Time Domain Lapped Transform and its Applications

Jie Liang (jiel@sfu.ca)School of Engineering ScienceSimon Fraser University Vancouver, BC, Canadahttp://www.ensc.sfu.ca/people/faculty/jiel/

BIRS Workshop on Multimedia and Mathematics

Acknowledgements

Prof. Trac D. Tran, The Johns Hopkins UniversityDr. Chengjie Tu, Microsoft CorporationDr. Lu Gan, The University of Newcastle, Australia

Outline

- \blacksquare Introduction
	- **O** From filter bank to time-domain lapped transform (TDLT)
- Fast TDLT
- **Pre/post-filtering for 2D and 3D Wavelet** transform
- **Error Resilient TDLT**
- Current Works
- **Summary**

• Perfect Reconstruction: **R** (z) **P** (z) = **I**, or **R** (z) = $P^{-1}(z)$.

Fast Implementation: Factorization of **P** (z)

…P (z) () ⁰ **G** *^z* () ¹ **^G** *^z* () ¹ *^z* **^G** *^K* [−] **… …x** *^m***^y** *^m*

Linear Phase Filter Banks

Linear phase:

Q Desired property for image/video coding

■ General structure [Vaidyanathan93, Gao01, Gan01]

 \textbf{U}_{i} , \textbf{V}_{i} : Invertible matrices.

Can be optimized for different applications.

Rate-Distortion Optimization

■ Objective: Design the filter bank to minimize the MSE for a given bit rate.

Design Criterion: Coding Gain MSE reduction of transform coding w.r.t. PCM

$$
\gamma = 10 \log_{10} \left(\frac{\sigma_{PCM}^2}{\sigma_P^2} \right)
$$

A Special Case: Block Transform

Lapped Transform [Malvar et al. 1985]

- ◆ Apply post-processing of the DCT to
	- Improve compression efficiency and reduce blocking artifact
- ◆ A special case of linear phase filter banks

Time-Domain Lapped Transform

- More compatible to DCT-based schemes
- ia.
Ma Also a special case of linear phase filter banks
- Adopted by MS WMV-9, SMPTE VC-1, HD-DVD.

Effect of Prefiltering

 $\mathcal{L}_{\mathcal{A}}$ A flattened image

Jie LiangDCT vs LT: Basis Functions8-point DCT 8 x 16 TDLT 0000000000000 00000000000000000 $\begin{array}{ccccccccccccccccc} \mathbb{Q} & \mathbb{Q}$ OOOO^{QQ}OAA^{OQQ}OOO $\begin{array}{cccccccccccccc} \mathbb{Q} & & & & \mathbb{Q} & &$ $\begin{array}{ccccccccccccccccc}\n\mathbb{Q} & & & \mathbb{Q} & & \mathbb{Q} & & & \mathbb{Q} & & \mathbb{Q}$ 0000 P ON P P NO P O O O

Frequency Responses

8-point DCT 8 x 16 TDLT 8.83 dB 9.61 dB

Applications & Generalizations

- Fast TDLT [Liang et al. 2001]
- Pre/Post-filtering for Wavelet [Liang et al. 2003]
- Error Resilient TDLT [Tu et al. 2002, Liang et al. 2005]
- **Service Service** Generalized Lapped Transform [Liang et al. 2002]
- Adaptive Entropy Coding for TDLT [Tu et al. 2001]
- **Service Service** Oversampled TDLT [Gan-Ma-2002]
- Undersampled TDLT [Tu et al. 2004]
- Regularity Constrained TDLT [Dai et al. 2001]
- Adaptive TDLT [Dai et al. 2005]

Outline

- **Introduction**
- Fast TDLT
- **Pre/post-filtering for 2D and 3D Wavelet** transform
- **Error Resilient TDLT**
- Current Works
- **Summary**

Fast Orthogonal TDLT

M x M Prefilter:

$$
\bullet \ \mathbf{V}^{-1} = \mathbf{V}^T
$$

General structure of **V**:

Fast Orthogonal TDLT

- Quasi-optimal coding gain [Liang-Tran-Tu-01]:
	- \bullet 9.26 dB for M = 8
	- Close to optimal filter bank
- Can be generalized to large block size (e.g., 128)

Fast Biorthogonal TDLT

- $\bullet \mathbf{V}^{-1} \neq \mathbf{V}^{T}$: More freedoms, better performance $\mathbf{V}^{-1} \neq \mathbf{V}^T$:
- Fast approximation (lifting steps, LU factorization):

◆ Integer Solutions: > 0.3 dB higher than orthogonal TDLT

Banff July 27, 2005

Image Coding Performance

- ◆ TDLT vs Wavelet
	- Both coded by SPIHT [Said, Pearlman, 1996]
	- (Improved entropy coding in [Tu, Tran, 2001])

Image Coding Performance

\bullet WT 32:1: 27.58 dB ◆ TDLT 32:1: 28.95 dB

Outline

- **Introduction**
- Fast TDLT
- **Pre/post-filtering for 2D and 3D Wavelet** transform
- **Error Resilient TDLT**
- Current Works
- **Summary**

- No blocking artifact if WT is applied to the entire image
- Used by JPEG 2000◆
- Problem: Memory requirement
- Tradeoff: Tiling approach

 \Rightarrow Tiling Artifact

Tile size: 64 x 64, 0.2bpp

Average MSE of All Rows & Columns

• MSE is more than doubled at tile boundaries

Banff July 27, 2005

Pre/post-filtering for WT

Apply small pre/post filters at tile boundaries

Problem Formulation

Banff July 27, 2005

Problem Formulation

Boundary Filter Bank

■ Optimization can be performed similar to LT

Fast Structure

■ Optimal pre/post-filters for WT and DCT are similar

 $S = [2, 1, 1, 1],$ U = [1/8, 1/4, 1/2], (lossless)

Jie Liang

Examples

- 9/7 WT, 8 x 8 Pre/Post Filters: 0.2bits/pixel
- JPEG 2000 (Kakadu) JPEG 2000 & Pre/Post 29.87 dB 29.97 dB

Banff July 27, 2005

Average MSE of All Rows and Columns

Applications in 3D WT Video Coding

Divide video sequence into groups of frames

ia.
Ma Apply 2D WT within each frame

Apply another 1D WT in temporal direction

\mathbb{R}^n Advantages:

 Ξ **Lower complexity (no motion estimation)**

 $\textcolor{red}{\textbf{Z}}$ **Full scalabilities: SNR, resolution, and frame rate.**

♦

◆

◆

Jie Liang

Jittering Artifact

Performance degradation at group boundaries

37

144 frames

36.53635.535PSNR (dB) PSNR (dB)34.53433.533 16 frames per GOP 32.5 32ົດ ²⁰ ⁴⁰ ⁶⁰ ⁸⁰ ¹⁰⁰ ¹²⁰ ¹⁴⁰ ¹⁶⁰ Frame

Avg. PSNR: 35.32 dB, STD: 0.71 dB

Solution 1: Global WT [Xu et al. 2002] Problems: Memory, random access, error resilience …

120 : 1

Pre/Post-filtering for 3-D WT

Apply pre-filter before WT, and post-filter after IWT Previous pre/post design can be directly applied.

Simon Fraser University

Jie Liang

Comparison with GOP and Global WT

- ◆ Group: 16 frames
- ◆ 6-tap pre/post filter
- ♦ 9/7 WT
- Up to 2.5 dB gain at ◆ boundaries

Outline

- **Introduction**
- Fast TDLT
- **Pre/post-filtering for 2D and 3D Wavelet** transform
- **Error Resilient TDLT**
- Current Works
- **Summary**

Error Concealment and Error Resilience

- Т, Compressed bit stream is sensitive to transmission error/loss
- **Traditional solutions:**
	- **Q** Channel coding, Retransmission
	- Not always acceptable
- **Human visual system can tolerate some errors: □ Error concealment at the decoder is preferred.**
- **E** Frror resilient encoder:
	- **Encoder introduces some redundancies to facilitate** concealment at the decoder.
	- Lapped transform is a good candidate...

Motivation for Error Resilient LT

Service Service Encoder:

- **Q** Can spread the information of each block into two blocks
- **Contract Contract Co** Decoder:
	- **Q** Prediction of the lost block is easier
- Conflicting requirements:
	- **Q** Compression
	- **□** Error resilience
- **Trade-off required**

Error Resilient Lapped Transform

[Hemami1996]

O First error resilient LT design.

Q Encoder: Trading compression for error resilience.

□ Decoder:

■ 1. Estimate lost blocks by mean reconstruction method:

2. Apply inverse lapped transform.

■ [Chung-Wang1999, 2002]

Q Multiple description coding

- □ Maximal smoothness reconstruction
	- M. Improved visual quality

Error Resilient TDLT

- **T** [Tu-Tran-Liang-2003]
- Only need to design the pre/post-filters
	- Old approach: M x 2M unknowns
	- Pre/post-filter: M/2 x M/2
- **More flexibilities:**
	- **Q** Biorthogonal filter
	- **Q** Non-perfect-construction design
- **Limitation:**
	- **Q** Mean reconstruction is still used

General Wiener Filter Solution

Divide H into two stages:

 H_1 : M x 2M Wiener filter (Near optimal performance)

Link to previous approach:

 $H_1 = [I \ I]/2$ \rightarrow Mean reconstruction method.

Design Criteria for Optimization

- Use Matlab to find optimal pre-filter and post-filter
- **Trade coding performance for error concealment.**
- **Objective function for optimization:**

maximize $\varepsilon = (CG) - \alpha$ (CR) + β (RG)

■ Coding Gain (CG):

■ MSE when there is no transmission error

■ Concealment Residual (CR):

Q The MSE after transmission error and error concealment

- Reconstruction Gain (RG)
	- **□** [Hemami96]
	- **□** Control the distribution of error to improve visual quality

Design Example

Simulation Results (512 x 512 Lena, 1bpp, 50% loss)

Loss Pattern

Cfg 2: 26.0 / 38.3 dB

Cfg 1: 24.3 / 40.1 dB

Cfg 3: 30.5 / 39. 2 dB

Banff July 27, 2005

Outline

- **Introduction**
- Fast TDLT
- **Pre/post-filtering for 2D and 3D Wavelet** transform
- **Error Resilient TDLT**
- Current Works
- **Summary**

Multiple Description Coding

An alternative to improve the robustness to transmission error:

- Create multiple (equally important) output bit streams.
- **Each stream alone can give a coarse reconstruction.**
- **Quality can be improved if more descriptions are received.**

E Fror scenarios (15 cases):

2-D Error Concealment

■ Current method:

- □ 1-D prediction
- **■** Average of row and column results

I Ideal method:

- **Q** Joint prediction from 2-D neighbors
- **Q** How to predict?
- **■** How to design the pre/postfilters?

Difficulties

- $\mathcal{L}_{\rm{max}}$ Related work:
	- Edge directed prediction [Li-Orchard-2002]
Put geometrical etrusture is disturbed by r
- But geometrical structure is disturbed by prefiltering
	- Pixel-by-pixel approach may not work

Prefiltered image

After IDCT (with loss)

- Time domain lapped transform
	- \Box Fast algorithms
	- \Box Applications in 2D and 3D WT
	- \Box Error resilient design
- Comparison to JPEG 2000:
	- **Q** Lower complexity
	- \Box Competitive performance
	- \Box Promising for handheld devices

References

- T. D. Tran, J. Liang, and C. Tu, "Lapped transform via time-
demain are, and pest filtering " IEEE Trans, en Signal domain pre- and post-filtering," IEEE Trans. on Signal Processing, vol. 51, No. 6, pp. 1557-1571, Jun. 2003.
- J. Liang, C. Tu and T. D. Tran, "Optimal pre/post-filtering for
wavelet based image and video compression." IEEE Trans wavelet-based image and video compression," IEEE Trans. on Image Processing, to appear.
- J. Liang, C. Tu, T. D. Tran and L .Gan, "Wiener filtering for
Canaralized error resilient time demain lanned transform " 2 generalized error resilient time domain lapped transform," 2005 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Philadelphia, PA, Mar. 2005.
- C. Tu, T. D. Tran and J. Liang, "Error resilient pre-/post-filtering
for DCT based block coding systems "JEEE Trans, on Image for DCT-based block coding systems," IEEE Trans. on Image Processing, to appear.
- C. Tu and T. D. Tran, "Context based entropy coding of block
transform coofficients for image compression " IEEE Trans, or transform coefficients for image compression," IEEE Trans. on Image Processing, vol. 11, pp. 1271-1283, Nov. 2002.