

Secure Media Processing

BIRS, July 2005, Banff

h

Ton Kalker

© 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

+ Play Control / Forensic Watermark W

Secret Watermark Should Be Not Retrievable from Implementation

How to Compute Linear Correlation between Y and W from Y and E[W]?

➤ WM Yes / WM No

Secure Media Processing

- Two examples of
 - signal processing
 - of encrypted data
 - without access to decryption/encryption keys
 - Transcoding
 - Correlation (watermark detection)
- Context

. . .

- Non-trusted environment
- Limited computing resources
- Other examples
 - Querying encrypted data
 - Compression of encrypted data
- Theme: secure processing of media

Introduction to Secure processing methods

- Three examples
- Exposing data structure
 - Trancoding (Apostolopolous et al.)
- Exploiting distributed knowledge
 - Compressing encrypted data (Ramchandran et al.)
- Structure preserving cryptography
 - Secure watermark detection (Katzenbeisser et al.)

Secure Transcoding

Make Transcoding Easy -- Scalable coding

Key features of scalable coding

- Embedded bitstream: Quality depends on amount of decoded data
- Only need earlier segments to decode

Adapt Encryption -- Progressive encryption

Progressive Encryption: class of algorithms that encrypt data sequentially

Key features of progressive encryption

- Earlier bits fed into later bits
- Only need earlier segments to decrypt

Formatting – Expose Truncation Information

Secure Transcoding

Compressing Encrypted Data

Standard Approach

(Ramchandran et al.) ©

Non-Standard Approach

(Ramchandran et al.) ©

Coding with Side-Information -- Slepian-Wolf

(Ramchandran et al.) ©

Structure Preserving Cryptography

Homomorphic Encryption

- Let (M,+) and (C,+) be two algebraic groups
 - example
 - (M,+) :: additive structure on $\mathbb{Z} \mod \mathbb{N}$
 - (C,x) :: multiplicative structure on invertible elements of $\mathbb Z \mbox{ mod } N$
- Let C = (M,C,K,E,D) be a crypto-system on M and C
- C is called homomorphic when the encryption function E (and decryption function D) preserve the algebraic structures on M and C, i.e.

$E[k,m_1] + E[k,m_2] = E[k,m_1 + m_2]$

Homomorphic Encryption

- Example
 - Take (M,+) and (C,+) as before

$E[k,m] = k^m$

- Some facts
 - Homomorphic encryption systems that preserve (+,-,x,/) are not secure
 - Intuition: if encryption preservation preserves too much structure, security is lost
 - There exist homomorphic encryption systems that preserve (+,-,x)
 - Intuition: rich homomorphic encryption systems do exist however

A Simple Watermarking System

- Original signal X

 X = {x₁, x₂, ..., x_n}
- Watermark signal W $- W = \{w_1, w_2, ..., w_n\}, w_i = \pm 1$
- Marked signal Y
 Y = X + W
- Watermark detection (with threshold T)
 - Large normalized correlation between Y and W or not?

<Y,W>² / <Y,Y> = $(\Sigma w_i y_i)^2$ / $(\Sigma y_i y_i) \ge T$

E[W]

Watermark Detection Circuitry (Linear Correlation)

(Katzenbeisser, Kalker) ©

Y

Blinding of Watermark Sequence

- Known protocols require E to be component-wise
 - $E[W] = \{E[w_1], ..., E[w_n]\}$
 - Deterministic scrambling methods will not work
 - Example:
 - $w \in \{-1, 1\}$, then $E[w] \in \{E[-1], E[1]\}$
 - W can be estimated from binary valued E[W] up to sign!
 - value set of W too limited
 - E randomized with blinding vector R = { $r_1, ..., r_n$ }
 - R pseudo-random
 - $E[R,W] = \{E[r_1,w_1], ..., E[r_n,w_n]\}$
 - Blinding compensates for limited value set

Homomorphic Blinding

- Example scrambling function
 - N large integer
 - h, g generators of units in \mathbb{Z}_N (invertible integers modulo N)
 - h, g have inverse modulo N and powers of h, g generate all units
 - Example
 - N = 10
 - UZ₁₀ = {1, 3, 7, 9}
 - generators 3 $(3, 3^2 = 9, 3^3 = 7, 3^4 = 1)$ or 7 (7, 9, 3, 1)
- Then define E[r,w] by (blinded El Gamal)

$\mathsf{E}[\mathsf{r},\mathsf{w}] = \mathsf{h}^{\mathsf{r}}\mathsf{g}^{\mathsf{w}} \pmod{\mathsf{N}}$

- E[r,w] is easy to compute
- E[r,w] difficult (impossible) to invert
- Example
 - E[r,w] = 3^r7^w (mod 10)

Homomorphic Blinding

The previously defined scrambling function preserves
 arithmetic structure

 $E[r_1, w_1] * E[r_2, w_2] = E[r_1 + r_2, w_1 + w_2]$ $(h^{r_1}g^{w_1})*(h^{r_2}g^{w_2}) = h^{r_1+r_2}g^{w_1+w_2}$

Algebraic consequence :

 $E[r,w]^m = E[m^*r,m^*w]$

- Homomorphic property
 - addition in clear-text \rightarrow multiplication in cipher-text
 - multiplication in clear-text \rightarrow exponentiation in cipher-text

Correlation in the encrypted domain

Processing followed by scrambling

Scrambling followed by processing

Squared Correlation in the encrypted domain

- Watermark detection (with threshold T)
 - Large normalized correlation between Y and W or not?

 $\langle Y,W \rangle^2 / \langle Y,Y \rangle = (\Sigma w_i y_i)^2 / (\Sigma y_i y_i) \ge T$

- Squared correlation needed: $\langle Y,W \rangle^2 = \sum y_i y_j w_i w_j$
- Provide scrambled version of W \otimes W, i.e. {w_i w_j}, in stead of W = {w_i}
- Watermark detection circuit computes

 $\mathsf{E}[\mathsf{R},\mathsf{W}\otimes\mathsf{W}]^{\mathsf{Y}\otimes\mathsf{Y}}=\mathsf{E}[<\mathsf{R},\,\mathsf{Y}\otimes\mathsf{Y}>,<\mathsf{Y},\mathsf{W}>^2]=\mathsf{E}[\mathsf{S},\mathsf{C}]$

E[₩⊗₩]

Watermark Detection Circuitry (Linear Correlation)

(Katzenbeisser, Kalker) ©

Y

Hostile environment computations

Compute normalization factor

 $A = \langle Y, Y \rangle^* T$

Compute squared correlation

 $\mathsf{B} = \mathsf{E}[\mathsf{R},\mathsf{W} \otimes \mathsf{W}]^{\mathsf{Y} \otimes \mathsf{Y}} = \mathsf{E}[\mathsf{<}\mathsf{R}, \mathsf{Y} \otimes \mathsf{Y}\mathsf{>}, \mathsf{<}\mathsf{Y}, \mathsf{W}\mathsf{>}^2]$

Compute normalized correlation

 $\mathsf{E}[<\mathsf{R},\mathsf{Y}\otimes\mathsf{Y}>,\mathsf{C}]=\mathsf{E}[\mathsf{S},\mathsf{C}]=\mathsf{B}/\mathsf{A}$

Secure Assistance

- Bulk computations in hostile environment
- Interpretation of outcome in trusted environment

Paillier encryption

- Paillier encryption system
 - Removal of blinding factor
 - Retrieval of correlation value
- El Gamal encryption with well-chosen parameters
 - N well-chosen large integer
 - h, g generators of units in \mathbb{Z}_N (invertible integers modulo N)
- Blinding and encryption

 $E[r,x] = h^r g^x$

Blinding factor removal

 $(h^r g^x)^M = g^{xM}$

Special g makes Discrete Logarithmic problem easy

$$g^{xM} \rightarrow x$$

Secure Assistance

- Bulk computations in hostile environment
- Interpretation of outcome in trusted environment

Summary

- Secure Media processing
- Three examples
 - Exposing data structures
 - Exploiting distributed knowledge
 - Structure preserving encryption
- Looking ahead
 - More relevant problems?
 - More approaches?