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Filter Bank Fundamental

X[n] > HO(Z)—ulM 5 - —tM | F,(2)
=
| H,(2){M |— % —tM | F,(2) .
. E . o E E . A
Lt 1 (DM — * —{tM [ Fy 1 (2) —>(f)—>x[n]

Ym O/Ry - B RBR|O Xm
Yma | = O Ry - B R| O} Xm
Ymi2 O |Ra --- B B Xne

Y = Po X TP X+t Pea Xk

Y(2)=(P,+P, 2% +...+ P, 7%)X(2) = P(2) X(2)

Banff July 27, 2005 3



Jie Liang Simon Fraser University

Filter Bank Fundamental
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+ Perfect ReconstructioR (z) P (z) =1, orR (z) =P1(2).
+ Fast Implementation:  Factorization Bf(z)
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Linear Phase Filter Banks

M Linear phase:
] Desired property for image/video coding

B General structure [Vaidyanathan93, Gao0l, GanO1]

b

U.,V. : Invertible matrices.

I

Gr.(2

byl

Can be optimized for different applications.
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Rate-Distortion Optimization

B Objective: Design the filter bank to minimize the
MSE for a given bit rate.
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B Design Criterion: Coding Gain
MSE reduction of transform coding w.r.t. PCM
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A Special Case: Block Transform
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B Karehunen-Loeve Transform (KLT):
[ Optimal block transform
1 Signal dependent, No fast algorithm

B Discrete Cosine Transform (DCT):
 Fast approx. of the KLT for AR(1) signals.

B Drawbacks of block transform:
. Blocking artifact
J Limited compression capability
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Lapped Transform

+ Apply post-processing of the DCT to

[Malvar et al. 1985]

+ Improve compression efficiency and reduce blocking artifact

+ A special case of linear phase filter banks

DCT
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Time-Domain Lapped Transform
s [Tran-2001]
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B More compatible to DCT-based schemes
B Also a special case of linear phase filter banks
® Adopted by MS WMV-9, SMPTE VC-1, HD-DVD.
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Effect of Prefiltering

B A flattened image
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DCT vs LT:

8-point DCT
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Frequency Responses

Jie Liang

8 x16 TDLT

-point DCT
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Applications & Generalizations

Fast TDLT [Liang et al. 2001]
Pre/Post-filtering for Wavelet [Liang et al. 2003]
Error Resilient TDLT [Tu et al. 2002, Liang et al. 2005]

Generalized Lapped Transform [Liang et al. 2002]
Adaptive Entropy Coding for TDLT [Tu et al. 2001]
Oversampled TDLT [Gan-Ma-2002]
Undersampled TDLT [Tu et al. 2004]

Regularity Constrained TDLT [Dai et al. 2001]
Adaptive TDLT [Dai et al. 2005]
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Fast Orthogonal TDLT
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Fast Orthogonal TDLT

+ Quasi-optimal coding gaimiang-Tran-Tu-01]:
+9.26dB for M =8
+ Close to optimal filter bank
+ Can be generalized to large block size (e.g., 128)

SEESTESSEEsRssS S y————,
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Fast Biorthogonal TDLT

o« V£V ' More freedoms, better performance
+ Fast approximation (lifting steps, LU factorization):

SO !
sl p2| [ u2
| s2 P1| | u1 i
' s3 Po] | wo i

- _ _ _ _ _ _ ______________

+ Integer Solutions: > 0.3 dB higher than orthogonal TDLT

SO | S1|S2 | S3 | PO|UO| P1 | UL | P2 | U2 |Gain
4/3 | 8/7 | 8/7 | 8/7 |-1/16|1/4| -1/4 |1/2|-3/8 |3/4|9.59

3/2 | 9/8 | 9/8 | 9/8 |-1/16|1/4| -1/4 |1/2 |-3/8 |3/4|9.58
1 1 1 1 O (1/4|-1/4 |1/21|-1/2{3/49.37
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Image Coding Performance

+ TDLT vs Wavelet
+ Both coded by SPIHT [Said, Pearlman, 1996]
+ (Improved entropy coding in [Tu, Tran, 2001])
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Image Coding Performance

o« WT 32:1:27.58dB o TDLT 32:1:28.95dB
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JPEG 2000 & Tiling Artifact

+ No blocking artifact if
WT is applied to the

entire image
+ Used by JPEG 2000

+ Problem:
Memory requirement

+ Tradeoff:
Tiling approach

mmm) Tiling Artifact

Tile size: 64 x 64, 0.2bpp
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Average MSE of All Rows & Columns

+ MSE Is more than doubled at tile boundaries

400

s00 Lo

MSE

59y SR O U T NN SURUN SR SHUTN SO SR

100

| | | | | | | |
150 200 250 300 350 400 450 500

300

T T e r %%%%%% _l
o0 Y VU
ol ) QW 0

| 1 | 1 1 1 1 1 | 1
0 50 100 150 200 250 300 350 400 450 500
Y Pixel

MSE

Banff July 27, 2005 22



Jie Liang Simon Fraser University

Pre/post-filtering for WT

+ Apply small pre/post filters at tile boundaries
W
—_— E— — — 11—
> W — —
T — E— >
N — — — —_— 1
— W E—— — —
—_— T — —
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Problem Formulation

W Effect of pre/post-filters: 'C?' L~ LP
O In LT: affect all subbands 7, A+ 2)||7.0+27)
0 In WT: affect some subbands Oi Kl HP
7 5/3 WT
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Problem Formulation

¥ Boundary Filter Bank
B Optimization can be performed similar to LT
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Fast Structure

B Optimal pre/post-filters for WT and DCT are similar

e
> S Sk : v

/AN ?5 “uN.z: /AN
// & | SN-2 : // & 1/2

| Sm ‘Uo — 1/2 .
B Examples:
= [5/3, 4/3, 6/5, 9/8], U =[1/8, 1/4, 5/8],
=[2,1,1, 1], U =1[1/8, 1/4, 1/2], (lossless)
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Examples
W 9/7 WT, 8 x 8 Pre/Post Filters: 0.2bits/pixel
B JPEG 2000 (Kakadu) JPEG 2000 & Pre/Post
29.87 dB 29.97 dB
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Average MSE of All Rows and Columns

JPEG 2000 (Kakadu) JPEG 2000 & Pre/Post
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Applications in 3D WT Video Coding

M Divide video sequence into groups of frames
® Apply 2D WT within each frame
B Apply another 1D WT In temporal direction

DT

N B 7 N\ g
v v

WT WT WT

B Advantages:
¥ Lower complexity (no motion estimation)
M Full scalabilities: SNR, resolution, and frame rate.
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Jittering Artifact

+ Performance degradation at group boundaries

Awg. PSNR: 35.32 dB, STD: 0.71 dB

37
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o 144 frames 35
+ 16 frames per GOP
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Solution 1: Global WT [Xu et al. 2002]
Problems: Memory, random access, error resilience ...

Banff July 27, 2005 30



Jie Liang Simon Fraser University

Pre/Post-filtering for 3-D WT

W Apply pre-filter before WT, and post-filter after IWT
@ Previous pre/post design can be directly applied.
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Comparison with GOP and Global WT

Claire. qC|f at 120: 1
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Error Concealment and Error Resilience

B Compressed bit stream is sensitive to transmission
error/loss

B Traditional solutions:

1 Channel coding, Retransmission
] Not always acceptable

B Human visual system can tolerate some errors:
- Error concealment at the decoder is preferred.

M Error resilient encoder:

B Encoder introduces some redundancies to facilitate
concealment at the decoder.

B Lapped transform is a good candidate...
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Motivation for Error Resilient LT

B Encoder:
- - Can spread the information
| oer ;é . of each block into two blocks
B Decoder:

1 Prediction of the lost block is
easier

B Conflicting requirements:
1 Compression
. Error resilience

_ %g B Trade-off required
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Error Resilient Lapped Transform

B [Hemamil996]
1 First error resilient LT design.
1 Encoder: Trading compression for error resilience.

] Decoder:
M 1. Estimate lost blocks by mean reconstruction method:

& €N A ~ A
I e yn (_<yn—1 +yn+1)/2
m 2. Apply inverse lapped transform.

B [Chung-Wang1999, 2002]
] Multiple description coding

J Maximal smoothness reconstruction
B Improved visual quality
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Error Resilient TDLT

M [Tu-Tran-Liang-2003]
B Only need to design the pre/post-filters

1 Old approach: M x 2M unknowns
. Pre/post-filter: M/2 x M/2

B More flexibilities:

] Biorthogonal filter | P-1
J Non-perfect-construction design o
.. : I3
B Limitation: _ 51 12| T
1 Mean reconstruction is still used _X 21
1| Sn+1 T
.
C
I P_l

Banff July 27, 2005
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General Wiener Filter Solution

Existing Method General Framework [Liang et al. 05]
P-l | P-l
| —_— R —_—
yn—l g — yn—l g —
T g_l T 5~( A S ) 5\(
— L2 — 1 ”I ! —_— n
- o7 |
s 1/2 3 a 2
Tsm_l T | Xn+1 ] Sn+l — Xn+1
yn+1 (D: —_— yn+l g —_—
T P_l T P_l
 —  ——

B General framework: Estimate X, and X421 from Sn_1 and Sn+1
Reo= E{(HS, -xz)(Hé -x,)'}

min MSE:tr{Ree} —- 2M x 2M R><252 R§252

Expression can be found if Rxx is known (e.g., AR(1)).
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P-l
| —
Ve D ______ L
Yna c |I—L ol B
T | | N
3 I T I X,
n-1 H é |
o 1 n ——
n+1 l = I
N T -— n+1
N7 D
yn+1 C I —_— __‘
I P_ 1

H,. M x 2M Wiener filter (Near optimal performance)

Link to previous approach:
H, =[I 1]/2 =» Mean reconstruction method.
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= Design Criteria for Optimization

B Use Matlab to find optimal pre-filter and post-filter
B Trade coding performance for error concealment.
B Objective function for optimization:

maximizes = (CG) o« (CRx f (RC

B Coding Gain (CG):
J MSE when there is no transmission error

B Concealment Residual (CR):
] The MSE after transmission error and error concealment

B Reconstruction Gain (RG)
- [Hemami96]
. Control the distribution of error to improve visual quality

Banff July 27, 2005
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MSE at Each Pixel (CG: 8.42 dB)

0.4
—O©— TDLT: 0.18
0.35- —#— Old: 0.15 i
—&— New: 0.06

0.3r

0.25F

0.2

MSE

0.15F

0.1r

0.05

Pixel

Design Example

Cfg 1:
- Coding gain optimized filters
- M x 2M Wiener filter

Cfg 2:

- Joint optimized filters

- Mean reconstruction
- [Tu et al 03]

Cfg 3:
- Joint optimized filters,

- M x 2M Wiener:

60% less than the mean
reconstruction method.

Banff July 27, 2005
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Simulation Results (512 x 512 Lena, 1bpp, 50% loss)

Loss Pattern Cfg 1: 24.3/40.1 dB

Cfg 2: 26.0/38.3 dB Cfg 3:30.5/39.2dB
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Multiple Description Coding

® An alternative to improve the robustness to transmission error:
M Create multiple (equally important) output bit streams.
M Each stream alone can give a coarse reconstruction.
M Quality can be improved if more descriptions are received.

One block — Entropy [, mpc1
coding

—» | Group > Entr_opy —> MDC2
2 coding
Image —| TDLT |[—
Transformed — | Group |—»{ ENODY | \ipc3
»| Group > Entrppy — MDC4
4 coding

M Error scenarios (15 cases):

i = B
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2-D Error Concealment

B Current method:
1 1-D prediction
] Average of row and column results

B [deal method:
1 Joint prediction from 2-D neighbors

] How to predict?
] How to design the pre/postfilters?
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Difficulties

B Related work:
] Edge directed prediction [Li-Orchard-2002]

B But geometrical structure is disturbed by prefiltering
1 Pixel-by-pixel approach may not work

Prefiltered image After IDCT (with loss)
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Summary

DCT IDCT

DCT IDCT - -

DCT IDCT - -

B Time domain lapped transform
1 Fast algorithms
1 Applications in 2D and 3D WT
L Error resilient design

B Comparison to JPEG 2000:
 Lower complexity
d Competitive performance
J Promising for handheld devices
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