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The Problem:

Efficient Displacement Estimation / Registration of Noisy Data

Applications:

• Registration of medical datasets taken some time apart and correction for patient
movement

• Conversion from low-quality video to high-quality still images – e.g. correction of
fluctuations in atmospheric refraction (heat shimmer)

• Motion estimation for non-rigid objects and fluids

• Registration of multi-look images affected by speckle, usually due to illumination
from coherent sources such as lasers or synthetic aperture radar (SAR).

Displacement estimation usually involves measuring gradients, derivatives or
differences. High noise levels mean that registration algorithms must be robust
to noise if the noise is uncorrelated between images.
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Key Features of Robust Registration Algorithms

• Edge-based methods are more robust than point-based ones.

• Bandlimited multiscale (wavelet) methods allow spatially adaptive denoising.

• Phase-based bandpass methods can give rapid convergence and immunity to
illumination changes between images (but we have to be careful about 2π
ambiguities) .

• If the displacement field is smooth, a wider-area parametric (affine) model of the
field is likely to be more robust than a highly-local translation-only model.

Note: Biological vision systems have evolved to use multiscale directional bandpass
filters as their front-end process (e.g. the V1 cortical filters in humans / mammals).
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Selected Methods

• Dual-tree Complex Wavelet Transform (DT CWT):

◦ efficiently synthesises a multiscale directional shift-invariant filterbank, with
perfect reconstruction;

◦ provides complex coefficients whose phase shift depends approximately linearly
on displacement;

◦ allows each subband of coefficients to be interpolated (shifted) independently
of other subbands (because of shift invariance of the subband H(z)).

• Parametric model of displacement field, whose solution is based on local
edge-based motion constraints (Hemmendorff, Andersson, Kronander and
Knutsson, IEEE Trans Medical Imaging, Dec 2002):

◦ derives straight-line constraints from directional subbands of the DT CWT;
◦ solves for spatially-varying affine model parameters which minimise constraint

error energy over multiple directions and scales.
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Q-shift Dual Tree Complex Wavelet Transform in 1-D
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Figure 1: Dual tree of real filters for the Q-shift CWT, giving real and imaginary parts of complex

coefficients from tree a and tree b respectively. Figures in brackets indicate the approximate delay for

each filter, where q = 1
4 sample period.
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Q-shift DT CWT Basis Functions – Levels 1 to 3
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Figure 2: Basis functions for adjacent sampling points are shown dotted.
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2-D Basis Functions at level 4
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Figure 3: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real wavelet filters (bottom),

all illustrated at level 4 of the transforms. The complex wavelets provide 6 directionally selective filters,

while real wavelets provide 3 filters, only two of which have a dominant direction. The 1-D bases, from

which the 2-D complex bases are derived, are shown to the right.
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Test Image and Colour Palette for Complex Coefficients
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2-D DT-CWT Decomposition into Subbands

Figure 4: Four-level DT-CWT decomposition of Lenna into 6 subbands per level (only the central

128 × 128 portion of the image is shown for clarity). A colour-disc palette (see previous slide) is

used to display the complex wavelet coefficients.
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Parametric Model: Linear Constraint Equations

Let the displacement vector at the ith location xi be v(xi); and let ṽi =
[
v(xi)

1

]
.

Note that, as well as xi, the locator i also specifies a subband direction di (1 . . . 6)
and a scale (level) si. A straight-line constraint on v(xi) can be written

cT
i ṽi = 0 or c1,i v1,i + c2,i v2,i + c3,i = 0

For a phase-based system in which wavelet coefficients at {xi, di, si} in images A
and B have phases θA,i and θB,i, approximate linearity of phase θ vs.
displacement v(xi) means that

cT
i ṽi ≈ 0 if ci = Ci

[ ∇x θi

θB,i − θA,i

]

In practise we compute this by averaging finite differences at the centre xi of a
2× 2× 2 block of coefficients from a given subband {di, si} of images A and B.

Note: Ci is a constant which does not affect the line defined by the constraint, but
it is important as a weight for combining constraint errors (see later).
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Parameters of the Model

We can define a 6-term affine parametric model a for v such that

v(x) =
[

a1

a2

]
+

[
a3 a5

a4 a6

] [
x1

x2

]

or in a more useful form

v(x) =
[

1 0 x1 0 x2 0
0 1 0 x1 0 x2

]
.




a1
...

a6


 = K(x) . a

Affine models can synthesise translation, rotation, constant zoom, and shear.

A quadratic model, which allows for linearly changing zoom (approx
perspective), requires up to 6 additional parameters and columns in K of the form

[
. . . x1x2 0 x2

1 0 x2
2 0

. . . 0 x1x2 0 x2
1 0 x2

2

]
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Solving for the Model Parameters

Using techniques (due to Hemmendorff et al) similar to homogeneous coordinates:

Let K̃i =
[
K(xi) 0

0 1

]
and ã =

[
a
1

]
so that ṽi = K̃i ã .

Ideally for a given scale-space locality X , we wish to find the parametric vector ã
such that

cT
i ṽi = 0 when ṽi = K̃i ã for all i such that {xi, di, si} ∈ X .

In practise this is an overdetermined set of equations, so we find the LMS
solution, i.e. the value of a which minimises the squared error

EX =
∑

i∈X
||cT

i ṽi||2 =
∑

i∈X
||cT

i K̃i ã||2 =
∑

i∈X
ãT K̃T

i ci cT
i K̃i ã = ãT Q̃X ã

where Q̃X =
∑

i∈X
K̃T

i ci cT
i K̃i .
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Solving for the Model Parameters (cont.)

Since ã =
[
a
1

]
and Q̃X is symmetric, we define Q̃X =

[
Q q
qT q0

]

X
so that

EX = ãT Q̃X ã = aT Q a + 2 aTq + q0

EX is minimised when ∇a EX = 2 Q a + 2 q = 0 , so aX ,min = − Q−1 q .

The choice of locality X will depend on application:

• If it is expected that the affine (or quadratic) model will apply accurately to the
whole image, then X can be the whole image (including all directions d and all
selected scales s) and maximum robustness will be achieved.

• If not, then X should be a smaller region, chosen to optimise the tradeoff
between robustness and model accuracy. A good way to produce a smooth field
is to make X fairly small (e.g. a 32× 32 pel region) and then to apply a
smoothing filter across all the Q̃X matrices, element by element, before solving
for aX ,min in each region.
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Constraint Weighting Factors

Returning to the equation for the constraint vectors, ci = Ci

[ ∇x θ(xi)
θB(xi)− θA(xi)

]
,

the constant gain parameter Ci will determine how much weight is given to each

constraint in Q̃X =
∑

i∈X
K̃T

i ci cT
i K̃i .

Hemmendorf proposes some quite complicated heuristics for computing Ci, but for
our work, we find the following gives maximum weight to consistent sets of
wavelet coefficients and works well:

Ci =
|dAB|2

4∑

k=1

|uk|3 + |vk|3
where dAB =

4∑

k=1

u∗k vk

and

[
u1 u2

u3 u4

]
and

[
v1 v2

v3 v4

]
are 2× 2 blocks of wavelet coefficients centred on xi

in images A and B respectively.
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Demonstrations

• Registration of CT scans

◦ Two scans of the abdomen of the same patient, taken at different times with
significant differences in position and contrast.

◦ Task is to register the two images as well as possible, despite the differences.

• Enhancement of video corrupted by atmospheric turbulence.

◦ 75 frames of video of a house on a distant hillside, taken through a high-zoom
lens with significant turbulence of the intervening atmosphere due to rising hot
air.

◦ Task is to register each frame to a ‘mean’ image from the sequence, and then
to reconstruct a high-quality still image from the registered sequence.
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The DT CWT in 3-D

When the DT CWT is applied to 3-D signals (eg medical MRI or CT datasets), it
has the following features:

• It is performed separably, with 2 trees used for the rows, 2 trees for the columns
and 2 trees for the slices of the 3-D dataset – yielding an Octal-Tree structure
(8:1 redundancy).

• The 8 octal-tree components of each coefficient are combined by simple sum and
difference operations to yield a quad of complex coefficients. These are
part of 4 separate subbands in adjacent octants of the 3-D spectrum.

• This produces 28 directionally selective subbands (4× 8− 4) at each
level of the 3-D DT CWT. The subband basis functions are now planar waves
of the form ej(ω1x+ω2y+ω3z) , modulated by a 3-D Gaussian envelope.

• Each subband responds to approximately flat surfaces of a particular
orientation. There are 7 orientations on each quadrant of a hemisphere.
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3D subband orientations on
one quadrant of a hemisphere

3D frequency
domain:

X
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HHL
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3D Gabor-like basis functions:

hk1,k2,k3(x, y, z) ' e−(x2 + y2 + z2)/2σ2 × ej(ωk1 x + ωk2 y + ωk3 z)

These are 28 planar waves (7 per quadrant of a hemisphere) whose orientation
depends on ωk1 ∈ {ωL, ωH} and ωk2, ωk3 ∈ {±ωL,±ωH}, where ωH ' 3ωL.
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3-D Implications for the Phase-based Parametric Method

• xi and v(xi) become 3-element vectors, so ci and ṽi become 4-vectors.

• For a 3-D affine model, K becomes a 3× 12 matrix, so that:

v(x) =




1 0 0 x1 0 0 x2 0 0 x3 0 0
0 1 0 0 x1 0 0 x2 0 0 x3 0
0 0 1 0 0 x1 0 0 x2 0 0 x3


 .




a1
...

a12


 = K(x) . a

and K̃ becomes a 4× 13 matrix.

• Hence Q̃X =
∑

i∈X
K̃T

i ci cT
i K̃i becomes a 13× 13 symmetric matrix,

containing 13× 7 = 91 distinct elements per locality X . At each selected scale
si and spatial location xi in X , there are now 28 subband directions di.
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Conclusions

Our proposed algorithm for robust registration effectively combines

• The Dual-Tree Complex Wavelet Transform

◦ Linear phase vs. shift behaviour
◦ Easy shiftability of subbands
◦ Directional filters select edge-like structures
◦ Good denoising of input images

• Hemmendorf’s phase-based parametric method
(Hemmendorff et al, IEEE Trans Medical Imaging, Dec 2002)

◦ Finds LMS fit of parametric model to edges in images
◦ Allows simple filtering of QX to fit more complex motions
◦ Integrates well with multiscale DT CWT structure

Papers on complex wavelets are available at:

http://www.eng.cam.ac.uk/˜ngk/
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Points for Discussion:

• Why has the human / mammalian visual system evolved to use
directional multiscale bandpass filters as its front end?

• Are directional multiscale complex bandpass filters the optimum approach to
detecting displacement / motion?

• What is the real meaning of Hilbert Transform in 2-D and 3-D spaces?

• Are directional (multiscale?) bandpass filters the key to giving meaning to 2-D
and 3-D Hilbert Transforms?


