, we have

shown that m(x : xL ∈ BL i.o.) = 0 and hence

lim sup
L→∞

hL(x) ≤ h+ 5ϵ.
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Since ϵ is arbitrary we have proved that the limit supremum of the sample
entropy −n−1 lnm(Xn) is less than or equal to the limit infimum and therefore
that the limit exists and hence with m-probability 1

lim
n→∞

− lnm(Xn)

n
= h. (9)

Since the terms on the left in (9) are uniformly integrable from Lemma 3.7
we can integrate to the limit and apply Lemma 3.8 to find that

h = lim
n→∞

∫
dm(x)

− lnm(Xn(x))

n
= H̄m(X),

which completes the proof of the lemma and hence also proves Theorem 4.1
stationary ergodic measures. 2

4 Variational Description of Divergence

Section 7.1 pp. 187-9 inherited problems from the First Edition, which were
partially fixed in 3/3/2013 Final First Edition, Corrected. A more complete
and clarified correction of the entire section was provided in the May 2023
Final First Edition, Corrected. The key problem was with Theorem 5.2.1 in the
First Edition, corresponding to Theorem 7.1 in the Second Edition. The entire
subsection should be replaced by the following version.

4.1 Section 7.1, subsection on Variational Description of
Divergence

Variational Description of Divergence

As in the discrete case, divergence has a variational characterization that is a
fundamental property for its applications to large deviations theory [182] [31].
We again take a detour to state and prove the property without delving into its
applications.

Suppose now that P and M are two probability measures on a common
probability space, say (Ω,B), such that M ≫ P and hence the density

f =
dP

dM

is well defined. Suppose that Φ is a real-valued random variable defined on the
same space. which has finite cumulant generating function:

EM (eΦ) <∞.

Then we can define a probability measure MΦ by

MΦ(F ) =

∫
F

eΦ

EM (eΦ)
dM (10)
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and observe immediately that by construction M ≫MΦ and

dMΦ

dM
=

eΦ

EM (eΦ)
.

The measure MΦ is called a “tilted” or “exponentially tilted” distribution in
statistics and in information theory. Furthermore, by construction dMΦ/dM ̸=
0 and hence we can write∫

F

f

eΦ/EM (eΦ)
dMΦ =

∫
F

f

eΦ/EM (eΦ)

dMΦ

dM
dM =

∫
F

fdM = P (F )

and hence P ≪MΦ and

dP

dMΦ
=

f

eΦ/EM (eΦ)

which implies that M ≫MΦ ≫ P .
We are now ready to state and prove the principal result of this section, a

variational characterization of divergence.
Theorem 7.1 (Theorem 5.2.1 in the First Edition)
Suppose that M ≫ P . Then

D(P∥M) = sup
Φ

(
EPΦ− ln(EM (eΦ))

)
, (11)

where the supremum is over all random variables Φ for which eΦ isM -integrable
and EP (Φ) is well-defined.
Proof: First consider the random variable Φ defined by Φ = ln dP/dM . This
choice meets the constraints required by the theorem since∫

eΦdM =

∫
dM

dP

dM
=

∫
dP = 1∫

ΦdP =

∫
dP ln

dP

dM
= D(P∥M)

and hence for this choice

EPΦ− ln(EM (eΦ)) = D(P∥M)− ln 1 = D(P∥M).

This proves that the supremum over all Φ is no smaller than the divergence
D(P∥M) since the divergence is achievable with the given choice of Φ, Note
that this is true even if the divergence D(P∥M) is infinite, which is possible
even if M ≫ P .

To prove the other half of the theorem observe that for any Φ satisfying the
constraints of the theorem, we have as above that M ≫ MΦ ≫ P and hence
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from Corollary 7.1 with Q =MΦ and the divergence inequality

D(P∥M) = D(P∥MΦ) + EP

(
ln
dMΦ

dM

)
= D(P∥MΦ) + EP

(
ln

eΦ

EM (eΦ)

)
≥ EP

(
ln

eΦ

EM (eΦ)

)
= EPΦ− lnEM (eΦ)

which completes the proof. Note that equality holds and the supremum is
achieved if and only if MΦ = P . 2

The author thanks David Rosenberg for finding the errors in the First Edition
in February 2011 and suggesting how to repair the proof. His correction arrived
when the Second Edition was in print and hence my incorrect proof propagated
to the Second Edition. The correct proof is included into the May 2023 errata
list for the Second Edition. The above proof is a slight modification of the one
that appeared in the 3 March 2013 Corrected Version of the First Edition. The
errors in the proof of the theorem were also pointed out by Yevgeny Seldin in
May 2012. I am indebted to both for finding and reporting and helping to repair
the proof.

5 Information for General Alphabets

Section 7.4, p.205.
Replace the paragraph:

Letting the generating field be the field of all rectangles of the form
F ×G, F ∈ BAX

and G ∈ BAY
, we have the following lemma which

is often used as a definition for mutual information

by
Letting the generating field be the field generated by all rectangles of the

form F × G, F ∈ BAX
and G ∈ BAY

, we have the following lemma which is
often used as a definition for mutual information (e.g., in Pinsker’s Information
and Information Stability, p. 9).

The mistake lies in “the field of all rectangles” was caught by John Ducci
in February 2012 and was a carryover from the First Edition. It was corrected
in the 3/3/2013 First Edition, Corrected Version, but is appropriate with this
collection of errata in the Second Edition.

6 Section 4.3: Nonergodic Sources

p. 107
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Lemma 4.4 (Lemma 3.3.2 in the first edition) has an error in its proof on p.
108. Insert the following text following the line “where Pψ is the distribution of
ψ (which follows the third displayed equation):

It was pointed out by Weiying Wang in 2017 that the evaluation above ap-
plies the ergodic decomposition of Theorem 1,5 (Theorem 1.8.3 in the First Edi-
tion) which requires that m(Xn)/mψ(X

n) have a finite integral (be in L1(m)),
but this has not shown. The following paragraph fills in the details and shows
that f ≡ m(Xn)/mψ(X

n) ∈ L1(m) and bounds the integral independently of
n.

Define for all M > 0 the non-negative bounded function fM by

fM = max(
m(Xn)

mψ(Xn)
,M)

or, pointwise

fM (x) = max(
m(Xn(x))

mψ(x)(Xn(x))
,M) = max(

m(xn)

mψ(x)(xn)
,M)

The truncated functions fM converge monotonically to f as M → ∞. Since fM
is a nonnegative integrable function it is in L1(m) and hence the ergodic de-
composition of Theorem 1.6. (or iterated expectation by identifying expectation
over mψ as a conditional expectation given ψ) can be applied to obtain

EmfM = E[E[fM |ψ]].

The conditional expectation given ψ = λ can be bounded as

E[fM |ψ = λ] =

∫
dmλ(x)max

(
m(Xn(x))

mλXn(x))
,M

)
=

∑
an

mλ(a
n)max

(
m(an)

mλ(an)
,M

)
where the sums are over all possible an ∈ An, the n-tuple source alphabet. As
noted, with Pψ probability 1, mλ(a

n) cannot be 0 unless m(an) is, in which case
the ratio is taken to be 0. Defining the set Fn = {an : m(an)/mλ(a

n) ≤M}

E[fM |ψ = λ] =
∑
an∈Fn

mλ(a
n)max

(
m(an)

mλ(an)
,M

)
+

∑
an ̸∈Fn

mλ(a
n)max

(
m(an)

mλ(an)
,M

)

≤
∑
an∈Fn

mλ(a
n)

m(an)

mλ(an)
+

∑
an ̸∈Fn

mλ(a
n)M

= m(Fn) +Mmλ(F
c
n)

For an ̸∈ Fn, however, mλ(a
n) ≤ m(an)/M , whence

mλ(F
c
n) =

∑
an ̸∈Fn

mλ(a
n) ≤

∑
an ̸∈Fn

1

N
m(an) =

m(F cn)

M
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so that
E[fM |ψ = λ] ≤ m(Fn) +m(F cn) = 1

for all n and T . Thus from the dominated convergence theorem, the monotone
nondecreasing integrable function fT has expectations which converge to a limit
which equals the expectation of the limit of fT as T goes to infinity. Thus
f ∈ L1(m) as required and its integral is bound above by 1,

Continue the proof of Lemma 4.4.

Remove the extra “Thus”
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