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INTRODUCTION TO MATCHING PURSUIT

e Matching pursuit is a greedy algorithm that decomposes a signal f into
bases selected from an overcomplete dictionary of bases.

[(R', gy,)| = sup [(R'f, g,)] (1)

gy€D
where D is the set of all dictionary vectors.
e The residual signal is projected on g,
R'f = (R'f, Gv:)Gy; T R (2)
or
R = cigy, + RS (3)
where ¢; = (R'f, gy,).

o At the first stage Rf is the signal f.
k—1

f= Z<Rif» gVi>gVi + ka (4)
i=0



INTRODUCTION TO MATCHING PURSUIT
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INTRODUCTION TO MATCHING PURSUIT

e gy, and R are orthogonal:
IRY[|* = (R, gy, I + IR (5)

e The signal energy decomposition:

k—1
1112 =) [(R¥, gy,)[* + [|[R¥f||? (6)
i=0
e [t has been shown that:
IRH|| < 27M||f]] (7)

e Therefore ||R'f|| converges to zero as i increases.



DICTIONARY DESIGN

e Dictionary Structure: depends on the distribution of the signal.
— Gabor dictionaries are the most widely used
e Size of the dictionary:

— Large: more compactness; more bits to address each dictionary vector

— Small: less compactness; fewer bits to address each dictionary vector.

e An analytical method is proposed to find the relationship between the
operational bit rate and the dictionary size.

e This relationship can be used to find the optimum dictionary size.



ASSUMPTIONS

e Suppose:

— the dictionary has M elements.
— the dimension of the signal is N.

— the number of quantization levels is q.

e The matching pursuit iterations must continue until the distortion is less
than E2.

e The normalized signal is assumed to have a uniform distribution.



DISTORTION CRITERION

e The matching pursuit iterations must continue until:

Dyp < E? (8)
e Let Rif
A )
IR
and
N
2 ) (10)
Then:

R[] = IR f].mi (11)



DISTORTION CRITERION

e Substituting R°f by f :
IR = [[][r12...m
e We had:
Dup = R

e Therefore:
(”f”T]T‘z...Tk)z < Ez

or
|f][r712.. 1 < E

(12)

(13)

(14)
(15)



MATCHING PURSUIT RATE

e The rate can be written as:

log, M + log; g
16
- (16)

where k is the number of stages of matching pursuit.

Rate = k

e The average rate is

log, M +1 log, M +1
E(Rate) — E[k282M T 0824, 0BV T 0804 (1
N N
e The probability that exactly k stages are required to meet the energy

constraint:

p(k =k) =p(rirz.re < E/[[f]) = p(rirz..mer < B/[IF]]) (18)



OPTIMUM DICTIONARY FOR UNIFORM SIGNALS

e The normalized signal f/||f]| is a vector on the surface of a unit N-sphere.
e The dictionary vectors are on the surface of a unit N-sphere.

e For any dictionary vector we include the negative of that vector in the
dictionary. Therefore, the size of the dictionary is now 2M.

e This changes finding the maximum inner product to finding the minimum
distance between f/|/f|| and the dictionary vectors.

e The signal is uniformly distributed on the surface of the N-sphere therefore
in the optimum dictionary
— The Voronoi regions are identical.

— The shape of the Voronoi regions must approach the shape of a spher-
ical cap.



GEOMETRIC MODELLING

e The surface area of each Voronoi region is:

S =51 (19)

where Ay 1s the surface area of an N-sphere.

e The volume and the surface area of an N-sphere are:

™ N
VN = (N/Z)!T = V(N)r (20)
™2 N
An =N (N/Z)!r = A(N)r (21)
e Therefore:
S = w (22)



MODELLING THE VORONOI REGIONS BY SPHERES

e The Voronoi regions can be approximated by (N — 1)-spheres with the
same volume as S.

Va1 =S or VIN—1)RN = % (23)
R = (AN N < Mo (24)



DISTRIBUTION OF THE RESIDUAL SIGNAL

Dividing both sides of R™'f = (R"'f, g,)g, + R'f by |[R*'{]:

RV RV

[RETH| <||R1—1f||>9v>9v‘|‘T1 (25)
Since the normalized signal is uniformly distributed on the surface of the
unit sphere, 77 is uniformly distributed in the volume of the N — T-sphere

with radius R

R?ﬁ—lf
Rl

Riflf
R

9~ Gy



PDF OF THE RESIDUE

e 1; random variable corresponding to r; = ||7i|| can be found by:

V(N —=1) x tN=1T ¢NAI

Therefore:

(26)

(27)



FINDING THE NUMBER OF STAGES REQUIRED

e We showed that the distortion is:

DMP = ka = Hf”T]T‘z...Tk

e Therefore the distortion criterion can be written as:

2. T < C

where £
(= ——
il
e Let 1/ be defined as:
r./ — E
R

e The PDF of r] can be found by:

fa(r)=(N=1)r"N2 0<v' <1

1

(28)

(29)

(30)

(31)

(32)



FINDING THE NUMBER OF STAGES REQUIRED

e Equation ([32) can be written as:

fo(r)=ar® 0<1 <1 (33)

where:
x=N—-1 and B=N-2 (34)

e The distortion criterion can be written as:

Rerirs..r < ¢ (35)

e Substituting equation ([35|) into equation ([18]), the probability that exactly
k stages are needed to satisfy the distortion constraint will be:

C C
Rk) —p(rmy.m g < R 1) (36)

plk=k) =p(rmy.m <



LEMMA

e Lemma 1 Suppose x and y are independent random variables with PDFE"’s:

and

Let z = xy.
Then:

where

fy(y) =ay? 0<y <1 (37)
fr(x) = axP(lnx)P7 0<x <1 (38)
f(z) = a'zP(lnz)? 0<z<1 (39)
o =22 (40)



Proor oF LEMMA 1

e Let w = x then:

J(x,y) =-w (41)
e Therefore the joint probability distribution is:
fow(z, W) = ﬁfxy(w, V—Z\)) (42)
e Substituting (41| into (42)):
fo(z) = J 1w, Z)dw (43)
W W

x and y must be between 0 and 1. Therefore:

0<w<1 (44)



Proor oF LEMMA 1

0< =<1 (45)

z
w
e This yields the boundaries of the integral equation as:

z<w< (46)

e The independence of the two random variables implies that:

1
f(2) :J L), (Z)dw (47)

, W W

e Substituting the PDF’s of x and y from equations ([37)) and (]38|) into ({47)):

1
f.(z) —J lcw\)ﬁ(lxlmz)p_]oc—Bdw (48)
, W W



Proor oF LEMMA 1

e This can be simplified to:

1

f(z) = aoczBJ (lnw)p_1J—vdw (49)

e Finally the solution of the integral equation is:

f.(z) = —gzﬁ(ln z)P 0<z<1 (50)

with:
o =—— O (51)



- /
PDF oOF rr)...1

e r; and r) are independent.

e The PDF’s of r; and r; have the same form as equations (37
with p = 1.

e Using Lemma 1 the PDF of z, = rjr; can be written as:

e Equation

e The PDF of r} has also the same form as equation

52

independent.

f,,(22) = —o?2b(lnzy) 0<z <1

has the same form as equation

38

with p = 2.

38

and

38

(52)

and r; and z; are

e Therefore the PDF of z3 = zyr; = r’1r'5r’3 can be found using Lemma 1.



- /
PDF oOF rr)...1

e Continuing this process for k times the PDF of zy = rjr;...r; can be found
by:

. _ul)_k(]_).”k]zﬁ”)(lnzk)“ Oszes1  (59)

e The CDF of z, can be obtained by solving:

fzk(zk) —

Zx

Fo(z) = JO f, (z0)dz (54)

e The CDF can be computed as:

=

et e (DN = 1)

Fol(z) = 2 ——(lnz)’ (55)

I
o



AVERAGE RATE

e We had:
¢
plk =Kk) = p(riry.my < o5) = plriv..i
e Therefore:
k)=F C F ‘
p(k) = Fay (55) = Fars ()

e The average number of stages can be found by:
E(k) =) kp(k)
k=1

e Therefore the average rate can be calculated by:

Rate = E(k)(log, M + log, q)/N

(56)

(57)

(58)

(59)



VALIDATION

e The Block diagram of the matching pursuit coder used to verify our anal-

ysis
gi
X Ci —cig MP X
MP Coder c Quantize Decoder

e We found the average rate for the optimum dictionary. To verify the re-
sults, the dictionary used in simulations must be the optimum dictionary.

e An algorithm similar to LBG algorithm is developed to generate the op-
timal dictionary.



VALIDATION

e Rate for different dictionary sizes for N =5, g =16 and ¢ = 0.1:

————— Experimental rate
—— Predicted rate
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VALIDATION

e Rate for different dictionary sizes for N =8, = 16 and ¢ = 0.1:

10

————— Experimental rate
d —— Predicted rate

(6]
e ET—-
|

TR S ,
st k‘%‘"i‘ﬁ"“f"h"#"\‘?i"“'.*"?a""f'{i‘fy"’-'-ﬂ’ai‘iinﬁg‘i“g‘f‘w@,—ﬁ

Rate (bit'sample)
(6]

L L L | 1 |
100 200 300 400 500 600 700
Dictionary size M



VALIDATION

e Rate for different dictionary sizes for N =3, g =8 and ¢ =0.1:

— Predicted rate
————— Experimental rate
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QUANTIZATION

e The reconstructed signal is:

X = Z CiGy; (60)

i=1

e Reconstructed signal considering quantization of inner product coeffi-
cients:

Rq = Z 6igYi (61)

i=1

e Total distortion can be written as:

D = Dmp + Dg (62)

e The new distortion criterion is:

Dmp + Dg < E? (63)



QUANTIZATION

e Assume the distribution of the coefficients is uniform in the range of the
quantizers and uniform scalar quantizers are used.

e We consider two approaches to quantization of the inner product coeffi-
cients.

e In the first approach, the same g level scalar quantizer is used to quantize
the inner product coefficients of all stages (fixed range quantization).

e In the second approach the number of quantization levels is kept at g
but based on the range of the inner product coefficients of each stage,
the decision boundaries of the quantizers are adjusted (variable range
quantization).



FIXED RANGE QUANTIZATION

e The quantization distortion can be expressed as:

and

e Substituting
as:

65

and

]c 2 ]c 2
Z 112l o)
12q2 12q2
Dmp = [[f*R*(1775...1)? (65)
74) into (|63]), the distortion criterion can be written
22K () ! H H2 2
| f]|“R (1‘11‘2...rk) +k— <E (66)

12g2



FIXED RANGE QUANTIZATION

e Equation (|66 implies that:

ety < G (67)

where

¢ k
G = \/RZk T 12q2R% (68)
and ¢ = Tl f|
e The probability of needing k stages to meet the constraint is:
p(k) =F, (G) —F (G q) (69)

e Equations (|69) and ([68)) can be used to find the expectation of the number
of matching pursuit stages. Once E(k) is found the average rate can be
found by equation ([59)).




VARIABLE RANGE QUANTIZATION

e The inner product coefficients are upper bounded for any dictionary.
e This upper bound exponentially decreases as the stage number increases.

e The quantization range can be decreased according to this upper bound
to achieve smaller quantization error.

IRY[| = [[f[|R*rqrs...x{ (70)
e 7; to 1/ are random variables between 0 and 1, therefore:
IRY| < [If[|R* (71)
e The dictionary vectors are normalized, therefore:
(R, gyl < IRl gy ]| = [IR¥f] (72)

e Thus:
(R, gy ) < [IT|R (73)



VARIABLE RANGE QUANTIZATION

e Quantization distortion:

k
IfHZth HfH2
4
g k302 (74)
[£]]2(1 — R
DA =

T 12q2(1 — R (75)

Therefore the distortion criterion can now be written as:

f 2 1 — :RZ(kH)

HszﬂQZk(r{ré...T{()z—l— il ) < E? (76)

@1 —R2) —



VARIABLE RANGE QUANTIZATION

e This requires:
/.. / /!
15T < Gy

where (] is defined as:

o N (2 B 1 — R2(k+1)
¢ R (1 — R2)12q2R*

E
and C:W'

e Probability that exactly k stages are required can be found by
p(k) — FZk(C]/(/) — FZk_] (C{(l—])

(77)

(78)

(79)



VERIFICATION

Rate for N=7,q=16 and ¢ = 0.1
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VERIFICATION

Rate for N=7,q=16 and ¢ = 0.1
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VERIFICATION

Rate for N =16, q =8 and { = 0.2
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VERIFICATION

Rate for N =5, M =200 and ¢ =0.3
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VERIFICATION

N=16 C=0.1

Rate (bit/'sample)
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log2(M) M=Dictionary size
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VERIFICATION

N=16 C=0.1

Minimum Rate
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FUTURE WORK

e Designing a quantizer with variable step sizes

e Solving the problem for fixed rate and finding the best dictionary size and
quantization steps for maximum SNR.

e Finding the Rate Distortion curve of matching pursuit coder
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