Denice Denton Emerging Leaders Workshop 2016

3 June 2016

Academic mentoring, diversity, and leadership

Robert M. Gray

Stanford University, Emeritus; Boston University

rmgray@stanford.edu

http://paesmem.stanford.edu

http://birs07.stanford.edu

The Problem: a little history

Diversity

— specifically women and underrepresented minorities — in general population is not reflected in academic engineering.

Why is this a problem?

Because contributes to lack of diversity in profession: in research, development, and general practice

Why is this a problem?

Wasted potential Diversity improves climate for research and development

. . .

At the beginning of the millennium numbers were awful, e.g., only 8.2% of PhDs granted in EE in the US during 1985-2001 were to women.

Women faculty numbers also bad:

Percentage of Women in a few EE/ECE/EECS Faculties in 2002

University of Delaware	0%	UC Berkeley	11%
UCSD	2%	Penn State	$\mid 11\% \mid$
USC	4%	Stanford	$\mid 11\% \mid$
Cal Tech	5%	Cornell	13%
UT Austin	5%	University of Washington	20%
Princeton	7%	Duke	30%
University of Michigan	7%		

Lots of excuses in those days, but some did better than others!

7 of the 9 Women in the 2002 UW EE Department

Institution	% women	total faculty
CalTech	19.2%	13
Duke	18.5%	27
University of Washington	17.5%	40
UCLA	13.0%	46
U Wisconsin	13.0%	38.5
RPI	12.8%	39
MIT	12.0%	151
Georgia Tech	11.4%	114
Texas A&M	11.1%	72
Princeton	10.9%	27.5
Purdue	10.8%	83
Rice	10.0%	20
U Michigan	9.8%	71
UC Berkeley	9.8%	40.5
Top 50 Average (2007)	9.7%	
Cornell	8.8%	34
Stanford	8.6%	41.5
Carnegie-Mellon	8.2%	49
U Illinois	8.2%	85
Northwestern	7.8%	51
NC State	7.4%	54
U Maryland	6.8%	62
UT Austin	5.0%	68
USC	4.9%	61
UCSD	3.8%	52

By 2010,

 \uparrow 10.5%, 42.5 in 8/2010

Rigorous statistics [Donna J. Nelson and Christopher N. Brammer, A National Analysis of Minorities in Science and Engineering Faculties at Research Universities: Second edition, January 2010]:

Table 11. Women in the Academic Pipeline*

Discipline	Students			Departments 1 - 100 FY2007				
	BS2004	BS2005	PhD86-95	PhD96-05	asst	assoc	prof	all
Chemistry	51.0%	51.7%	26.3%	32.4%	21.2%	19.6%	9.7%	13.7%
Math	46.1%	44.9%	22.5%	28.7%	26.8%	18.4%	7.1%	12.9%
Computer Sci	24.7%	22.0%	19.8%	21.2%	20.0%	11.6%	10.3%	13.2%
Astronomy**	41.5%	42.4%	15.2%	22.7%	25.3%	21.6%	12.3%	15.8%
Physics	21.6%	21.1%	10.8%	14.3%	16.8%	13.4%	6.1%	9.1%
Chemical Engr	35.6%	36.7%	17.1%	23.7%	24.2%	17.6%	7.3%	12.6%
Civil Engr	24.1%	23.9%	12.7%	22.0%	24.7%	14.5%	7.1%	13.0%
Electrical Engr	14.0%	12.9%	8.6%	12.3%	15.5%	12.5%	5.7%	9.5%
Mechanical Engr	13.7%	13.2%	7.3%	8.4%	18.0%	11.9%	4.4%	8.8%
Economics	32.5%	31.5%	25.7%	30.2%	30.8%	20.3%	8.7%	16.3%
Political Science	51.1%	51.0%	32.8%	38.9%	37.0%	29.3%	17.6%	26.1%
Sociology	71.5%	70.5%	53.4%	60.8%	56.1%	45.7%	28.2%	39.8%
Psychology	77.8%	77.8%	59.1%	67.8%	48.5%	43.9%	29.5%	37.3%
Biological Sci	62.5%	62.2%	39.6%	46.3%	35.0%	30.0%	17.4%	24.4%
Earth Sciences	42.1%	41.9%	22.5%***	31.8%	28.2%	20.9%	11.3%	16.5%

^{*}Females were 50.7% of the 2006 US population. **Top 40 departments. ***1995 data only.

Table 12. Female Professors by Rank and Year at Top 50 Departments

Dissiplina	Discipline FY2002*			FY2007				
Discipline	Assistant	Associate	Full	All Ranks	Assistant	Associate	Full	All Ranks
Chemistry	21.5%	20.5%	7.6%	12.1%	21.7%	21.3%	9.7%	13.7%
Math	19.6%	13.2%	4.6%	8.3%	28.0%	15.5%	7.2%	12.1%
Computer Sci	10.8%	14.4%	8.3%	10.6%	19.5%	11.3%	11.5%	13.5%
Electrical Engr	10.9%	9.8%	3.8%	6.5%	14.5%	14.1%	6.2%	9.7%
Mechanical Engr	15.7%	8.9%	3.2%	6.7%	18.2%	12.0%	4.9%	9.0%
Physics	11.2%	9.4%	5.2%	6.6%	17.5%	12.6%	6.8%	9.5%
Civil Engr	22.3%	11.5%	3.5%	9.8%	25.3%	14.3%	7.1%	12.7%
Chemical Engr	21.4%	19.2%	4.4%	10.5%	23.7%	17.8%	8.3%	12.9%
Astronomy**	20.2%	15.7%	9.8%	12.4%	25.3%	21.6%	12.3%	15.8%
Economics	19.0%	16.3%	7.2%	11.5%	30.7%	16.0%	8.5%	15.1%
Political Science	36.5%	28.6%	13.9%	23.5%	35.9%	30.1%	17.4%	25.6%
Sociology	52.3%	42.7%	24.3%	35.8%	57.9%	45.6%	28.0%	39.7%
Psychology	45.4%	40.1%	26.7%	33.5%	44.9%	41.9%	29.9%	36.0%
Biological Sci	30.4%	24.7%	14.7%	20.1%	36.0%	30.9%	17.7%	24.8%
Earth Sciences		not ava	ilable	-1.000.000.000.000.000.000.000.000.000.0	28.6%	21.7%	10.6%	16.1%

^{*}Chemistry and astronomy data are for FY2003. **Top 40 departments

Serious problems of pipeline and pool.

Critical bottleneck: engineering faculty —

* small numbers can have a major impact *

4% of all US female EE Professors in 1996 from one supervisor

By 2002 only 3.2% of top 50 schools, but = 7.6% of all female EE Full Professors in top 50, 2.4% of all women IEEE Fellows

Small increases \Rightarrow large %, more role models, more diverse experience, more effective faculty \Rightarrow draws more students . . .

Individuals count heavily

Are things any better in 2016?

I retired in 2013, I don't know,

but at the end of $2015 \Rightarrow$

School of Engineering Department of Electrical Engineering **Faculty Demographics by Gender** September 1, 2015

	School of Eng	ineering		
School	Rank (broad)	Female	Male	Total
Engineering	Assistant Professors	11 22%	40 78%	51 100%
	Associate Professors	9 18%	41 82%	50 100%
	Professors	18 11%	139 89%	157 100%
Total		38 15%	220 85%	258 100%

D	epartment of Electri	cal Engine	ering	
Department	Rank	Female	Male	Total
Electrical Engineering	Assistant Professor 389		5 63%	8 100%
	Associate Professor	5 100%		5 100%
	Professor	2 5%	36 95%	38 100%
Total		5 10%	46 90%	51 100%

(actually it's 5/51=9.8%)

UCSD 5/52=9.6% \uparrow , Caltech 3/19=15.8% \downarrow , U Washington 17% \downarrow

Some thoughts on what works and challenges

2 Key goals for improving faculty numbers and quality of life:

Active faculty recruiting across a wide spectrum:

Fair and open searches (Denice wrote the book.)

The richer the pool discovered in a search, the better the final candidates.

(Basic principle of optimization)

In the words of Denice Denton: It's a search committee, not an envelope-opening committee.

a major leadership challenge! — dealing with residual and often unconscious bias, educating search committees (who often see no problem reproducing themselves)

• Creating a respectful, productive, and fulfilling environment

another leadership challenge

These things don't happen without good leadership. Potential leaders need to be recruited, encouraged, and mentored for leadership in research, teaching, and administration:

Group Leader, Lab director, Center Director
Departmental Committee, Committee Chair
Department Executive Committee,, Faculty Senate
Department Chair or Director, Dean (Associate, Vice, etc.)
Provost, President (Associate, Vice, etc.)
Professional Organizations (IEEE, ACM, etc.): Editorial, Officers

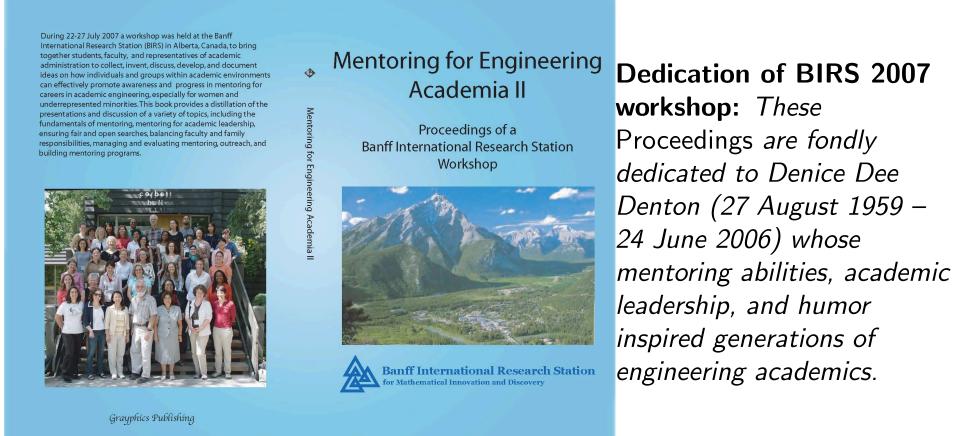
Leadership takes valuable time from other pursuits and not everyone is suited for it,

but give it serious consideration

Pros and Cons for devoting time to academic leadership include

Good	Bad
Impact	Time
Leave institution better	Politics
Promoting worthwhile projects	Fundraising
New directions	Herding cats
Develop new skills	Requires new skills

Common paths: from junior to senior in natural progression, e.g., leading small peer group, associate chair, chair, dean, provost, president


Not all paths are so linear! E.g., sideways moves, find optimum level

Do some research and give it some thought. Opportunities can arise by surprise, be ready to decide. If opportunities don't arise, seek them out.

Denice was good at spotting talented people and offering them a chance, often by assisting her and then taking over a project.

Start small to learn skills and gain experience. Risky to take on too high a position without preparation and experience.

My 2 favorite sources of accumulated wisdom on mentoring for engineering academia faculty are [1] Chapter 7 of *Mentoring for Academic Careers in Engineering* (2004) and [2] Chapter 3 of *Mentoring for Engineering Academia II* (2007)

https://dl.dropboxusercontent.com/u/106260653/birs07proceedings.pdf

Close with a few examples from [2]:

Sample Nuggets of Advice

- Think broadly about leadership. It is not just administration.
- Be positive.
- Get training.
- Build your own village of mentors.
- Prioritize your commitments. A dean will sacrifice a precious research day when a meeting with alumni might yield a million dollar donation.
- Recognize and exercise opportunities to grow into leadership roles and positions.
- Think impact. What can you change? What can you make better?

If it's a good idea, go ahead and do it. It's much easier to apologize than it is to get permission. — Grace Murray Hopper

Denice in 2006