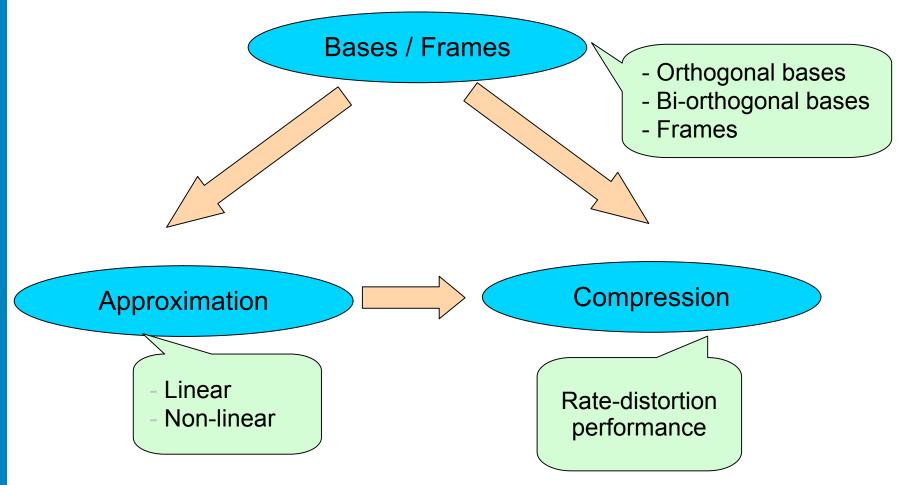


The Need for Better Models for Coding Sparse Multimedia Representations

Amir Said Hewlett Packard Labs, Palo Alto July 2005

Multimedia Compression

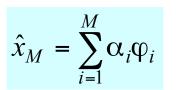
- Very high economic significance
- Difficult to evaluate theoretical limits
 - Some believe much better compression is possible
- Research field somewhat idiosyncratic
 - Some "standards committee" mentality
 - Only the best "wins"!
 - After choosing the "winner" we are "done"
 - Some impatience with scientific process
 - Multimedia compression research is repeatedly considered "dead"
 - Empiric and ad hoc techniques can predominate


Multimedia Signals

Commonly represented using linear transforms

- "Classical": Fourier, Karhunen-Loève, Wavelets, ...
- New construction of bases for natural signals
- Common theme: sparse representation of audiovisual information is key in
 - Signal analysis (detection, classification, recognition)
 - Signal representation (compression)
 - Signal enhancement (denoising)

Basic Concepts and Relations

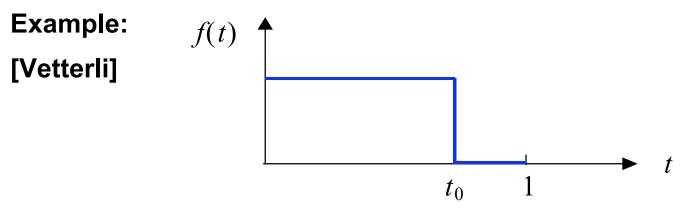

*We know human response needs to be considered too...

Main Approximation Types

- Basis functions
- Linear approximation (LA)
 - Keep first *M* components
 - KLT is best basis only in very limited sense
- Nonlinear (adaptive) approximation (NLA)
 - Keep best M components
 - Power of nonlinear approximation depends on the basis
- Approximation quality

BIRS - July 25, 2005

$$\hat{\varepsilon}_{M} = \left\| x - \hat{x}_{M} \right\|_{2}$$
$$\widetilde{\varepsilon}_{M} = \left\| x - \widetilde{x}_{M} \right\|_{2}$$


$$\{\varphi_0,\varphi_1,\varphi_2,\dots\}$$

$$x_M = \sum_{i \in I}$$

 $\widetilde{\mathbf{r}}$

Approximation Theory

 $t \in [0,1], t_0 \sim$ uniform distribution over [0, 1]

	Linear approximation	Nonlinear approximation
Fourier series	$\hat{\epsilon}_{_M} \sim 1/M$	$\tilde{\varepsilon}_{_M} \sim 1/M$
Wavelet series (Haar wavelets)	$\hat{\epsilon}_{_M} \sim 1/M$	$\tilde{\varepsilon}_{_M} \sim 1/2^M$

Some Recent Approaches

Geometric

- Directional transforms (fixed)
 - Ridgelets, curvelets, contourlets, etc.
- Adaptive geometry-based approaches
 - Beamlets, wedgelets, bandelets, directionlets, etc.

Frames and overcomplete representation

- Matching pursuits
- Wavelet packets
- A variety of best basis searches
- Several types of adaptive transforms

Compression

- Approximation quality (distortion)
- Description complexity (rate)
 - LA: code coefficient values only
 - NLA: code both coefficient values & coefficient locations
- Transform coding
 - Simple coding may be (much) more effective in the transform domain
 - Entropy coding is quite powerful and general, but severely limited
 - Complexity, time for "learning" statistics, etc.

Coding Sparse Representations

- Cohen, Daubechies, Guleryuz & Orchard
 - "On the importance of combining wavelet-based non-linear approximations with coding strategies," *IEEE TIP*, July 2002.
- Realistic rate-distortion analysis is essential
- If it is truly sparse then the rate is dominated by bits for locating nonzero coefficients
 - Possible to switch coding methods when representation is not sufficiently sparse
 - Only at high rates the performance can be significantly limited by scalar quantization

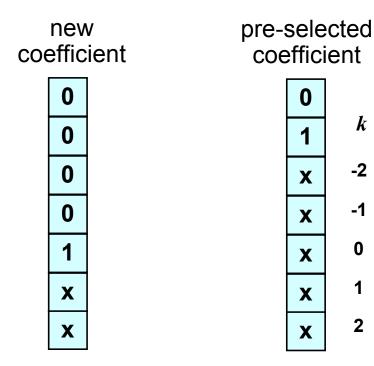
Coding Values and Location of Transform Coefficients

- Statistics after symmetric quantization
 - Uniform & deadzone (different interval for zero symbol) quantizers

$$p_0 >> p_1 = p_{-1} >> p_2 = p_{-2} >> \cdots$$

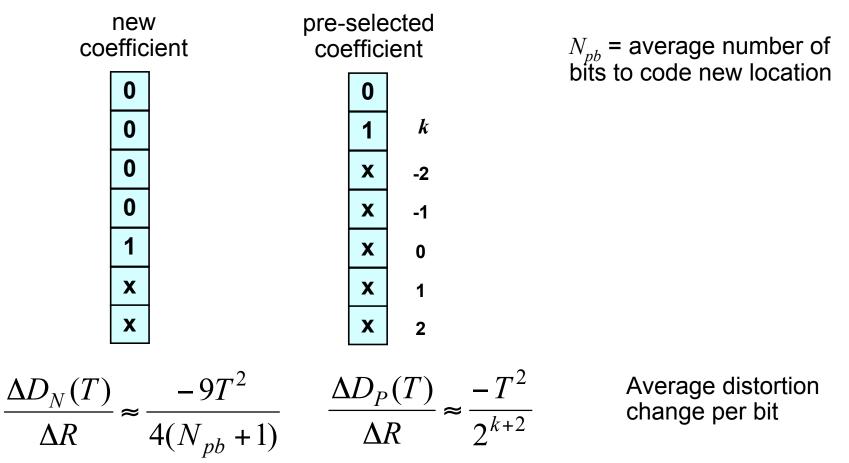
- Majority of bits used to code, directly or indirectly, location of symbol '0'
 - Compression performance defined mostly by bits used to code location of symbol '0', '+1', '–1'
- Advantages of bit-plane coding
 - Always coding '0', '+1', '-1' symbols, defined by sequence of quantization steps 2^{-k}
 - In a certain way, always the same problem

Rate-distortion Analysis for Bit Allocation



k

0


1

2

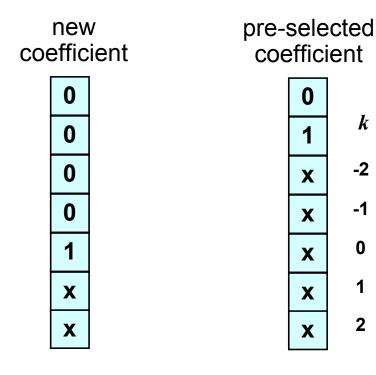
Rate-distortion Analysis for Bit Allocation

• When to refine or code new coefficients?

Rate-distortion Analysis for Bit Allocation

When to refine or code new coefficients?

k


-2

-1

0

1

2

Better to code coefficient position whenever

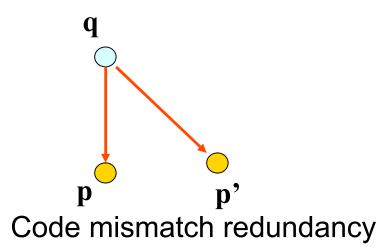
 $N_{pb} < 9 \cdot 2^k - 1$

$$N_{pb} < 1.75$$

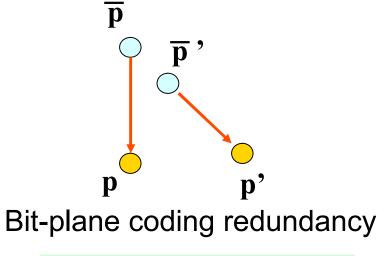
 $N_{pb} < 3.5$
 $N_{pb} < 8$
 $N_{pb} < 17$
 $N_{pb} < 35$

Entropy Coding

- Coefficient bits: typically little compression possible
 - Can be shown to be true in a wide set of conditions using the analysis of a coding technique called symbol grouping (Said, DCC'05)


- Coefficient location: must be coded exploiting statistical properties of the transform
 - Good models can yield better compression...

Redundancy Analysis


$$\ell(\Psi, \mathbf{p}) = \sum_{n=1}^{N} \sum_{s \in G_n} p_s \log_2\left(\frac{p_s}{\overline{p}_n}\right)$$

Similar to Kullback-Leibler distance

$$D(\mathbf{p},\mathbf{q}) = 0 \iff \mathbf{p} = \mathbf{q}$$

$$\frac{\partial D(\mathbf{p}, \mathbf{q})}{\partial p_i} = \log_2 \left(\frac{p_i}{q_i}\right) + \frac{1}{\ln(2)}$$

$$\ell(\Psi, \mathbf{p}) = 0 \quad \Leftrightarrow \quad \mathbf{p} = \overline{\mathbf{p}}$$

$$\frac{\partial \ell(\Psi, \mathbf{p})}{\partial p_i} = \log_2 \left(\frac{p_i}{\overline{p}_i}\right)$$

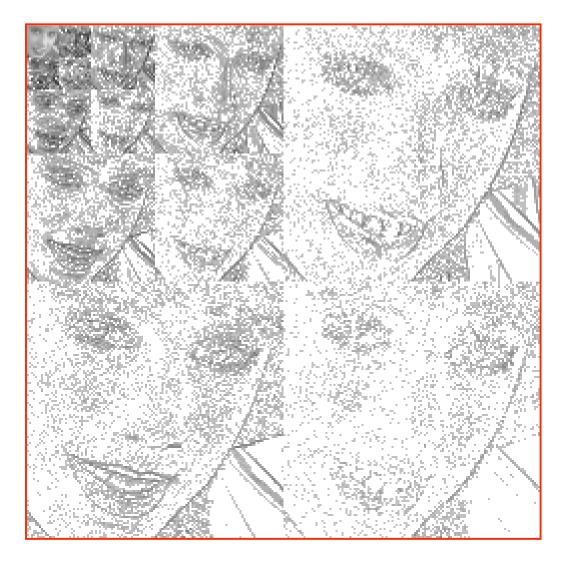
Wavelet Coding Example

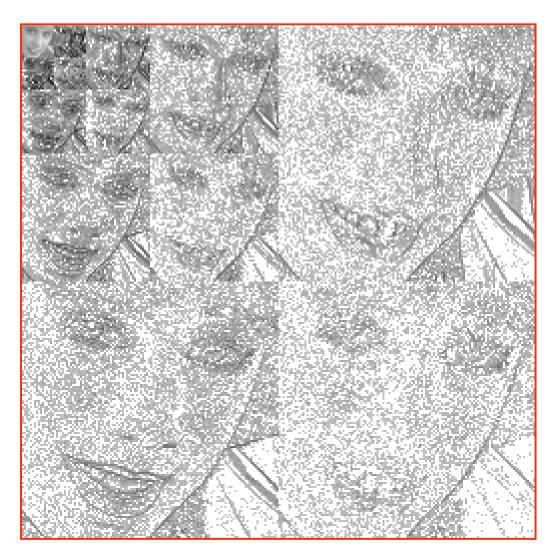
Original image

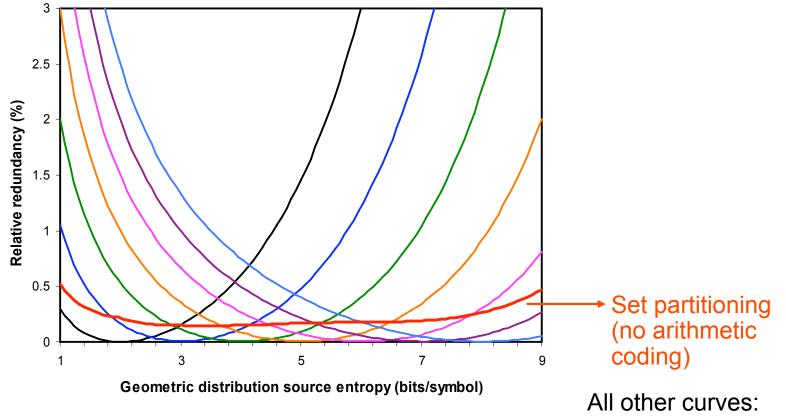
White = insignificant	
Gray = significant	

12	1		
3.8	-		
1.1			

1 B			
1883	4		
	×		
· · · · ·	. *		



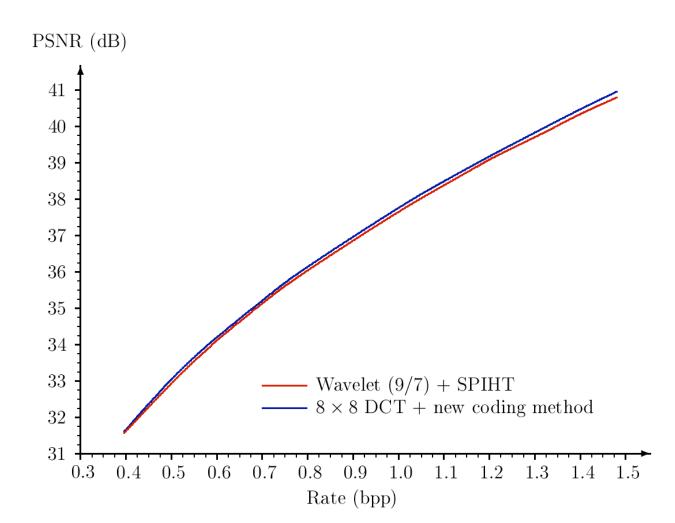




Set-partitioning Coding

- Entropy coding technique for implicitly coding coefficient positions
 - Can exploit dependence between subbands
- Bits used for coding coefficient location by SPIHT
 - Typically start with average of 2.5-3 bits/pixel
 - Increasing to about 9 bits/pixel in higher bit planes, and about
 5 bits/pixel in lower bit planes
 - Partially ordered lists are used for near-optimal bit allocation
- Very similar performance when applied to square blocks inside wavelet bands (like JPEG2000)
 - SPECK, SBHP, MC-EZBC: shows that set-partitioning compression efficiency not defined only by multiresolution structure

Set Partitioning Coding Characteristics


Golomb-Rice codes

Some New Results

ISO image 'Bike'

New DCT Coding Technique

Not using set-partitioning

- 0.5-1.0 dB better than results obtained by Xiong, Guleryuz & Orchard, *IEEE SPL*, Nov. 96.
- Follows several "threads" in the 8×8 block, instead of one zig-zag path
 - Objective is to more reliably sort probabilities
- Hundreds of adaptive coding models
 - They learn efficient image statistical model
 - Limited amount of information for designers...

Other Recent Developments

Scalable video compression

- Great advances on the performance of waveletbased video encoders
- Still, AVC produced better results...
- AVC intraframe compression
 - directional prediction + block transform
 - competitive with wavelet-based JPEG2000

Conclusions and Suggestions for Discussion

- Great amount of activity in the development of new sparse representations, nonlinear approximation theory
- Usefulness for compression depends on proper coding of nonzero coefficient positions
- Coding can only be optimized if we have good models
- Are we making real progress?
 - E.g., can improvement in denoising lead to better compression?
 - Any indication of possible breakthroughs?

