Analytical modeling of matching pursuit

Shahram Shirani, Alireza Shoa

Department of Electrical and Computer Engineering
McMaster
University

- Introduction to matching pursuit
- Problem of optimum dictionary size
- Modeling approach
- Verification of the model
- Quantization
- Validation of the model
- Future work

Introduction to matching pursuit

- Matching pursuit is a greedy algorithm that decomposes a signal f into bases selected from an overcomplete dictionary of bases.

$$
\begin{equation*}
\left|\left\langle R^{i} f, g_{\gamma_{i}}\right\rangle\right|=\sup _{g_{\gamma} \in D}\left|\left\langle R^{i} f, g_{\gamma}\right\rangle\right| \tag{1}
\end{equation*}
$$

where D is the set of all dictionary vectors.

- The residual signal is projected on $g_{\gamma_{i}}$

$$
\begin{equation*}
R^{i} f=\left\langle R^{i} f, g_{\gamma_{i}}\right\rangle g_{\gamma_{i}}+R^{i+1} f \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
R^{i} f=c_{i} g_{\gamma_{i}}+R^{i+1} f \tag{3}
\end{equation*}
$$

where $c_{i} \triangleq\left\langle R^{i} f, g_{\gamma_{i}}\right\rangle$.

- At the first stage $R^{0} f$ is the signal f.

$$
\begin{equation*}
f=\sum_{i=0}^{k-1}\left\langle R^{i} f, g_{\gamma_{i}}\right\rangle g_{\gamma_{i}}+R^{k} f \tag{4}
\end{equation*}
$$

Introduction to matching pursuit

Introduction to matching Pursuit

- $g_{\gamma_{i}}$ and $R^{i+1} f$ are orthogonal:

$$
\begin{equation*}
\left\|R^{i} f\right\|^{2}=\left|\left\langle R^{i} f, g_{\gamma_{i}}\right\rangle\right|^{2}+\left\|R^{i+1} f\right\|^{2} \tag{5}
\end{equation*}
$$

- The signal energy decomposition:

$$
\begin{equation*}
\|f\|^{2}=\sum_{i=0}^{k-1}\left|\left\langle R^{i} f, g_{\gamma_{i}}\right\rangle\right|^{2}+\left\|R^{k} f\right\|^{2} \tag{6}
\end{equation*}
$$

- It has been shown that:

$$
\begin{equation*}
\left\|R^{i} f\right\| \leq 2^{-\lambda i}\|f\| \tag{7}
\end{equation*}
$$

- Therefore $\left\|R^{i} f\right\|$ converges to zero as i increases.

Dictionary Design

- Dictionary Structure: depends on the distribution of the signal.
- Gabor dictionaries are the most widely used
- Size of the dictionary:
- Large: more compactness; more bits to address each dictionary vector
- Small: less compactness; fewer bits to address each dictionary vector.
- An analytical method is proposed to find the relationship between the operational bit rate and the dictionary size.
- This relationship can be used to find the optimum dictionary size.

Assumptions

- Suppose:
- the dictionary has M elements.
- the dimension of the signal is N .
- the number of quantization levels is q .
- The matching pursuit iterations must continue until the distortion is less than E^{2}.
- The normalized signal is assumed to have a uniform distribution.

Distortion criterion

- The matching pursuit iterations must continue until:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{MP}} \leq \mathrm{E}^{2} \tag{8}
\end{equation*}
$$

- Let

$$
\begin{equation*}
\overrightarrow{r_{i}} \triangleq \frac{R^{i} f}{\left\|R^{i-1} f\right\|} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{i} \triangleq\left\|\overrightarrow{r_{i}}\right\| \tag{10}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\left\|R^{i} f\right\|=\left\|R^{i-1} f\right\| \cdot r_{i} \tag{11}
\end{equation*}
$$

Distortion criterion

- Substituting $R^{0} f$ by f :

$$
\begin{equation*}
\left\|R^{k} f\right\|=\|f\| r_{1} r_{2} \ldots r_{k} \tag{12}
\end{equation*}
$$

- We had:

$$
\begin{equation*}
D_{M P}=\left\|R^{k}\right\|^{2} \tag{13}
\end{equation*}
$$

- Therefore:

$$
\begin{equation*}
\left(\|f\| r_{1} r_{2} \ldots r_{k}\right)^{2} \leq E^{2} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
\|f\| r_{1} r_{2} \ldots r_{k} \leq E \tag{15}
\end{equation*}
$$

Matching Pursuit rate

- The rate can be written as:

$$
\begin{equation*}
\text { Rate }=k \frac{\log _{2} M+\log _{2} q}{N} \tag{16}
\end{equation*}
$$

where k is the number of stages of matching pursuit.

- The average rate is

$$
\begin{equation*}
E(\text { Rate })=E\left\{k \frac{\log _{2} M+\log _{2} q}{N}\right\}=\frac{\log _{2} M+\log _{2} q}{N} E(k) \tag{17}
\end{equation*}
$$

- The probability that exactly k stages are required to meet the energy constraint:

$$
\begin{equation*}
p(k=k)=p\left(r_{1} r_{2} . . r_{k} \leq E /\|f\|\right)-p\left(r_{1} r_{2} \ldots r_{k-1} \leq E /\|f\|\right) \tag{18}
\end{equation*}
$$

Optimum Dictionary for Uniform Signals

- The normalized signal $f /\|f\|$ is a vector on the surface of a unit N-sphere.
- The dictionary vectors are on the surface of a unit N -sphere.
- For any dictionary vector we include the negative of that vector in the dictionary. Therefore, the size of the dictionary is now 2 M .
- This changes finding the maximum inner product to finding the minimum distance between $\mathrm{f} /\|\mathrm{f}\|$ and the dictionary vectors.
- The signal is uniformly distributed on the surface of the N -sphere therefore in the optimum dictionary
- The Voronoi regions are identical.
- The shape of the Voronoi regions must approach the shape of a spherical cap.

GEOMETRIC MODELLING

- The surface area of each Voronoi region is:

$$
\begin{equation*}
S=\frac{A_{N}}{2 M} \tag{19}
\end{equation*}
$$

where A_{N} is the surface area of an N-sphere.

- The volume and the surface area of an N -sphere are:

$$
\begin{gather*}
V_{N}=\frac{\pi^{\mathrm{N} / 2}}{(\mathrm{~N} / 2)!} r^{\mathrm{N}}=\mathrm{V}(\mathrm{~N}) \mathrm{r}^{\mathrm{N}} \tag{20}\\
A_{\mathrm{N}}=\mathrm{N} \frac{\pi^{\mathrm{N} / 2}}{(\mathrm{~N} / 2)!} r^{\mathrm{N}-1}=A(\mathrm{~N}) \mathrm{r}^{\mathrm{N}} \tag{21}
\end{gather*}
$$

- Therefore:

$$
\begin{equation*}
S=\frac{A(N)}{2 M} \tag{22}
\end{equation*}
$$

Modelling the Voronoi regions by spheres

- The Voronoi regions can be approximated by ($\mathrm{N}-1$)-spheres with the same volume as S.

$$
\begin{align*}
& V_{N-1}=S \quad \text { or } \quad V(N-1) \mathcal{R}^{N-1}=\frac{A(N)}{2 M} \tag{23}\\
& \mathcal{R}=\left(\frac{A(N)}{2 M \cdot V(N-1)}\right)^{\frac{1}{N-1}}=t(N) \times M^{-\frac{1}{N-1}} \tag{24}
\end{align*}
$$

Distribution of the residual signal

Dividing both sides of $R^{i-1} f=\left\langle R^{i-1} f, g_{\gamma}\right\rangle g_{\gamma}+R^{i} f$ by $\left\|R^{i-1} f\right\|$:

$$
\begin{equation*}
\frac{R^{i-1} f}{\left\|R^{i-1} f\right\|}=\left\langle\frac{R^{i-1} f}{\left\|R^{i-1} f\right\|}, g_{\gamma}\right\rangle g_{\gamma}+\overrightarrow{r_{i}} \tag{25}
\end{equation*}
$$

Since the normalized signal is uniformly distributed on the surface of the unit sphere, $\overrightarrow{r_{i}}$ is uniformly distributed in the volume of the $N-1$-sphere with radius \mathcal{R}

PDF OF THE RESIDUE

- r_{i} random variable corresponding to $r_{i}=\left\|\overrightarrow{r_{i}}\right\|$ can be found by:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}_{\mathrm{i}}}(\mathrm{r})=P\left(\mathrm{r}_{\mathrm{i}} \leq \mathrm{r}\right)=\frac{\mathrm{V}(\mathrm{~N}-1) \times \mathrm{r}^{\mathrm{N}-1}}{\mathrm{~V}(\mathrm{~N}-1) \mathcal{R}^{\mathrm{N}-1}}=\frac{r^{\mathrm{N}-1}}{\mathcal{R}^{\mathrm{N}-1}} \tag{26}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
f_{\mathrm{r}_{\mathrm{i}}}(\mathrm{r})=\frac{\mathrm{dF}_{\mathrm{r}_{\mathrm{i}}}(\mathrm{r})}{\mathrm{dr}}=\frac{(\mathrm{N}-1) \times \mathrm{r}^{\mathrm{N}-2}}{\mathcal{R}^{\mathrm{N}-1}} \quad 0 \leq \mathrm{r} \leq \mathcal{R} \tag{27}
\end{equation*}
$$

Finding the number of stages Required

- We showed that the distortion is:

$$
\begin{equation*}
D_{M P}=R^{k} f=\|f\| r_{1} r_{2} \ldots r_{k} \tag{28}
\end{equation*}
$$

- Therefore the distortion criterion can be written as:

$$
\begin{equation*}
r_{1} r_{2} \ldots r_{k} \leq \zeta \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\zeta=\frac{E}{\|f\|} \tag{30}
\end{equation*}
$$

- Let r_{i}^{\prime} be defined as:

$$
\begin{equation*}
r_{i}^{\prime}=\frac{r_{i}}{\mathcal{R}} \tag{31}
\end{equation*}
$$

- The PDF of r_{i}^{\prime} can be found by:

$$
\begin{equation*}
f_{r_{i}^{\prime}}\left(r^{\prime}\right)=(N-1) r^{\prime N-2} \quad 0 \leq r^{\prime} \leq 1 \tag{32}
\end{equation*}
$$

Finding the number of stages Required

- Equation (32) can be written as:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{r}^{\prime}}\left(\mathrm{r}^{\prime}\right)=\alpha \mathrm{r}^{\prime \beta} \quad 0 \leq r^{\prime} \leq 1 \tag{33}
\end{equation*}
$$

where:

$$
\begin{equation*}
\alpha=N-1 \text { and } \beta=N-2 \tag{34}
\end{equation*}
$$

- The distortion criterion can be written as:

$$
\begin{equation*}
\mathcal{R}^{k} r_{1}^{\prime} r_{2}^{\prime} \ldots r_{k}^{\prime} \leq \zeta \tag{35}
\end{equation*}
$$

- Substituting equation (35) into equation (18), the probability that exactly k stages are needed to satisfy the distortion constraint will be:

$$
\begin{equation*}
\mathfrak{p}(k=k)=p\left(r_{1}^{\prime} r_{2}^{\prime} . . r_{k}^{\prime} \leq \frac{\zeta}{\mathcal{R}^{k}}\right)-p\left(r_{1}^{\prime} r_{2}^{\prime} \ldots r_{k-1}^{\prime} \leq \frac{\zeta}{\mathcal{R}^{k-1}}\right) \tag{36}
\end{equation*}
$$

LEmMA

- Lemma 1 Suppose x and y are independent random variables with PDF's:

$$
\begin{equation*}
f_{y}(y)=\alpha y^{\beta} \quad 0 \leq y \leq 1 \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{x}(x)=a x^{\beta}(\ln x)^{\rho-1} \quad 0 \leq x \leq 1 \tag{38}
\end{equation*}
$$

Let $\mathrm{z}=\mathrm{xy}$.
Then:

$$
\begin{equation*}
f_{z}(z)=\alpha^{\prime} z^{\beta}(\ln z)^{\rho} \quad 0 \leq z \leq 1 \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha^{\prime}=-\frac{\alpha a}{\rho} \tag{40}
\end{equation*}
$$

Proof of Lemma 1

- Let $\mathrm{w}=\mathrm{x}$ then:

$$
\begin{equation*}
J(x, y)=-w \tag{41}
\end{equation*}
$$

- Therefore the joint probability distribution is:

$$
\begin{equation*}
f_{z w}(z, w)=\frac{1}{|J(x, y)|} f_{x y}\left(w, \frac{z}{w}\right) \tag{42}
\end{equation*}
$$

- Substituting (41) into (42):

$$
\begin{equation*}
f_{z}(z)=\int \frac{1}{|w|} f_{\mathrm{xy}}\left(w, \frac{z}{w}\right) \mathrm{d} w \tag{43}
\end{equation*}
$$

x and y must be between 0 and 1 . Therefore:

$$
\begin{equation*}
0 \leq w \leq 1 \tag{44}
\end{equation*}
$$

Proof of Lemma 1

$$
\begin{equation*}
0 \leq \frac{z}{w} \leq 1 \tag{45}
\end{equation*}
$$

- This yields the boundaries of the integral equation as:

$$
\begin{equation*}
z \leq w \leq 1 \tag{46}
\end{equation*}
$$

- The independence of the two random variables implies that:

$$
\begin{equation*}
f_{z}(z)=\int_{z}^{1} \frac{1}{w} f_{x}(w) f_{y}\left(\frac{z}{w}\right) d w \tag{47}
\end{equation*}
$$

- Substituting the PDF's of x and y from equations (37) and (38) into (47):

$$
\begin{equation*}
f_{z}(z)=\int_{z}^{1} \frac{1}{w} a w^{\beta}(\ln w)^{\rho-1} \alpha \frac{z^{\beta}}{w^{\beta}} d w \tag{48}
\end{equation*}
$$

Proof of Lemma 1

- This can be simplified to:

$$
\begin{equation*}
\mathrm{f}_{z}(z)=\mathrm{a} \alpha z^{\beta} \int_{z}^{1}(\ln w)^{\rho-1} \frac{1}{w} d w \tag{49}
\end{equation*}
$$

- Finally the solution of the integral equation is:

$$
\begin{equation*}
f_{z}(z)=-\frac{\alpha a}{\rho} z^{\beta}(\ln z)^{\rho} \quad 0 \leq z \leq 1 \tag{50}
\end{equation*}
$$

with:

$$
\begin{equation*}
\alpha^{\prime}=-\frac{\alpha a}{\rho} \tag{51}
\end{equation*}
$$

PDF OF $r_{1}^{\prime} r_{2}^{\prime} \ldots r_{k}^{\prime}$

- r_{1}^{\prime} and r_{2}^{\prime} are independent.
- The PDF's of r_{1}^{\prime} and r_{2}^{\prime} have the same form as equations (37) and (38) with $\rho=1$.
- Using Lemma 1 the PDF of $z_{2}=r_{1}^{\prime} r_{2}^{\prime}$ can be written as:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{z}_{2}}\left(z_{2}\right)=-\alpha^{2} z_{2}^{\beta}\left(\ln z_{2}\right) \quad 0 \leq z_{2} \leq 1 \tag{52}
\end{equation*}
$$

- Equation (52) has the same form as equation (38) with $\rho=2$.
- The PDF of r_{3}^{\prime} has also the same form as equation (38) and r_{3}^{\prime} and z_{2} are independent.
- Therefore the PDF of $\mathrm{z}_{3}=\mathrm{z}_{2} \mathrm{r}_{3}=\mathrm{r}^{\prime}{ }_{1} \mathrm{r}^{\prime}{ }_{2} \mathrm{r}^{\prime}{ }_{3}$ can be found using Lemma 1 .

PDF OF $r_{1}^{\prime} \mathrm{r}_{2}^{\prime} \ldots \mathrm{r}_{\mathrm{k}}^{\prime}$

- Continuing this process for k times the PDF of $z_{k}=r_{1}^{\prime} r_{2}^{\prime} \ldots r_{k}^{\prime}$ can be found by:

$$
\begin{equation*}
f_{z_{k}}\left(z_{k}\right)=\frac{(N-1)^{k}(-1)^{k-1}}{(k-1)!} z_{k}^{(N-2)}\left(\ln z_{k}\right)^{k-1} \quad 0 \leq z_{k} \leq 1 \tag{53}
\end{equation*}
$$

- The CDF of z_{k} can be obtained by solving:

$$
\begin{equation*}
F_{z_{k}}\left(z_{k}\right)=\int_{0}^{z_{k}} f_{z_{k}}\left(z_{k}\right) d z \tag{54}
\end{equation*}
$$

- The CDF can be computed as:

$$
\begin{equation*}
F_{z_{k}}\left(z_{k}\right)=z_{k}^{(N-1)} \sum_{i=0}^{k-1} \frac{(-1)^{i}(N-1)^{i}}{i!}\left(\ln z_{k}\right)^{i} \tag{55}
\end{equation*}
$$

- We had:

$$
\begin{equation*}
p(k=k)=p\left(r_{1}^{\prime} r_{2}^{\prime} . . r_{k}^{\prime} \leq \frac{\zeta}{\mathcal{R}^{k}}\right)-p\left(r_{1}^{\prime} r_{2}^{\prime} \ldots r_{k-1}^{\prime} \leq \frac{\zeta}{\mathcal{R}^{k-1}}\right) \tag{56}
\end{equation*}
$$

- Therefore:

$$
\begin{equation*}
p(\mathrm{k})=\mathrm{F}_{z_{\mathrm{k}}}\left(\frac{\zeta}{\mathcal{R}^{\mathrm{k}}}\right)-\mathrm{F}_{z_{\mathrm{k}-1}}\left(\frac{\zeta}{\mathcal{R}^{k-1}}\right) \tag{57}
\end{equation*}
$$

- The average number of stages can be found by:

$$
\begin{equation*}
E(k)=\sum_{k=1}^{\infty} k p(k) \tag{58}
\end{equation*}
$$

- Therefore the average rate can be calculated by:

$$
\begin{equation*}
\text { Rate }=\mathrm{E}(\mathrm{k})\left(\log _{2} \mathrm{M}+\log _{2} \mathrm{q}\right) / \mathrm{N} \tag{59}
\end{equation*}
$$

VALIDATION

- The Block diagram of the matching pursuit coder used to verify our analysis

- We found the average rate for the optimum dictionary. To verify the results, the dictionary used in simulations must be the optimum dictionary.
- An algorithm similar to LBG algorithm is developed to generate the optimal dictionary.

Validation

- Rate for different dictionary sizes for $\mathrm{N}=5, \mathrm{q}=16$ and $\zeta=0.1$:

Validation

- Rate for different dictionary sizes for $\mathrm{N}=8, \mathrm{q}=16$ and $\zeta=0.1$:

Validation

- Rate for different dictionary sizes for $N=3, q=8$ and $\zeta=0.1$:

QuAntization

- The reconstructed signal is:

$$
\begin{equation*}
\hat{x}=\sum_{i=1}^{k} c_{i} g_{\gamma_{i}} \tag{60}
\end{equation*}
$$

- Reconstructed signal considering quantization of inner product coefficients:

$$
\begin{equation*}
\hat{\mathrm{x}}_{\mathrm{q}}=\sum_{i=1}^{k} \hat{c}_{i} g_{\gamma_{i}} \tag{61}
\end{equation*}
$$

- Total distortion can be written as:

$$
\begin{equation*}
\mathrm{D}=\mathrm{D}_{\mathrm{MP}}+\mathrm{D}_{\mathrm{Q}} \tag{62}
\end{equation*}
$$

- The new distortion criterion is:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{MP}}+\mathrm{D}_{\mathrm{Q}} \leq \mathrm{E}^{2} \tag{63}
\end{equation*}
$$

Quantization

- Assume the distribution of the coefficients is uniform in the range of the quantizers and uniform scalar quantizers are used.
- We consider two approaches to quantization of the inner product coefficients.
- In the first approach, the same q level scalar quantizer is used to quantize the inner product coefficients of all stages (fixed range quantization).
- In the second approach the number of quantization levels is kept at q but based on the range of the inner product coefficients of each stage, the decision boundaries of the quantizers are adjusted (variable range quantization).

Fixed Range Quantization

- The quantization distortion can be expressed as:

$$
\begin{equation*}
D_{Q}=\sum_{i=1}^{k} \frac{\|f\|^{2}}{12 q^{2}}=k \frac{\|f\|^{2}}{12 q^{2}} \tag{64}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{M P}=\|f\|^{2} \mathcal{R}^{2 k}\left(r_{1}^{\prime} r_{2}^{\prime} \ldots r_{k}^{\prime}\right)^{2} \tag{65}
\end{equation*}
$$

- Substituting (65) and (74) into (63), the distortion criterion can be written as:

$$
\begin{equation*}
\|f\|^{2} \mathcal{R}^{2 k}\left(r_{1}^{\prime} r_{2}^{\prime} \ldots r_{k}^{\prime}\right)^{2}+k \frac{\|f\|^{2}}{12 q^{2}} \leq E^{2} \tag{66}
\end{equation*}
$$

Fixed Range Quantization

- Equation (66) implies that:

$$
\begin{equation*}
r_{1}^{\prime} r_{2}^{\prime} \ldots r_{k}^{\prime} \leq \zeta_{k}^{\prime} \tag{67}
\end{equation*}
$$

where

$$
\begin{equation*}
\zeta_{k}^{\prime}=\sqrt{\frac{\zeta^{2}}{\mathcal{R}^{2 k}}-\frac{k}{12 q^{2} \mathcal{R}^{2 k}}} \tag{68}
\end{equation*}
$$

and $\zeta=\frac{\mathrm{E}}{\|f\|}$.

- The probability of needing k stages to meet the constraint is:

$$
\begin{equation*}
p(k)=F_{z_{k}}\left(\zeta_{k}^{\prime}\right)-F_{z_{k-1}}\left(\zeta_{k-1}^{\prime}\right) \tag{69}
\end{equation*}
$$

- Equations (69) and (58) can be used to find the expectation of the number of matching pursuit stages. Once $E(k)$ is found the average rate can be found by equation (59).

Variable Range Quantization

- The inner product coefficients are upper bounded for any dictionary.
- This upper bound exponentially decreases as the stage number increases.
- The quantization range can be decreased according to this upper bound to achieve smaller quantization error.

$$
\begin{equation*}
\left\|R^{i} f\right\|=\|f\| \mathcal{R}^{i} r_{1}^{\prime} r_{2}^{\prime} \ldots r_{i}^{\prime} \tag{70}
\end{equation*}
$$

- r_{1}^{\prime} to r_{i}^{\prime} are random variables between 0 and 1 , therefore:

$$
\begin{equation*}
\left\|R^{i} f\right\| \leq\|f\| \mathcal{R}^{i} \tag{71}
\end{equation*}
$$

- The dictionary vectors are normalized, therefore:

$$
\begin{equation*}
\left|\left\langle R^{i} f, g_{\gamma_{i}}\right\rangle\right| \leq\left\|R^{i} f\right\| \cdot\left\|g_{\gamma_{i}}\right\|=\left\|R^{i} f\right\| \tag{72}
\end{equation*}
$$

- Thus:

$$
\begin{equation*}
\left|\left\langle R^{i} f, g_{\gamma_{i}}\right\rangle\right| \leq\|f\| \mathcal{R}^{i} \tag{73}
\end{equation*}
$$

Variable Range Quantization

- Quantization distortion:

$$
\begin{gather*}
D_{Q}=\sum_{i=1}^{k} \frac{\|f\|^{2} \mathcal{R}^{2 i}}{12 q^{2}}=k \frac{\|f\|^{2}}{12 q^{2}} \tag{74}\\
D_{Q}=\frac{\|f\|^{2}\left(1-\mathcal{R}^{2(k+1)}\right)}{12 q^{2}\left(1-\mathcal{R}^{2}\right)} \tag{75}
\end{gather*}
$$

Therefore the distortion criterion can now be written as:

$$
\begin{equation*}
\|f\|^{2} \mathcal{R}^{2 k}\left(r_{1}^{\prime} r_{2}^{\prime} \ldots r_{k}^{\prime}\right)^{2}+\frac{\|f\|^{2}\left(1-\mathcal{R}^{2(k+1)}\right)}{12 q^{2}\left(1-\mathcal{R}^{2}\right)} \leq E^{2} \tag{76}
\end{equation*}
$$

Variable Range Quantization

- This requires:

$$
\begin{equation*}
r_{1}^{\prime} r_{2}^{\prime} \ldots r_{k}^{\prime} \leq \zeta_{k}^{\prime \prime} \tag{77}
\end{equation*}
$$

where $\zeta_{k}^{\prime \prime}$ is defined as:

$$
\begin{equation*}
\zeta_{k}^{\prime \prime} \triangleq \sqrt{\frac{\zeta^{2}}{\mathcal{R}^{2 k}}-\frac{1-\mathcal{R}^{2(k+1)}}{\left(1-\mathcal{R}^{2}\right) 12 q^{2} \mathcal{R}^{2 k}}} \tag{78}
\end{equation*}
$$

and $\zeta=\frac{\mathrm{E}}{\|f\|}$.

- Probability that exactly k stages are required can be found by

$$
\begin{equation*}
p(k)=F_{z_{k}}\left(\zeta_{k}^{\prime \prime}\right)-F_{z_{k-1}}\left(\zeta_{k-1}^{\prime \prime}\right) \tag{79}
\end{equation*}
$$

VERIFICATION

Rate for $\mathrm{N}=7, \mathrm{q}=16$ and $\zeta=0.1$

Verification

Rate for $\mathrm{N}=7, \mathrm{q}=16$ and $\zeta=0.1$

Verification

Rate for $\mathrm{N}=16, \mathrm{q}=8$ and $\zeta=0.2$

Verification

Rate for $\mathrm{N}=5, \mathrm{M}=200$ and $\zeta=0.3$

Verification

$$
N=16, \zeta=0.1
$$

Verification

$$
N=16, \zeta=0.1
$$

Future work

- Designing a quantizer with variable step sizes
- Solving the problem for fixed rate and finding the best dictionary size and quantization steps for maximum SNR.
- Finding the Rate Distortion curve of matching pursuit coder

Thank you!

