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The “Wavelet revolution”

• Early 1900’s: Haar introduces first orthonormal wavelet

• Late 70’s: Quadrature mirror filters

• Early 80’s: Multi-resolution pyramids

• Late 80’s: Orthonormal wavelets

• 90’s: Return to overcomplete (non-aliased) pyramids,  

especially oriented pyramids

• >250,000 articles published in past 2 decades

• Best results in many signal/image processing applications



“Laplacian” pyramid

[Burt & Adelson, ‘81]



 Multi-scale gradient basis

• Multi-scale bases: efficient representation

• Derivatives: good for analysis

• Local Taylor expansion of image structures

• Explicit geometry (orientation)

• Combination: 

• Explicit incorporation of geometry in basis

• Bridge between PDE / harmonic analysis 

approaches 



“Steerable” 

pyramid

[Simoncelli, Freeman, Heeger, Adelson, ‘91]



Steerable pyramid

• Basis functions are Kth derivative operators, related by 

translation/dilation/rotation

• Tight frame (4(K-1)/3 overcomplete)

• Translation-invariance, rotation-invariance

[Freeman & Adelson 1991; Simoncelli et.al., 1992; Simoncelli & Freeman 1995]



Denoising



Pyramid denoising

How do we distinguish 

signal from noise?



Bayesian denoising framework

• Signal:  x

• Noisy observation: y

• Bayes’ least squares (BLS) solution is 

conditional mean:

x̂(y) = IE(x|y)

∝

∫
x

x P(y|x) P(x)



Image statistical models

I. (1950’s): Fourier transform + Gaussian marginals

II. (late 80’s/early 90’s): Wavelets + kurtotic marginals

III. (late 90’s - ): Wavelets + adaptive local variance

Substantial increase in model accuracy 

(at the cost of increased model complexity) 



I. Classical Bayes denoising

If signal is Gaussian, BLS estimator is linear:
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Coefficient distributions
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Fig. 4. Log histograms of a single wavelet subband of four example images (see Fig. 1 for image description). For each
histogram, tails are truncated so as to show 99.8% of the distribution. Also shown (dashed lines) are fitted model densities
corresponding to equation (3). Text indicates the maximum-likelihood value of p used for the fitted model density, and
the relative entropy (Kullback-Leibler divergence) of the model and histogram, as a fraction of the total entropy of the
histogram.

non-Gaussian than others. By the mid 1990s, a number
of authors had developed methods of optimizing a ba-
sis of filters in order to to maximize the non-Gaussianity
of the responses [e.g., 36, 4]. Often these methods oper-
ate by optimizing a higher-order statistic such as kurto-
sis (the fourth moment divided by the squared variance).
The resulting basis sets contain oriented filters of different
sizes with frequency bandwidths of roughly one octave.
Figure 5 shows an example basis set, obtained by opti-
mizing kurtosis of the marginal responses to an ensemble
of 12 × 12 pixel blocks drawn from a large ensemble of
natural images. In parallel with these statistical develop-
ments, authors from a variety of communities were devel-
oping multi-scale orthonormal bases for signal and image
analysis, now generically known as “wavelets” (see chap-
ter 4.2 in this volume). These provide a good approxima-
tion to optimized bases such as that shown in Fig. 5.

Once we’ve transformed the image to a multi-scale
wavelet representation, what statistical model can we use
to characterize the the coefficients? The statistical moti-
vation for the choice of basis came from the shape of the
marginals, and thus it would seem natural to assume that
the coefficients within a subband are independent and
identically distributed. With this assumption, the model
is completely determined by the marginal statistics of the
coefficients, which can be examined empirically as in the
examples of Fig. 4. For natural images, these histograms
are surprisingly well described by a two-parameter gen-
eralized Gaussian (also known as a stretched, or generalized
exponential) distribution [e.g., 31, 47, 34]:

Pc(c; s, p) =
exp(−|c/s|p)

Z(s, p)
, (3)

where the normalization constant is Z(s, p) = 2 s
pΓ( 1

p ).
An exponent of p = 2 corresponds to a Gaussian den-
sity, and p = 1 corresponds to the Laplacian density. In

Fig. 5. Example basis functions derived by optimizing a
marginal kurtosis criterion [see 35].

5

P (x) ∝ exp−|x/s|p

[Mallat, ‘89;  Simoncelli&Adelson ‘96;  Mouline&Liu ‘99;  etc]

Well-fit by a generalized Gaussian:



II. Bayesian coring

• Assume marginal distribution:

• Then Bayes estimator is generally nonlinear:

P (x) ∝ exp−|x/s|p

p = 2.0 p = 1.0 p = 0.5

[Simoncelli & Adelson, ‘96]



Joint statistics

• Large-magnitude values are found at neighboring 

positions, orientations,  and scales.

[Simoncelli, ‘97; Buccigrossi & Simoncelli, ‘97]



Joint statistics

[Simoncelli, ‘97; Buccigrossi & Simoncelli, ‘97]
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Joint GSM model

Model generalized neighborhood of coefficients as a Gaus-
sian Scale Mixture (GSM) [Andrews & Mallows ’74]:

!x =
√

z !u, where

- z and !u are independent

- !x|z is Gaussian, with covariance
zCu

- marginals are always leptokur-
totic

[Wainwright & Simoncelli, ’99]

IPAM, 9/04 16



Simulation
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Image data GSM simulation

[Wainwright & Simoncelli, ‘99]



III. Joint Bayes denoising

IE(x|!y) =
∫

dz P(z|!y) IE(x|!y, z)

=
∫

dz P(z|!y)


zCu(zCu + Cw)−1!y




ctr

where

P(z|!y) =
P(!y|z) P(z)

P!y
, P(!y|z) =

exp(−!yT (zCu + Cw)−1!y/2)
√

(2π)N |zCu + Cw|

Numerical computation of solution is reasonably efficient if
one jointly diagonalizes Cu and Cw ...

[Portilla, Strela, Wainwright, Simoncelli, ’03]

IPAM, 9/04 20



Example joint estimator
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[Portilla, Wainwright, Strela, Simoncelli, ‘03;

see also: Sendur & Selesnick, ‘02]



Denoising Simulation: Face

noisy
(4.8)

I-linear
(10.61)

II-marginal
(11.98)

III-GSM
nbd: 5 × 5 + p

(13.60)

- Semi-blind (all parameters estimated except for σw).
- All methods use same steerable pyramid decomposition.
- SNR (in dB) shown in parentheses.

Snowbird, 4/04 23

joint



Original
Noisy

(22.1 dB)

Matlab’s

wiener2

(28 dB)

BLS-GSM

(30.5 dB)



Original
Noisy

(8.1 dB)

UndecWvlt

HardThresh

(19.0 dB)

BLS-GSM

(21.2 dB)



Real sensor noise

400 ISO denoised



Comparison to other methods
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Relative PSNR 

improvement as a 

function of noise level

(averaged over three 

images):

- squares: Joint model

- diamonds: soft thresholding, optimized threshold [Donoho, '95]

- circles: MatLab wiener2, optimized neighborhood [Lee, '80]



Pyramid denoising

How do we distinguish 

signal from noise?



“Steerable” 

pyramid

[Simoncelli, Freeman, Heeger, Adelson, ‘91]



orientation

orientation

magnitude

[Hammond & Simoncelli,  2005;    cf. Oppenheim & Lim 1981]



Importance of local orientation

Randomized orientation Randomized magnitude

Two-band, 6-level steerable pyramid

[with David Hammond]



Reconstruction from orientation

• Alternating projections onto convex sets

• Resilient to quantization

• Highly redundant, across both spatial position and scale

Quantized to 2 bits

[with David Hammond]

Original



Spatial redundancy

• Relative orientation histograms, at different locations

• See also: Geisler, Elder

[with Patrik Hoyer & Shani Offen]
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Scale redundancy

[with Clementine Marcovici]



Conclusions

• Multiresolution pyramids changed the 

world of image processing

• Statistical modeling can provide refinement 

and optimization of intuitive solutions:

- Wiener

- Coring

- Locally adaptive variances

- Locally adaptive orientation 



Cast

• Local GSM model:  Martin Wainwright, Javier Portilla

• Denoising: Javier Portilla, Martin Wainwright, Vasily 

Strela, Martin Raphan

• GSM tree model: Martin Wainwright, Alan Willsky

• Local orientation: David Hammond,  Patrik Hoyer, 

Clementine Marcovici

• Local phase:  Zhou Wang 

• Texture representation/synthesis: Javier Portilla

• Compression: Robert Buccigrossi


