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Semantic Information Extraction
! Motivation

– Proliferation of image and video acquisition devices            
(digital still and video cameras, image and video phones, PDAs)

– World rich in digital visual content
– Large personal repositories (consumer market)
– Increasing processing capabilities

! Goal: Intelligent content management
– Semantic labeling
– Content organization
– Efficient retrieval

! Techniques
– Image and video segmentation
– Extracting semantically related features
– Relating features to semantic categories
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Challenges

! What are the important semantic categories?

! How to link the low-level features to semantically 
important categories?
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Semantic Categories
! Recent perceptual experiments by Mojsilovic and Rogowitz identified 

important semantic categories that humans use for image classification

Less human-like

More human-like

Man-made

Natural

! Conjecture: Semantic categories can be derived from combinations of 
low-level image features  
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Bridging the Semantic Gap

SemanticsHigh level
Use segment descriptors and 
statistical techniques to relate 
segments (first) and scenes (later) 
to semantic categories/labels

Perceptually 
Uniform

Segments
Medium level

Incorporate knowledge of human 
perception and image characteristics
into feature extraction and algorithm 
design

PrimitivesLow level
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Adaptive Clustering Algorithm

K-means Class Labels ACA Class LabelsOriginal Image
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Adaptive Clustering Algorithm (ACA)
! K-means clustering (LBG)

– Based on image histogram
– No spatial constraints
– Each cluster is characterized by constant intensity

! Add spatial constraints
– Region model: Markov/Gibbs random field

! Make it adaptive
– Cluster centers spatially varying
– Texture model: spatially varying mean + WGN

! MAP estimates of segmentation x given observation y
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ACA

! K-means minimizes

! Adaptive clustering maximizes

! Or, minimizes
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ACA: Local Intensity Function Estimation

! Given    ,      
segmentation 
into classes

! Estimate 

Intensity function 
for each class at 
each point in the 
image

! Use hierarchy of 
window sizes
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ACA
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ACA: Region Estimation

! Given

! Maximize                                   (too difficult)

! Maximize marginal densities 
(Iterated Conditional Modes)
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K-means vs. ACA
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K-means Clustering
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K-means Clustering
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ACA: Local Intensity Functions (15x15)
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ACA: Model (15x15)
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Adaptive Clustering Algorithm

ACA Class Labels ACA Model (7x7)Original Image
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Adaptive Clustering Algorithm

ACA Class Labels ACA Model (15x15)Original Image
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Adaptive Clustering Algorithm

ACA Class Labels ACA Model (31x31)Original Image
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Image Restoration Models

! Simple space varying image model 
[Kuan et al.` 85]
– Space-varying mean + white Gaussian noise

! Spatially-adaptive LMMSE estimator
– Use local sample mean and local sample variance

! No explicit model for region boundaries
– Computes sample mean/variance across boundaries
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K-means vs. ACA
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ACA



Adaptive 
Perceptual 

Color-Texture 
Segmentation
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Natural Textures
! Combine color composition, 

spatial characteristics
! Non-uniform statistical 

characteristics                 
(lighting, perspective)

! Perceptually uniform
! Need spatially adaptive features
! Small number of parameters
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Texture Synthesis  [Portilla-Simoncelli’00]
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Adaptive Perceptual Color-Texture 
Segmentation

← Slowly  varying 
Dominant Colors

Color Composition
Feature  Extraction

Spatial Texture
Feature Extraction

Original

Final segmentation

← Texture Class Labels

Grayscale
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Dominant Colors
! Human eye cannot simultaneously perceive 

a large number of colors
– Even though, under appropriate adaptation, 

it can distinguish more than 2M colors
! Small set of color categories

– Efficient representation
– Easier to capture invariant properties of object 

appearance
! Color categories are related statistical structure of 

perceived environment
– K-means clustering to compute color 

categories [Yendrikovskij’00]
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Spatially Adaptive Dominant Colors

! Dominant colors [Ma’97, Mojsilovic’00]
– For class of images
– For a given image

! Current approaches to extract dominant 
colors:
– K-means (VQ)  [LBG’80];
– Mean-shift [Comaniciu-Meer’97];
Assumption: constant dominant colors

! Proposed approach:
– Spatially adaptive dominant colors
– Use ACA
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Comparison with Mean-Shift

4 colors

ACAOriginal Image

quantizationover-segmentationunder-segmentation
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Color Composition Feature
! Constant Dominant Colors:

! Spatially Adaptive Dominant Colors:

! ACA adapts to local characteristics.
! Dominant colors relatively constant in small neighborhood: 

Can approximate with intensity at center of window.
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Color Feature Similarity Metric

! Optimal Color Composition Distance (OCCD) 
[Mojsilovic’00]
– Quantize color component based on percentage
– Find best color correspondence 
– Then compute distance as sum of distances between 

matched colors (in a given colorspace)
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Illustration of OCCD computation
A   :(      ,30) (      ,30) (      ,20) (      ,20)

B   :(      ,40) (      ,30) (      ,30)

A   :

B   :

A   :

B   :

0

131

305561

OCCD dist = 61*.3+55*.2+30*.1+131*.1=45.4

• Color Quantization unit p = 10

• Weight of the link is Cmax-cost 
(color distance in Lab color 
space, Cmax =376)

• Solve maximum graph 
matching problem using 
Gabow’s algorithm.

• Apply color metric to resulting 
graph.
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Spatial Texture Features

! Grayscale image component                          
(vs. achromatic pattern map)

! Multiscale frequency decomposition
– DWT (9/7 Daubechies)
– Steerable filters [Freeman-Adelson’91]
– Gabor filters [Daugman’86]

! Energy of subband coefficients is sparse
– Use local median energy
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Steerable Pyramid Decomposition
π

ππ−

π−

Ideal spectrum

1-level decomposition

Ideal spectrum

2-level decomposition
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Steerable Pyramid Decomposition

π

ππ−

π−

Ideal spectrum Actual spectrum
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Smooth vs. Non-smooth Classification
! For each pixel:

– Smax = Maximum of 4 subband responses
– Si = Index of maximum coefficients
– Local median energy extraction on Smax
– 2-level K-means on local median                             

(Check validity of smooth/non-smooth cluster)
– Use threshold provided by subjective test
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Classification of Non-smooth Regions

! Construct local histogram of Si

! “Complex”: no dominant orientation, 
i.e., no index dominates (1st and 2nd

maximum of histogram are close, or 
maximum is not large enough)

! Otherwise classify according to 
dominant orientation (max index) as 
“horizontal,” “vertical,” “+45,” “-45.”

! Can be used with any multiscale 
frequency decomposition

Max Indices Si

Texture classes
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Multi-scale Texture Classification

! Apply texture classification at each scale
! Combine texture classes from different 

scales based on the following rules:
– “smooth”:  “smooth” at all scales 
– “Vertical,” “Horizontal,” “+45o,” “-45o”: consistent texture 

classification across all scales. Note: “complex” or 
“smooth” is consistent with any single direction

– “complex”: none of above satisfied
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Image Segmentation
! “Smooth” regions: 

– Based on ACA
– Merge based on color 

difference along border of 
each region pair

– Small border regions 
merged with non-smooth

! “Texture” regions:
– Initial segmentation by 

region growing
– Iterative border 

refinement

After MergeBefore Merge

Crude segmentation Final segmentation
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Initial Segmentation by Region Growing

! Starting from any pixel in the textured 
regions, grow by adding nearby pixels with 
similar color features (in the OCCD sense). 

! Use higher threshold if pixels belong to 
same texture class; lower threshold if 
pixels belong to different texture classes 

! Hierarchical grid approach
! Paint the resulting segment with average 

color of that region.

ACA image

Texture classes

Crude segmentation
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Hierarchical Grid Approach

Black: non-texture region

White: textured region

! Do initial region growing on 
coarse grid using OCCD

! Reduce grid spacing (half)
! Find OCCD to the classified 

neighbors.  If close to none, 
create new texture class.

! Add simple spatial constraints 
(MRF-type) to OCCD distance

! Repeat until all pixels are 
classified.

! Faster without loss of accuracy
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Why MRF Constraints Are Necessary

Crude:

Final:

β=0 β=0.5 β=1.0
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Iterative Border Refinement

Real Boundary

Misclassified

Region1

Region 2 

Color features in inner window represent local features

Color features in outer window represent  region-wide characteristics

Window pairs used: {35/11, 21/9, 11/5, 11/3}
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Results with steerable filters
without Perceptual Tuning

ACA SegmentationOriginal Texture Classes
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Results with steerable filters
with Perceptual Tuning

ACA SegmentationOriginal Texture Classes
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Perceptual Tuning

! Smooth vs. non-smooth classification
! Thresholds for Dominant Orientation

– Horizontal, vertical, +45, -45, complex classification
! Threshold for color feature similarity 
! Texture window size

– Varies with scale
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Texture Discrimination Test*
! Setup:

– Viewing distance: about 2 feet;
– Subjects with normal vision (corrected), normal color vision
– 37 texture images from photo CD at 4-5 scales

* http://www.ece.northwestern.edu/~pappas/research/texture_perception_test/
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Test I: Texture Classification

! Classify image into:
– SMOOTH: Uniform or slowly varying 

image intensity;  no objects or sharp 
boundaries present.

– TEXTURE: Approximately uniform 
texture patterns; may be slowly 
varying (further classification into 
horizontal, vertical, +45, -45, complex 
categories)

– OTHER: None of the above, e.g.,  
non-uniform texture,  multiple 
regions, multiple objects
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Test II: Texture Similarity

! Similarity scores:
– 0: dissimilar
– 1: somewhat  similar
– 2: similar
– 3: same texture
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Segmentation Results



Segmentation 
Evaluation
Metric
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Human Segmentation Examples

! No “ground truth” for natural image segmentation
! The segmentations of different people are consistent.
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Segmentation Evaluation Metric 
[Martin’01]

! Quantify the consistency between segmentations of 
different granularities; allow mutual refinements 

! Local error measure (asymmetric):

! Local Consistency Error (LCE):

! Global Consistency Error(GCE):

! GCE ≥ LCE
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Comparison with JSEG Segmentation
Human Segmentation Proposed Approach JSEG (merge=0.4)

GCE=0.33  LCE=0.28GCE=0.04  LCE=0.02

GCE=0.08  LCE=0.07GCE=0.04  LCE=0.04



58 Thrasos Pappas, Banff, July 27, 2005

Comparison with JSEG Segmentation
Human Segmentation Proposed Approach JSEG (merge=0.4)

GCE=0.26 LCE=0.17GCE=0.1  LCE=0.07

GCE=0.11 LCE=0.08GCE=0.09  LCE=0.04



Segment 
Classification
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Semantic Information Extraction at 
Segment Level

Dominant Colors (ACA)

original

segment 1

segment 3
Dominant Colors & Percentages

quantize

vertical

- 45

complex

45

horizontal

Segments as Medium Level Descriptors

smooth

Spatial Texturesegment 2

Location
Shape
Size

Plus:
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Color Naming Syntax

black
gray
white

blackish
very-dark

dark
medium

light
very-light
whitish

grayish
moderate
medium
strong
vivid

reddish
brownish
yellowish
greenish

bluish
purplish
pinkish

red
orange
brown
yellow
green
blue

purple 
pink

beige
magenta

olive

AchromaticSaturationLightnessHue
secondary

Hue
primary

267 quantization points (NBS, Mojsilovic’02)

Eleven Colors That Are Almost Never Confused (Boynton’89)
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Labels
Segment

Man Made Natural AnimalPeople

MountainWoods/Bushes

Grass Night-sky

Day-skyFlower

Ground

Snow

Sun

Cityscape

Building Face
Vegetation Sky LandformBridge

Person
Water

Car Crowd

Boat

Airplane
Forest CloudsPavement

Sunrise/SunsetOther Man Made

Scene
Indoor Outdoor: Street, skyline, beach, garden, night scene, day scene
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Database
! Training
! Testing

!Corel:12,000
!Key Photos: 2,000
!Other: 600 
!Corbis
!

!
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Annotation 
Aide

!XML output
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Results

! 1600 photos
!No humans or animals
! 4000 manually labeled segments
! 80% training 20% testing
! Fisher Linear Discriminant method
! 14 colors, 6 textures
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Results

! Recall: correctly labeled / total relevant segments
! Precision: correctly labeled / total assigned to label by algorithm


