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Introduction to matching pursuit

� Matching pursuit is a greedy algorithm that decomposes a signal f into
bases selected from an overcomplete dictionary of bases.

|〈Rif, gγi
〉| = sup

gγ∈D

|〈Rif, gγ〉| (1)

where D is the set of all dictionary vectors.

� The residual signal is projected on gγi

Rif = 〈Rif, gγi
〉gγi

+ Ri+1f (2)

or
Rif = cigγi

+ Ri+1f (3)

where ci , 〈Rif, gγi
〉.

� At the �rst stage R0f is the signal f.

f =

k−1∑
i=0

〈Rif, gγi
〉gγi

+ Rkf (4)
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Introduction to matching pursuit
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Introduction to matching pursuit

� gγi
and Ri+1f are orthogonal:

‖Rif‖2 = |〈Rif, gγi
〉|2 + ‖Ri+1f‖2 (5)

� The signal energy decomposition:

‖f‖2 =

k−1∑
i=0

|〈Rif, gγi
〉|2 + ‖Rkf‖2 (6)

� It has been shown that:

‖Rif‖ ≤ 2−λi‖f‖ (7)

� Therefore ‖Rif‖ converges to zero as i increases.
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Dictionary Design

� Dictionary Structure: depends on the distribution of the signal.

– Gabor dictionaries are the most widely used

� Size of the dictionary:

– Large: more compactness; more bits to address each dictionary vector

– Small: less compactness; fewer bits to address each dictionary vector.

� An analytical method is proposed to �nd the relationship between the
operational bit rate and the dictionary size.

� This relationship can be used to �nd the optimum dictionary size.
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Assumptions

� Suppose:

– the dictionary has M elements.

– the dimension of the signal is N.

– the number of quantization levels is q.

� The matching pursuit iterations must continue until the distortion is less
than E2.

� The normalized signal is assumed to have a uniform distribution.

7



Distortion criterion

� The matching pursuit iterations must continue until:

DMP ≤ E2 (8)

� Let

~ri ,
Rif

‖Ri−1f‖
(9)

and
ri , ‖~ri‖ (10)

Then:
‖Rif‖ = ‖Ri−1f‖.ri (11)
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Distortion criterion

� Substituting R0f by f :

‖Rkf‖ = ‖f‖r1r2...rk (12)

� We had:
DMP = ‖Rkf‖2 (13)

� Therefore:
(‖f‖r1r2...rk)

2 ≤ E2 (14)

or
‖f‖r1r2...rk ≤ E (15)
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Matching pursuit rate

� The rate can be written as:

Rate = k
log2 M + log2 q

N
(16)

where k is the number of stages of matching pursuit.

� The average rate is

E(Rate) = E{k
log2 M + log2 q

N
} =

log2 M + log2 q

N
E(k) (17)

� The probability that exactly k stages are required to meet the energy
constraint:

p(k = k) = p(r1r2..rk ≤ E/‖f‖) − p(r1r2...rk−1 ≤ E/‖f‖) (18)
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Optimum Dictionary for Uniform Signals

� The normalized signal f/||f|| is a vector on the surface of a unit N-sphere.

� The dictionary vectors are on the surface of a unit N-sphere.

� For any dictionary vector we include the negative of that vector in the
dictionary. Therefore, the size of the dictionary is now 2M.

� This changes �nding the maximum inner product to �nding the minimum
distance between f/||f|| and the dictionary vectors.

� The signal is uniformly distributed on the surface of the N-sphere therefore
in the optimum dictionary

– The Voronoi regions are identical.

– The shape of the Voronoi regions must approach the shape of a spher-
ical cap.
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Geometric modelling

� The surface area of each Voronoi region is:

S =
AN

2M
(19)

where AN is the surface area of an N-sphere.

� The volume and the surface area of an N-sphere are:

VN =
πN/2

(N/2)!
rN = V(N)rN (20)

AN = N
πN/2

(N/2)!
rN−1 = A(N)rN (21)

� Therefore:

S =
A(N)

2M
(22)
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Modelling the Voronoi regions by spheres

� The Voronoi regions can be approximated by (N − 1)-spheres with the
same volume as S.

VN−1 = S or V(N − 1)RN−1 =
A(N)

2M
(23)

R = (
A(N)

2M.V(N − 1)
)

1
N−1 = t(N) × M− 1

N−1 (24)
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Distribution of the residual signal

Dividing both sides of Ri−1f = 〈Ri−1f, gγ〉gγ + Rif by ‖Ri−1f‖:

Ri−1f

‖Ri−1f‖
= 〈 Ri−1f

‖Ri−1f‖
, gγ〉gγ + ~ri (25)

Since the normalized signal is uniformly distributed on the surface of the
unit sphere, ~ri is uniformly distributed in the volume of the N − 1-sphere
with radius R
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PDF of the residue

� ri random variable corresponding to ri = ||~ri|| can be found by:

Fri(r) = P(ri ≤ r) =
V(N − 1) × rN−1

V(N − 1)RN−1
=

rN−1

RN−1
(26)

Therefore:

fri(r) =
dFri(r)

dr
=

(N − 1) × rN−2

RN−1
0 ≤ r ≤ R (27)
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Finding the number of stages required

� We showed that the distortion is:

DMP = Rkf = ‖f‖r1r2...rk (28)

� Therefore the distortion criterion can be written as:

r1r2...rk ≤ ζ (29)

where

ζ =
E

‖f‖
(30)

� Let r ′i be de�ned as:

r ′i =
ri
R

(31)

� The PDF of r ′i can be found by:

fr ′
i
(r ′) = (N − 1)r ′N−2 0 ≤ r ′ ≤ 1 (32)
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Finding the number of stages required

� Equation (32) can be written as:

fr ′(r
′) = αr ′β 0 ≤ r ′ ≤ 1 (33)

where:
α = N − 1 and β = N − 2 (34)

� The distortion criterion can be written as:

Rkr ′1r
′
2...r

′
k ≤ ζ (35)

� Substituting equation (35) into equation (18), the probability that exactly
k stages are needed to satisfy the distortion constraint will be:

p(k = k) = p(r ′1r
′
2..r

′
k ≤

ζ

Rk
) − p(r ′1r

′
2...r

′
k−1 ≤

ζ

Rk−1
) (36)
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Lemma

� Lemma 1 Suppose x and y are independent random variables with PDF's:

fy(y) = αyβ 0 ≤ y ≤ 1 (37)

and

fx(x) = axβ(ln x)ρ−1 0 ≤ x ≤ 1 (38)

Let z = xy.

Then:

fz(z) = α ′zβ(ln z)ρ 0 ≤ z ≤ 1 (39)

where

α ′ = −
αa

ρ
(40)
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Proof of Lemma 1

� Let w = x then:

J(x, y) = −w (41)

� Therefore the joint probability distribution is:

fzw(z,w) =
1

|J(x, y)|
fxy(w,

z

w
) (42)

� Substituting (41) into (42):

fz(z) =

∫
1

|w|
fxy(w,

z

w
)dw (43)

x and y must be between 0 and 1. Therefore:

0 ≤ w ≤ 1 (44)
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Proof of Lemma 1

�

0 ≤ z

w
≤ 1 (45)

� This yields the boundaries of the integral equation as:

z ≤ w ≤ 1 (46)

� The independence of the two random variables implies that:

fz(z) =

∫ 1

z

1

w
fx(w)fy(

z

w
)dw (47)

� Substituting the PDF's of x and y from equations (37) and (38) into (47):

fz(z) =

∫ 1

z

1

w
awβ(lnw)ρ−1α

zβ

wβ
dw (48)

20



Proof of Lemma 1

� This can be simpli�ed to:

fz(z) = aαzβ

∫ 1

z

(lnw)ρ−1 1

w
dw (49)

� Finally the solution of the integral equation is:

fz(z) = −
αa

ρ
zβ(ln z)ρ 0 ≤ z ≤ 1 (50)

with:
α ′ = −

αa

ρ
� (51)
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PDF of r
′
1r

′
2...r

′
k

� r ′1 and r ′2 are independent.

� The PDF's of r ′1 and r ′2 have the same form as equations (37) and (38)
with ρ = 1.

� Using Lemma 1 the PDF of z2 = r ′1r
′
2 can be written as:

fz2(z2) = −α2z
β
2 (ln z2) 0 ≤ z2 ≤ 1 (52)

� Equation (52) has the same form as equation (38) with ρ = 2.

� The PDF of r ′3 has also the same form as equation (38) and r ′3 and z2 are
independent.

� Therefore the PDF of z3 = z2r3 = r ′1r ′2r ′3 can be found using Lemma 1.
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PDF of r
′
1r

′
2...r

′
k

� Continuing this process for k times the PDF of zk = r ′1r
′
2...r

′
k can be found

by:

fzk(zk) =
(N − 1)k(−1)k−1

(k − 1)!
z

(N−2)
k (ln zk)

k−1 0 ≤ zk ≤ 1 (53)

� The CDF of zk can be obtained by solving:

Fzk(zk) =

∫ zk

0

fzk(zk)dz (54)

� The CDF can be computed as:

Fzk(zk) = z
(N−1)
k

k−1∑
i=0

(−1)i(N − 1)i

i!
(ln zk)

i (55)
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Average Rate

� We had:

p(k = k) = p(r ′1r
′
2..r

′
k ≤

ζ

Rk
) − p(r ′1r

′
2...r

′
k−1 ≤

ζ

Rk−1
) (56)

� Therefore:

p(k) = Fzk
(

ζ

Rk
) − Fzk−1

(
ζ

Rk−1
) (57)

� The average number of stages can be found by:

E(k) =

∞∑
k=1

kp(k) (58)

� Therefore the average rate can be calculated by:

Rate = E(k)(log2 M + log2 q)/N (59)
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Validation

� The Block diagram of the matching pursuit coder used to verify our anal-
ysis

� We found the average rate for the optimum dictionary. To verify the re-
sults, the dictionary used in simulations must be the optimum dictionary.

� An algorithm similar to LBG algorithm is developed to generate the op-
timal dictionary.
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Validation

� Rate for di�erent dictionary sizes for N = 5, q = 16 and ζ = 0.1:
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Validation

� Rate for di�erent dictionary sizes for N = 8,q = 16 and ζ = 0.1:
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Validation

� Rate for di�erent dictionary sizes for N = 3, q = 8 and ζ = 0.1:
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Quantization

� The reconstructed signal is:

x̂ =

k∑
i=1

cigγi
(60)

� Reconstructed signal considering quantization of inner product coe�-
cients:

x̂q =

k∑
i=1

ĉigγi
(61)

� Total distortion can be written as:

D = DMP + DQ (62)

� The new distortion criterion is:

DMP + DQ ≤ E2 (63)
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Quantization

� Assume the distribution of the coe�cients is uniform in the range of the
quantizers and uniform scalar quantizers are used.

� We consider two approaches to quantization of the inner product coe�-
cients.

� In the �rst approach, the same q level scalar quantizer is used to quantize
the inner product coe�cients of all stages (�xed range quantization).

� In the second approach the number of quantization levels is kept at q

but based on the range of the inner product coe�cients of each stage,
the decision boundaries of the quantizers are adjusted (variable range
quantization).
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Fixed Range Quantization

� The quantization distortion can be expressed as:

DQ =

k∑
i=1

‖f‖2

12q2
= k

‖f‖2

12q2
(64)

and
DMP = ‖f‖2R2k(r ′1r

′
2...r

′
k)

2 (65)

� Substituting (65) and (74) into (63), the distortion criterion can be written
as:

‖f‖2R2k(r ′1r
′
2...r

′
k)

2 + k
‖f‖2

12q2
≤ E2 (66)
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Fixed Range Quantization

� Equation (66) implies that:

r ′1r
′
2...r

′
k ≤ ζ ′

k (67)

where

ζ ′
k =

√
ζ2

R2k
−

k

12q2R2k
(68)

and ζ = E
‖f‖.

� The probability of needing k stages to meet the constraint is:

p(k) = Fzk
(ζ ′

k) − Fzk−1
(ζ ′

k−1) (69)

� Equations (69) and (58) can be used to �nd the expectation of the number
of matching pursuit stages. Once E(k) is found the average rate can be
found by equation (59).
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Variable Range Quantization

� The inner product coe�cients are upper bounded for any dictionary.

� This upper bound exponentially decreases as the stage number increases.

� The quantization range can be decreased according to this upper bound
to achieve smaller quantization error.

‖Rif‖ = ‖f‖Rir ′1r
′
2...r

′
i (70)

� r ′1 to r ′i are random variables between 0 and 1, therefore:

‖Rif‖ ≤ ‖f‖Ri (71)

� The dictionary vectors are normalized, therefore:

|〈Rif, gγi
〉| ≤ ‖Rif‖.‖gγi

‖ = ‖Rif‖ (72)

� Thus:
|〈Rif, gγi

〉| ≤ ‖f‖Ri (73)
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Variable Range Quantization

� Quantization distortion:

DQ =

k∑
i=1

‖f‖2R2i

12q2
= k

‖f‖2

12q2
(74)

DQ =
‖f‖2(1 − R2(k+1))

12q2(1 − R2)
(75)

Therefore the distortion criterion can now be written as:

‖f‖2R2k(r ′1r
′
2...r

′
k)

2 +
‖f‖2(1 − R2(k+1))

12q2(1 − R2)
≤ E2 (76)
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Variable Range Quantization

� This requires:
r ′1r

′
2...r

′
k ≤ ζ ′′

k (77)

where ζ ′′
k is de�ned as:

ζ ′′
k ,

√
ζ2

R2k
−

1 − R2(k+1)

(1 − R2)12q2R2k
(78)

and ζ = E
‖f‖.

� Probability that exactly k stages are required can be found by

p(k) = Fzk(ζ
′′
k) − Fzk−1

(ζ ′′
k−1) (79)
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Verification

Rate for N = 7, q = 16 and ζ = 0.1
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Verification

Rate for N = 7, q = 16 and ζ = 0.1
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Verification

Rate for N = 16, q = 8 and ζ = 0.2
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Verification

Rate for N = 5, M = 200 and ζ = 0.3
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Verification

N = 16, ζ = 0.1
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Verification

N = 16, ζ = 0.1
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Future work

� Designing a quantizer with variable step sizes

� Solving the problem for �xed rate and �nding the best dictionary size and
quantization steps for maximum SNR.

� Finding the Rate Distortion curve of matching pursuit coder
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Thank you!
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