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Modes generally provide an economical description of waves, reducing complicated wave 
functions to finite numbers of mode amplitudes, as in propagating fiber modes and ideal 
laser beams. But finding a corresponding mode description for counting the best 
orthogonal channels for communicating between surfaces or volumes, or for optimally 
describing the inputs and outputs of a complicated optical system or wave scatterer, 
requires a different approach. The singular-value decomposition approach we describe 
here gives the necessary optimal source and receiver “communication modes” pairs and 
device or scatterer input and output “mode-converter basis function” pairs. These define 
the best communication or input/output channels, allowing precise counting and 
straightforward calculations. Here we introduce all the mathematics and physics of this 
approach, which works for acoustic, radio-frequency and optical waves, including full 
vector electromagnetic behavior, and is valid from nanophotonic scales to large systems. 
We show several general behaviors of communications modes, including various heuristic 
results. We also establish a new “M-gauge” for electromagnetism that clarifies the number 
of vector wave channels and allows a simple and general quantization. This approach also 
gives a new modal “M-coefficient” version of Einstein’s A&B coefficient argument and 
revised versions of Kirchhoff’s radiation laws. The article is written in a tutorial style to 
introduce the approach and its consequences.   

1. Introduction 
The idea of modes is very common in world of waves, especially in optics. Modes are very useful in 
simplifying many problems. But, there is much confusion about them. Are modes “resonances”? Are 
they “beams”? Do they have to stay the same “shape”? Are they “communication channels”? How 
do we “count” modes? Are they properties of space or of objects like scatterers? Just what is the 
definition of a mode? The purpose of this paper is to sort out the answers to questions like these, and 
to clarify and extend the idea of “modes”. In particular, we want to use them for describing waves in 
communications and in describing sophisticated optical devices. Such applications are increasingly 
important: communications may require mode- or space-division multiplexing to increase capacity, 
and we are able to fabricate progressively more complex optical devices with modern micro- and 
nano-fabrication.  

1.1. Modes and waves   
At their simplest, modes can be different shapes of waves. Some such modes arise naturally in 
waveguides and resonators; these modes are well understood and are taught in standard texts (see, 
e.g., [1 - 4]). A key benefit of modes is that, when we choose the right ones, problems simplify; 
instead of describing waves directly as their values at each a large number of points, we can just use 
the amplitudes of some relatively small number of modes. But when we want to use modes to 
understand communications with waves more generally, or when we want to describe some linear 
optical device or object economically using modes, we need to move beyond the ideas of just 
resonator or waveguide modes. Specifically, we can introduce the ideas of communications modes 
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in communicating with waves [5] and mode-converter basis sets [6, 7] in describing devices. These 
modes are not yet part of standard texts, nor is there even any broad and deep introduction to them. 
Further, many of their details and applications are not yet discussed in the literature.  
The reason for writing this paper is to provide exactly such an introduction. In addition to sorting out 
the ideas of modes generally, we explain the physics of these additional forms of modes, which bring 
clearer answers to our opening questions above. We show how these ideas are supported by powerful 
and ultimately straightforward mathematics. We introduce novel, useful and fundamental results that 
follow. This approach resolves many confusions. It reveals powerful concepts and methods, general 
limits, new physical laws, and some simple and even surprising results. It works over a broad range 
of waves, from acoustics, through classical microwave electromagnetism, to quantum mechanical 
descriptions of light.  

1.2. The idea of modes 
One subtle point about modes is that it can be difficult to find a definition or even a clear statement 
of what they are. We should clarify this now.  
Modes are particularly common in describing oscillations of physical objects and systems. Simple 
examples include a mass on a spring, or waves on a string, especially one with fixed ends. In these 
cases, an informal definition of an oscillating mode is that it is a way of oscillating in which 
everything that is oscillating is oscillating at the same frequency. This is a sense in which a “mode” 
is a “way” or “manner” of oscillation. Musical instruments offer many other examples of such modes, 
as in standing waves in a pipe, or resonances in the vibrations of plates or hollow bodies. Such a 
mode will have a specific frequency of oscillation, and the amplitude of the vibration will take a 
specific physical form – it can be a function of position along the string or pipe or on the surface of 
some plate or body.  
The underlying mathematical idea of modes is associated with eigenfunctions or eigenvectors in 
linear physical systems; in oscillating systems or resonators, the function that gives the amplitude of 
oscillation at each position is the eigenfunction and the frequency (or often the square of the 
frequency) is the eigenvalue. Indeed, we can state a useful, general definition of a mode [8 - 10]: 

 A mode is an eigenfunction of an eigen problem describing a physical system.  (1) 

Conventional resonator and waveguide modes are each the eigenfunctions of a single eigen problem. 
The fixed “shape” of this oscillation amplitude inside the resonator is often thought of as the “mode” 
or eigenfunction in this sense. Waveguide modes use the same mathematics, but the concept here is 
that the transverse shape of the mode does not change as it propagates. An analogous informal 
definition of a propagating mode is that everything that propagates with the same wavevector, which 
also implies that the (transverse) shape does not change as it propagates. That transverse shape is the 
eigenfunction. Though such waveguide modes may well be modes of a specific frequency that we 
have chosen, the eigenvalue is typically a propagation constant or wavevector magnitude (or, again, 
often the square of this quantity). 
Before going any further, to support these ideas of modes, we need good notations; they should be 
general enough to handle everything we need, but they should suppress unnecessary detail. Wherever 
possible, we use a Dirac “bra-ket” notation, which operates at just such a useful level of abstraction. 
We introduce this notation progressively (see also [9]). In this notation a function can be represented 
by a “ket” or “ket vector”, written as Sψ  or Rφ , for example. Linear operators, such as Green’s 
functions or scattering operators, are represented by a letter, and here we will mostly use “sans serif” 
capital letters such as G  and D . Most simply, we can think of kets as column vectors of numbers 
and the linear operators as matrices. Dirac notation implements a convenient version of linear algebra 
equivalent to matrix-vector operations with complex numbers, and indeed such a matrix-vector view 
can be the simplest way to think about Dirac notation.  
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1.3. Modes as pairs of functions 
To handle communications and complex optical devices, however, we need to go beyond just 
resonator or waveguide modes; fortunately, though, we can use much of the same mathematics. The 
key mathematical difference between resonator and waveguide modes on the one hand and our new 
modes on the other is that  

communications modes and mode-converter basis sets each result from solving a singular-value 
decomposition (SVD) problem, which corresponds to solving two eigen problems. 

 
Fig. 1. Conceptual view for (a) communications modes and (b) mode-converter basis sets. In both cases 
a source function Sψ  in a source or input volume SV , or more generally in a mathematical (Hilbert) 
space SH , results in a wave function Rφ  in  a receiving or output volume RV , or more generally in a 
mathematical (Hilbert) space RH . In the communications mode case (a) the coupling is through a 
Green’s function operator SRG  as appropriate for the intervening medium between the spaces. In the 
mode-converter case (b) , the coupling is through the action of a device (or scatttering) operator D .   

The physical reason for having two such eigenproblems is because  

we are defining optimum mappings between two different spaces. 

For example, in communications, we may have sources or transmitters in one “source” volume and 
resulting waves communicated into another “receiving” volume (Fig. 1 (a)). The solutions to our 
problem are then the set of optimum source functions in the source or input volume that couple, one 
by one, to the resulting optimal waves in the receiving or output volume; SVD solves for both of 
those sets of functions, and it is these two sets of functions that are the communications modes. So, 
a given communications mode is not one function but two.  
In practice we may only need to solve one of these two SVD eigenproblems, and we can then deduce 
the solutions to the other. But because we can view this through two eigen problems, each of these 
sets of functions, one in the source space and one in the receiving space, therefore has all the useful 
mathematical properties of eigenfunctions. This mathematics of eigenfunctions has profound 
consequences for the physical interpretation and the mathematics that follows.  



 4 

1.3.1. Communications modes 
Note immediately that, in this view,  

the communications mode is not the propagating wave (or what we will call the beam) between 
the source volume and receiver volume. 

Indeed, in general the beam will change shape as it propagates, and it is not itself the “eigenfunction” 
of the mathematical problem (though it is easily deduced from the actual eigenfunctions in simple 
communication problems). In this SVD way of looking at communications, the jth communications 
mode is a pair of functions –  Sjψ  in the source or input space, and Rjφ  in the receiving or output 
space. Explicitly, therefore,  

communications modes are pairs of functions – one in the source space and one in the receiving 
space. 

They are a set of communications mode pairs of functions – a pair 1Sψ  and 1Rφ , a pair 2Sψ  and 
2Rφ , and so on. To find these functions, we perform the SVD of the coupling operator SRG  between 

the volumes or spaces. For the communications problems we consider first, SRG  is effectively the 
free-space Green’s function for our wave equation.  

1.3.2. Mode-converter basis sets 
When we change from thinking just about waves in free space to trying to describe a linear optical 
device, we can consider how it scatters input waves to output waves (Fig. 1 (b)). By analyzing this 
also as an SVD problem, in this case of a device (or scattering) operator D , we can similarly deduce 
a set [11] of input source functions { }Sjψ  that couple one by one to a set of output wave functions 

{ }Rjφ ; these two sets of functions are the mode-converter basis sets.  

In this second case, we want to describe the device as one that converts from a specific input mode 
Sjψ  to the corresponding output mode Rjφ , and so on, for all such mode pairs; again, as in the 

case of communications modes, we think in terms of pairs of functions here, one in the source or 
input space, and one in the receiving or output space. We can consider these as mode converter pairs 
- a pair 1Sψ  and 1Rφ , a pair 2Sψ  and 2Rφ , and so on, just as in the communications modes. In 
this way of looking at a linear optical device [6],  

any linear optical device can be viewed as a mode converter, converting from specific sets of 
functions in the input space one-by-one to specific corresponding functions in the output space, 

giving the mode-converter pairs of functions. 

The device converts input mode 1Sψ  to output mode 1Rφ ,  input mode 2Sψ  to output mode 
2Rφ , and so on. In this case, though the mathematics is similar to the communications modes, this 

is more a way of describing the device, whereas the communications modes are a way of describing 
the communications channels from sources to receivers. For the device case, we may not have 
anything like a simple beam between the sources and receivers, but we do have these well-defined 
functions or “modes” inside the source space or volume and inside the receiving space or volume. 
We could also view the mode-converter basis sets as describing the communications modes 
“through” the device. 
In an actual physical problem for a device, there are ways in principle in which we could deduce the 
mode-converter pairs of functions by experiment [7, 12] without ever knowing exactly what the wave 
field is inside the device. Then we could know the mode converter pairs as eigenfunctions without 
knowing the “beam”; this point emphasizes that it can be more useful and meaningful to use the pairs 
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of functions in the source and receiving spaces as the modes of the system rather than attempting to 
use the beam through the whole system as the way to describe it.  

1.4. Usefulness of this approach 
There are several practical and fundamental reasons why these pairs of functions are useful.  

1.4.1. Using communications modes 
In communications, we continually want larger amounts of useful bandwidth. This need is strong for 
wireless radio-frequency transmission [13], for optical signals in fibers [14 - 17] or free space [17 - 
20], and even for acoustic information transmission [21- 23]. Recent progress in novel optical ways 
to separate different [16] and even arbitrary modes [24 -29], including automatic methods [24 - 29], 
gives additional motivation to consider the use of different modes (or “spatial degrees of freedom”) 
in communications.  
Increasingly, therefore, we need to understand the spatial degrees of freedom in such 
communications and the limits in their use; a natural way to describe and quantify those is in terms 
of communications modes. Specifically,  

we can understand how to count the number of useful available spatial channels. 

Essentially, this can also be viewed as a generalization of the ideas of diffraction limits, and we will 
develop these ideas below.  
A key novel result is that  

this SVD approach gives a sum rule that bounds the number and strength of those channels. 

As we solve the problem this way, we can also unambiguously establish just exactly what the best 
channels are; we do not need to presume any particular form of these modes to start with. So, 
specifically, we do not need to analyze in terms of plane wave “modes”, Hermite-Gaussian or 
Laguerre-Gaussian beams, optical “orbital” angular momentum [19, 20, 30 - 32] “modes”, prolate 
spheroidals [33], arrays of spots, or any other specific family of functions; specifically, 

the SVD solution will tell us the best answers for the transmitting and receiving functions – the 
communications modes – and those will in general be none of the standard mathematical 

families of functions or beams. 

1.4.2. Using mode-converter basis sets 
In analyzing linear optical devices or scatterers,  

if we establish the mode-converter basis sets by solving the SVD problem, we will have the 
most economical and complete description of a device or scatterer. 

Essentially, we establish the “best” functions to use here, starting with the most important and 
progressing to those of decreasing importance. An incidental and universal consequence of this 
approach is that we realize that  

there is a set of independent channels through any linear scatterer 

(which are the mode-converter basis sets), and that we can describe the device completely using 
those. The implications of the mode-converter basis sets go beyond simple mathematical economy.  

Mode-converter basis functions have basic physical meaning and implications, giving 
fundamental results that can be economically and uniquely expressed using them. 
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They allow us, for example, to write new versions and extensions of Kirchhoff’s radiation laws [7], 
including ones that apply specifically and only to the mode-converter pairs, and to derive a novel 
modal version of Einstein’s “A & B” coefficient argument on spontaneous and stimulated emission 
(section 11.2). Such results suggest that this mode-converter basis set approach is deeply meaningful 
as a way to describe optical systems. These mode-converter basis functions can also be identified in 
principle for a given linear object through physical experiments [7], independent of the mathematics.   

1.5. Approach of this paper 
Because the ideas here go beyond conventional textbook discussions, and because we are combining 
concepts and techniques that cross several different fields, the approach of this article is quite tutorial. 
Most algebra steps are written explicitly, and many “toy” examples illustrate the key steps and points. 
I have tried to write the main text so that it is readable, and with a progressive flow of ideas. I 
introduce core mathematical ideas in the main text, but relegate most other derivations and 
mathematics to appendices.  
This article has been written to be accessible to readers with a good basic undergraduate knowledge 
of mathematics and some physical science, such as would be acquired in a subject like electrical 
engineering or physics or a discipline like optics (for specific presumed background, see [34]), but I 
explicitly introduce all other required advanced mathematics and electromagnetism. Wherever 
possible, I take a direct approach in derivations, working from fundamental results, like Maxwell’s 
equations or core mathematical definitions and principles, without invoking intermediate results or 
methods.  

2. Organization of this paper 
The mathematics of SVD is relatively straightforward for finite matrices; such matrices arise, for 
example, if we have a finite number of small sources communicating to a finite number of small 
receivers. The mathematics is particularly simple if we also initially consider just scalar waves, like 
acoustic waves in air, for example. Such scalar waves allow a good tutorial introduction to 
communications modes and more generally to the ideas of this SVD approach. We start with the 
mathematics of such sources, receivers and waves in section 3. In section 4, we go through a simple 
“toy” example explicitly, showing both the mathematical results and physical systems that would 
implement them.  
Many quite general physical and mathematical behaviors emerge as we look at wave systems this 
way, only some of which are currently well known. Though these behaviors are relatively simple and 
even intuitive, only some have simple analytic solutions. On the other hand, numerical “experiments” 
and examples are straightforward, at least for finite numbers of “point” sources and receivers. Then 
the main calculation is just finding eigenvalues and eigenvectors of finite matrices. So, we introduce 
these behaviors informally through a sequence of further numerical examples in section 5 (supported 
by additional heuristic arguments in Appendix A, Appendix B, and Appendix C). Pretending we 
can approximate any set of “smooth” source and receiver functions with sufficiently many such point 
sources and receivers, we can reveal much of the behavior of the more general case and many of the 
results.   
To be general enough for real problems in optics and electromagnetism, we need two major 
sophistications. First, we need to expand the mathematics to handle sources and received waves that 
are continuous functions of space, and to consider possibly infinite sets of source and or wave 
functions. A key point is that we will be able to show that 

even with continuous source and wave functions, and with possibly infinite sets of them, we end 
up with finite numbers of useful communications channels or mode-converter basis functions 

for describing devices. 
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Furthermore, this gives a general statement of diffraction limits for any volumes and any form of 
waves.  
The mathematics has to go beyond that of finite matrices, and cannot be deduced from it [35]. 
Fortunately, that mathematics – functional analysis – exists. Unfortunately, this field is often 
impenetrable to the casual reader; necessarily it has to introduce ideas of convergence of functions, 
and that involves an additional set of concepts, mathematical tools and terminology. The important 
results can, however, be stated relatively simply; in section 6, I summarize key mathematical results, 
deferring some detail to Appendix D and Appendix E. I have also written a separate (and hopefully 
accessible) introduction [36] to this functional analysis mathematics, including all required proofs. 
With the results from functional analysis, continuous sources and waves for the simple scalar case 
can then be understood quite simply. In section 7, we relate these mathematical results to known 
families of functions in the “paraxial” case often encountered in optics.  
The second major sophistication we require is the extension to electromagnetic waves, and we 
summarize the key results in section 8. Scalar waves are often a good first model in optics, and much 
of their behavior carries over into the full electromagnetic case; dealing with electromagnetic waves 
properly is, however, more complicated. Not only are electromagnetic waves vectors rather than 
scalars, but, on the face of it, we have two kinds of fields to deal with – electric and magnetic. 
Maxwell’s equations relate these two kinds of fields, of course. Existing sophisticated approaches to 
electromagnetism, such as the use of scalar and vector potentials, are helpful here in understanding 
just how many independent field components or “degrees of freedom” there really are, but standard  
approaches are not quite sufficient for clarifying this number. This difficulty can be resolved by 
proposing a new “gauge” (the “M-gauge”) for the electromagnetic field. We provide a full 
explanation and derivation of the necessary electromagnetism in Appendix F, supported with a 
derivation in Appendix G and additional notation and identities in Appendix H.  
This new M-gauge, together with the results of the functional analysis and the SVD approach, allows 
a revised quantization of the electromagnetic field, summarized in section 9 and in more detail in 
Appendix I. This resolves several difficulties. In particular, we can avoid artificial “boxes” and 
“running waves” in quantizing radiation fields, and they can be quantized for any shape of volume. 
This quantization means that our results here are generally valid and meaningful for both classical 
and quantum-mechanical radiation fields.  
In section 10, we describe how to apply this same mathematics and physics in considering mode-
converter basis sets for devices or scatterers. Section 11 includes discussion of fundamental aspects 
of such mode-converter basis sets, including new radiation laws and a revised and simplified 
“Einstein’s A & B” coefficient argument (with a full derivation in Appendix J) in modal form. 
Finally, in section 12, I draw some conclusions.  
Length constraints here mean some relevant topics are omitted. First, in discussing waves, mostly I 
consider just the monochromatic case, but the underlying mathematics and electromagnetism 
supports general time-dependent fields [37] (and I give those results explicitly for electromagnetic 
fields), and hence “temporal modes” [25, 38, 39]. Second, though the communication channels are 
well-suited for adding information theory to calculate capacities (e.g., [18, 40]), I have to omit that 
discussion here. 
To improve the narrative flow of the paper, I have avoided extensive historical and research review 
in the main body of the text, but I have included these important discussions in Appendix K. The 
subject is easier to explain without the constraint of the historical order and way in which the concepts 
arose, and the history and other research and connections are easier to explain once we understand 
the concepts.  
Though some aspects of this material are well-known in the literature, and our treatment of those 
aspects is therefore purely a tutorial, for some other aspects, we have to present some original 
material. To clarify this, and to allow the reader to make their own judgements of the approaches and 
validity of any new results, I have listed what I believe to be novel results in Appendix L.  
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This work is quite long overall, and that length might be daunting. I suggest that the reader starts 
with sections 3, 4, and 5 – that  will convey much of this new way of thinking about waves – followed 
by section 10 to understand how this approach describes optical devices and scatterers. Sections 6, 
7, and 8 add depth and rigor to the wave discussion, and sections 9 and 11 add discussion of 
fundamental physical results from this approach.  

3. An introduction to SVD and waves – sets of point 
sources and receivers 

We start here by introducing the main ideas of this SVD approach with the simple example of scalar 
waves with point sources and detectors.  

3.1. Scalar wave equation and Green’s functions 
Suppose we have some uniform (and isotropic) medium, such as air, with a wave propagation 
velocity v. For simplicity, we presume we are interested in waves of only one (angular) frequency ω. 
Then we could propose a simple Helmholtz wave equation; this would be appropriate, for example, 
for acoustic pressure waves in air [41], with v being the velocity of sound in air. Then, for a spatial 
source function ( )Sωψ r  and a resulting wave ( )Rωφ r  , this Helmholtz wave equation would be 

 ( ) ( ) ( )2 2
R R Skω ω ωφ φ ψ∇ + =r r r   (2) 

with  
 2 2 2/k vω=   (3) 
Now, for such an equation, the Green’s function (i.e., the wave that results from a “unit amplitude” 
point source ( )δ ′−r r at position ′r )  is  

 ( ) ( )exp1;
4

ik
Gω π

′−
′ = −

′−

r r
r r

r r
  (4) 

As usual with Green’s functions (see e.g., [42] for an introduction), for an actual continuous source 
function ( )Sωψ r , the resulting wave would be  

 ( ) ( ) ( ) 3;
S

R S
V

G dω ω ωφ ψ′ ′ ′= ∫r r r r r   (5) 

Such superposition of Green’s functions (through the integral here) works because the medium (e.g., 
air) is presumed to be linear so that superpositions of solutions to the wave equation are also solutions 
to this (linear) wave equation (2).  

3.2. Matrix-vector description of the coupling of point sources 
and receivers 

We presume a set of SN  point sources (Fig. 2) at positions Sjr  ( 1, , Sj N=  ) in the source volume, 
and with (complex [43]) amplitudes jh . These might be the (complex) amplitude of the drives to 
each of a set of SN  small loudspeakers, for example, that we pretend we can approximate as point 
sources. Then the resulting wave at a point Rir  in the receiving volume would be 

 ( ) ( )
1 1

exp1
4

S SN NRi Sj
R R j ij j

j jRi Sj

ik
h g hωφ

π = =

−
= − =∑ ∑

−

r r
r

r r
  (6) 



 9 

where 

 
( )exp1

4
Ri Sj

ij
R Sj

ik
g

π

−
= −

−

r r
r r

  (7) 

 
Fig. 2. A set of point sources at positions Sjr  in a source volume, and a set of point receivers at positions 

Rir  in a receiving volume, coupled through the coupling operator SRG . 

Suppose, then, that we had a set of RN  small microphones at a set of positions Rir  in the receiving 
volume (Fig. 2); we presume these are omnidirectional (so their response has no angular 
dependence). Then the received signal at one such microphone or point would be the sum of the 
waves from all the point sources, added up at the point Rir (as in Eq. (6)) 

 
1

SN
i ij j

j
f g h

=
= ∑   (8) 

Equivalently, if we define the vectors Sψ  and Rφ  and the matrix SRG  for such a problem as 

 

1

2

S

S

N

h
h

h

ψ

 
 
 =
 
 
 



 , 

1

2

R

R

N

f
f

f

φ

 
 
 =
 
 
 



 , and 

11 12 1

21 22 2

1 2

S

S

R R R S

N

N
SR

N N N N

g g g
g g g

g g g

 
 
 =
 
 
 

G





   



  (9) 

then we can write the set of relations Eq. (8) for all i compactly as the matrix-vector expression 

 R SR Sφ ψ= G   (10) 

3.3. Hermitian adjoints and Dirac bra-ket notation 
At this point, we can usefully introduce the final part of the Dirac notation, which involves the 
Hermitian adjoint (or Hermitian conjugate or conjugate transpose) [44]. Generally, this is notated 
with a superscript “dagger”, written as “†”. The Hermitian adjoint of a matrix is formed by reflecting 
around the “top-left” to “bottom-right” diagonal of the matrix and taking the complex conjugate of 
the elements. For some matrix G , with matrix elements ijg  in the ith row and jth column, the 
corresponding “row-i, column-j” matrix element of the matrix †G  is the number jig∗ . The Hermitian 
adjoint of a column vector is, similarly, a row vector whose elements are the complex conjugates of 
the corresponding elements of the column vector. In Dirac notation, such a row vector is notated 
using the “bra” notation φ . So, explicitly, for our matrices and vectors here 
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 ( )

†
1

† 2
1 2 S

S

S SN

N

h
h

h h h

h

ψ ψ∗ ∗ ∗

 
 
   ≡ ≡ ≡  
 
 





  (11) 

and similarly for Rφ , and the Hermitian adjoint of the operator SRG  is  

 

†
11 12 1 11 21 1

21 22 2 12 22 2†

1 2 1 2

S R

S R

R R R S S R S

N N

N N
SR

N N N N NL N N N

g g gg g g
g g gg g g

g g gg g g

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

  
  
  ≡ ≡
  
  
    

G







   
   




  (12) 

Note too that the Hermitian adjoint of a product is the “flipped round” product of the Hermitian 
adjoints, i.e., for two operators G  and H  

 ( )† † †=GH H G   (13) 

(which is easily proved by writing such a product out explicitly using the elements of the matrices 
and summing them appropriately) and for matrix-vector products 

 ( )† †ψ ψ=G G   (14) 

The Hermitian adjoint of a Hermitian adjoint just brings us back to where we started, i.e., 

 ( )†† =G G   (15) 

and for some vector 

 ( )
†† †

φ φ φ   = =     (16) 

both of which results are obvious from the process of reflecting and complex conjugating matrices 
and vectors. 
For a simple scalar wave, for an amplitude if  at a given receiving point (or microphone), the 
corresponding received power (in appropriate units) would typically be  
 i i iP f f∗=   (17) 

So the sum of all the detected powers would be 

 ( )( )† †

1

N
i i R R S SR S S SR SSR SR

i
P f f φ φ ψ ψ ψ ψ∗

=
= = = =∑ G G G G    (18) 

where we have substituted from Eq. (10) and used the “bra-ket” shorthand notation for the “row-
vector column-vector” product 

 α β α β≡   (19) 

3.4. Orthogonality and inner products 
In general, a “bra-ket” expression like α β  is an example of an inner product, and one formed in 
this way, as the matrix product of a row vector on the left and a column vector on the right, is an 
example of a Cartesian inner product. Inner products are very important in our mathematics, and we 
will be expanding on this concept substantially. (One of the simplest common examples of an inner 
product is the usual “dot” product of two geometrical vectors; this Cartesian inner product can be 
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thought of as a generalization of this idea to vectors of arbitrary dimensionality and with complex 
amplitudes.)  
A key point about inner products is that they can define the concept of orthogonality of functions. 
Specifically, for two non-zero vectors α  and β , if and only if their inner product is zero, then 
the functions are said to be orthogonal. (This is also a generalization of the concept of two (non-
zero) geometrical vectors being at right angles or “orthogonal” if and only if their dot product is 
zero.)  
An immediate consequence of the idea of orthogonality from the inner product is that, for a wave 
that is the sum of multiple different orthogonal components, then a power as in Eq. (18) is simply 
the sum of the powers of the individual components; all the “cross-terms” disappear. Explicitly, for 
a wave φ  that is a sum of set of (non-zero) waves { }qφ   

 q
q

φ φ= ∑   (20) 

where those waves are all orthogonal, which we can write as 
 0p qφ φ =   if and only if p q≠    (21) 

then 

 
,

p q p q q q q
p q p q q q

P Pφ φ φ φ φ φ φ φ  = = = = =∑ ∑ ∑ ∑ ∑  
  

  (22) 

where  
 q q qP φ φ=   (23)  

is the power in the wave qφ .  

Later, as we generalize the mathematics, we may formally define inner products that explicitly give 
the power or energy for electromagnetic waves; these will not just be the simple Cartesian products 
of wave functions, though they will still satisfy the more basic mathematical properties required of 
inner products.  
A second important property that the inner product of a (non-zero) vector with itself is always 
positive; this is easy to see for the Cartesian inner product of a vector such as Rφ  as in Eq. (9); 
explicitly 

 

1

22
1 2

1 1
0

R R

R

R

N N
R R j j jN

j j

N

f
f

f f f f f f

f

φ φ ∗ ∗ ∗ ∗

= =

 
 
  = = = >∑ ∑   
 
 





  (24) 

because it is a sum of positive (or at least non-negative) quantities 2
jf , at least one of which must 

be greater than zero for a non-zero vector.  

3.5. Orthonormal functions and vectors 
Now, returning to Eq. (18), we presume we want to find the choices of source functions or vectors 
{ }Sjψ  that give the largest total powers in the set of receivers (or microphones). To make 
comparisons easier, we will presume that we normalize all the source functions of interest to us. 
Normalization means that we adjust the function or vector by some multiplicative (normalizing) 
factor so that the inner product of the function or vector with itself is unity, i.e., 
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 1Sj Sjψ ψ =   (25) 

A particularly convenient set of functions is one that is both normalized and in which all the different 
elements are orthogonal; this is called an orthonormal set of functions, and its elements would 
therefore satisfy 
 Sp Sq pqψ ψ δ=    (26) 

where the Kronecker delta is  
 

 
1 if 
0 if pq

p q
p q

δ
=

=  ≠
  (27) 

3.6. Vector spaces, operators and Hilbert spaces 
The mathematics here gives some very powerful tools and concepts. We are not going to prove these 
properties now for two reasons: first, for finite matrices, these properties are discussed in standard 
matrix algebra texts [45, 46]. Second, we will give these results for the more general (and difficult) 
cases of continuous functions and infinite matrices in section 6 (and with proofs in [36]); finite 
matrices are then a simple special case.   
An operator’s properties can only be completely described if we are specific about the mathematical 
“space” (often called a vector space) in which it operates. For example, the ordinary (geometrical) 
vector dot product is an operator that operates in the mathematical space based on ordinary three-
dimensional geometric space. This mathematical space contains all vectors that can exist in a 
geometrical space that is three-dimensional, with the algebraic property of having a vector dot 
product – the “inner product” for this space.  
The operators of interest to us act on vectors or functions in a Hilbert space (formally defined in 
section 6.4) Any given Hilbert space will have a specific dimensionality, which may be finite or 
infinite, and it must have an inner product. We can think of this mathematical Hilbert space as being 
analogous to the mathematical space of ordinary geometrical vectors, but allowing arbitrary 
dimensionality and complex coefficients (geometrical vectors can only be associated with real 
amplitudes or coefficients).  
The possible source functions exist in one Hilbert space SH , associated with the source volume 

SV . In our example here, this space SH  contains all possible SN -dimensional mathematical vectors 
with finite complex elements that are the amplitudes of specific point sources. The possible wave 
functions exist in another Hilbert space RH , associated with the receiving volume RV . This space 

RH  also contains all possible RN -dimensional mathematical vectors with finite complex elements 
that are the possible amplitudes of specific waves at the point “microphones” (or the corresponding 
signals from those microphones). Each of these spaces SH  and RH  has a Cartesian inner product, 
though later we may use different “underlying” inner products in different spaces.  

3.7. Eigen problems and singular value decomposition 
Now we see that the operator SRG  is something that maps between these two spaces. Specifically, 
as in Eq. (10), it operates on the vector Sψ , which is in space SH , to generate the vector Rφ , 
which is in space RH . Now, we want to find some “best” choices of such source vectors Sψ  that 
will give us the “best” resulting waves Rφ .  
For such best choices, our instinct might be to try to find eigenvectors of some operator. However, 
we cannot just find eigenvectors of SRG ; we might be able mathematically to find eigenvectors of 
the matrix SRG , but these may have dubious physical meaning in our problem, because SRG  is an 
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operator mapping between one space and another, not an operator within a space. So, SRG  does not 
map a function back onto a multiple of itself in the same space.  
We could, of course, define a Green’s function operating within a space, and we might do so for a 
resonator problem; we could even base that on the exactly the same kind of mathematical expression 
as in Eq. (4) for ( );Gω ′r r , with r  and ′r  being positions within the same volume. Here, however, 
we are effectively basing our operator SRG  on the mathematical operator  (or kernel in the language 
of integral equations) ( );R SGω r r , where Rr  and Sr  are definitely in different volumes. 
The key to constructing the right eigen problems here is to look at those associated with the operator 

†
SRSRG G  and with the complementary operator †

SR SRG G . As we said, the operator SRG  maps a vector 
in SH  to a vector in RH . The operator †

SRG , however, maps a vector in RH  to a vector in SH . So, 
overall, †

SRSRG G  maps a vector in SH  to a vector in SH . Similarly, the operator †
SR SRG G  maps a 

vector in RH  to a vector in RH . Hence, it is physically meaningful to consider eigen problems for 
each of these operators †

SRSRG G  and †
SR SRG G . It is the mathematics of such eigen problems that is 

at the core of SVD. 
Here we can usefully introduce several more definitions and results (mostly without proofs for the 
moment). First, we note that the operators †

SRSRG G  and †
SR SRG G  are Hermitian – that is, each is its 

own Hermitian adjoint. Explicitly 

 ( ) ( )† †† † † †
SR SRSR SR SR SR=G G G G = G G    (28)  

where we have used Eqs. (13) and (15), and similarly for †
SR SRG G .  

An operator like †
SRSRG G  is also a positive operator, which means that an expression like 

†
S SR SSRψ ψG G  is always greater than or equal to zero. (Similarly the operator †

SR SRG G  is also 
Hermitian and positive.)  
Now, so-called “compact” [47] Hermitian operators (defined formally in section 6)  have several 
properties (and all finite Hermitian matrices are compact Hermitian operators) 

1)  their eigenvalues are real 
2)  their eigenfunctions are orthogonal (or, at least formally, the ones corresponding to different 

eigenvalues are orthogonal, and different ones corresponding to the same eigenvalue can 
always be chosen to be orthogonal) 

3) their eigenfunctions form complete sets for the Hilbert spaces in which they operate [48] – in 
other words, we can write any function in the space as some linear combination of these 
eigenfunctions 

and if those operators are positive  
4)  their eigenvalues are greater than or equal to zero 
5) their eigenfunctions and their corresponding eigenvalues satisfy maximization properties – 

specifically, if we set out to find the normalized “input” vector or function that led to the 
largest “output” vector (in terms of its inner product), then that is the eigenfunction with the 
largest eigenvalue, and we could find the eigenfunction with the second largest eigenvalue 
and corresponding eigenvector by repeating the maximization process to find a function 
orthogonal to the first one, and so on. 

The formal proofs of all of these properties are given in [36] for finite and infinite dimensional spaces, 
and we discuss these topics further also in section 6.  
Furthermore, any operator that can be approximated to any sufficient degree by a finite matrix is also 
effectively compact; indeed, this idea is beginning to get close to the idea of what a compact operator 
really is. So, certainly our finite matrix problem with positive operators †

SRSRG G  or †
SR SRG G  here 

has all of the properties (1) to (5) above, and it will retain these properties no matter how large we 
make the (finite) matrix. 
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Now, for specific choices of the numbers and positions of the point sources and receivers, we can 
simply write down the R SN N×  matrix SRG  as in equation (9), using the formula Eq. (7) to work 
out the necessary matrix elements. So, we are ready to turn any such specific problem into a simple 
numerical problem to find the eigenvectors and eigenvalues. So, therefore, for any such problem, we 
can solve for the (orthonormal) eigenvectors Sjψ  of the S SN N×  matrix †

SRSRG G . The eigenvalues 
are necessarily positive (because †

SRSRG G  is a positive operator), and so we can write them in the 
form 2

js . That is, explicitly, 

 2†
SR Sj j SjSR sψ ψ=G G   (29) 

Similarly, we can solve for the (orthonormal) eigenvectors Rjφ  of the R RN N×  matrix †
SR SRG G . It 

is not too surprising that these have the same [49] eigenvalues 2
js . That is 

 2†
SR Rj j RjSR sφ φ=G G   (30) 

In fact, we can show (Appendix D) that 
 SR Sj j Rjsψ φ=G   (31) 

and  

 †
Rj j SjSR sφ ψ∗=G   (32) 

Hence by solving two eigenvalue problems, one for †
SRSRG G  and a second for †

SR SRG G , we have 
established two sets of eigenfunctions, one, { }Sjψ , for the source vectors or functions in SH , and 
a second set { }Rjφ  for the wave vectors or functions in RH . Note, too, that these vectors or 
functions are paired: a source vector or function Sjψ  in SH leads to the corresponding wave vector 
or function Rjφ  in RH , with an amplitude js . The numbers js  are called the singular values of 
the operator or matrix SRG . 

Note that, in practice, we only actually have to solve one eigenvalue problem – that is, either (29) or 
(30). If we know the eigenfunctions { }Sjψ  from solving Eq. (29), then we can deduce the 
eigenfunctions { }Rjφ  from Eq. (31), and similarly if we know the eigenfunctions { }Rjφ  from Eq. 
(30), we can deduce the { }Sjψ  from Eq. (32), at least for all the cases where the singular value is 
not zero [49]. In practice, one of these eigen problems may be simpler or effectively “smaller” than 
the other, and we can conveniently choose that one if we prefer.  

The fact that these two sets of functions { }Sjψ  and { }Rjφ  are each eigenfunctions of a Hermitian 
operator guarantees that each of these sets is orthogonal and complete [50] for its Hilbert space ( SH  
or RH  respectively). 

From Eqs. (31) and (32), we can see that we can rewrite SRG  as 

 
1

mN
SR j Rj Sj

j
s φ ψ

=
= ∑G   (33) 

where mN  is the smaller of SN  and RN  [49]. This expression Eq. (33) is called the singular value 
decomposition of the operator SRG . We can also similarly write 

 †

1

mN
j Sj RjSR

j
s ψ φ∗

=
= ∑G   (34) 
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Incidentally, a product of the form Rj Sjφ ψ , which has a column vector on the left and a row vector 
on the right, is sometimes called an outer product. Standard matrix manipulations show an outer 
product of two N-element vectors is an N N×  matrix. So,  

this process of singular value decomposition, performed by solving the two related eigen 
problems, one for the matrix or operator †

SRSRG G  and the second for the matrix or operator 
†

SR SRG G , leads to our desired two sets of orthogonal vectors or functions. 

These are source vectors or functions in SH  and wave vectors or functions in RH , and these are 
“paired up”, with each source eigenvector in SH  giving rise to its corresponding wave eigenvector 
in RH  (with amplitude given by the corresponding singular value).  

Furthermore, because these are eigenvectors or eigenfunctions of a positive Hermitian operator, by 
property (5) above, they are the “best” possible choices. Specifically, if we choose to order the 
eigenvectors by decreasing size of 2

js , then (neglecting degeneracy of eigenvalues (i.e., more than 
one eigenvector for a given eigenvalue) for simplicity here at the moment)  

the source vector 1Sψ  in SH  gives rise to the largest possible magnitude of wave vector 
in RH , and has the form 1Rφ   

the source vector 2Sψ  is the source vector in SH  that is orthogonal to 1Sψ  and that 
gives rise to the second largest possible magnitude of wave vector in RH , which has the 
form 2Rφ  and is orthogonal to 1Rφ  

the source vector 3Sψ  is the source vector in SH  that is orthogonal to 1Sψ  and 2Sψ  
and that gives rise to the third largest possible magnitude of wave vector in RH , which 
has the form 3Rφ  and is orthogonal to 1Rφ  and 2Rφ  

and so on. 
We have therefore established the best set of possible orthogonal (and therefore zero “crosstalk”) 
“channels” between the two volumes (at least “best” as given by the magnitude of the inner product). 
Note explicitly that these channels are orthogonal to one another, both at the sources and at the 
receivers.  
Incidentally, in matrix terms, the singular value decomposition as in Eq. (33) can also be written in 
the form 

 †
SR diag=G VD U   (35) 

where diagD  is a diagonal matrix with the singular values js  as the diagonal elements, V  is a matrix 
whose columns are the vectors Rjφ , and †U  is a matrix whose rows are the vectors Sjψ  (or 
equivalently U is a matrix whose columns are the vectors Sjψ ). Technically, the matrices V  and 

†U  (and also U) are “unitary”. (See Appendix D.) 

3.8. A sum rule on coupling strengths 
One very important point emerges from this algebra, which is a “sum rule” on the 2

js . Specifically, 
we can show that, quite generally for finite numbers SN  and RN  of sources and receiver points  

 2 2

1 1 1

m SRN NN
q ij

q i j
S s g

= = =
= =∑ ∑ ∑   (36) 



 16 

This mathematical result Eq. (36) is technically a consequence of the fact that the eigenfunctions 
have been written in normalized form, which in turn is why the matrices V  and †U  are “unitary”, 
but this is really a deeper truth, and it has several important consequences that are central to the larger 
discussion here.  

1) We can evaluate this sum S without even solving the eigenproblem.  
2) Having evaluated S, we can know immediately that there is an upper bound on how many 

channels we could have that have at least some given coupling strength; there could only be 
a finite number of orthogonal channels with any given finite magnitude of coupling strength. 

3) Suppose we solve the eigen problem by looking one by one, physically or mathematically, 
for the channels by some process, noting their coupling strengths. Then, when we find we 
have nearly exhausted the available sum rule S, we can stop looking for any more channels; 
there cannot be any more strongly coupled channels, because there is not sufficient sum rule 
S left. 

It might seem that this kind of sum rule is only going to exist when we consider finite numbers of 
sources and receivers. However, we are going to find below in section 6 that the operators associated 
with wave equations are going to have a finite result for this sum rule even as we consider continuous 
functions and infinite basis sets. Indeed, this finiteness is the defining characteristic of so-called 
Hilbert-Schmidt operators (which incidentally, are necessarily also “compact”), and we return to this 
point in section 6. So, though we continue for the moment with finite numbers of sources and receiver 
points, our results are generally going to survive even as we make the transition to such continuous 
source and receiver functions, with possibly infinite basis sets.   
This finite sum rule can also be regarded as the source of diffraction limits with waves, as will 
become clearer below. Such limits apply both in conventional optical situations and more generally, 
and this result is a central benefit of this SVD approach.  

3.9. A constraint on the choice of the coupling strengths of the 
channels 

In looking at the sum rule, we might hope that we have the flexibility to choose how many channels 
are how strong – we might want to have several channels at a weaker coupling strength rather than a 
few strong ones, for example – while still “obeying” the sum rule. However, once we have chosen a 
given set of source and receiver points, or have done the equivalent for continuous functions in 
choosing the Hilbert spaces for source and receiver functions, we do not have that flexibility.  
The eigenvalues, which are the coupling strengths, and any degeneracies they have, are uniquely 
specified when we solve the eigen problem. The eigenfunctions are also essentially unique, other 
than for the minor flexibility allowed in choosing the specific linear combinations for eigenfunctions 
associated with the same degenerate eigenvalue.  
So, not only does the sum rule constrain the overall sum of connection strengths; the eigen solutions 
uniquely determine the coupling strengths of the channels if we want them to be orthogonal (with 
orthogonality determined by the inner products in the Hilbert spaces).  

Suppose we write down the “power” coupling strengths 2
js  in order, starting from the strongest 

and proceeding to weaker ones In this list, if a given eigenvalue is degenerate, with a degeneracy of 
n, we will write it down n times [51], and give each occurrence a separate value of the index j. So 
we would have a list of the form 

 22 2
1 2 js s s≥ ≥ ≥ ≥    (37) 

Then, provided we include all the occurrences of a given degenerate eigenvalue (so if we encounter 
degenerate coupling strengths in the list, our choice of j must be at the end of any such degenerate 
group of coupling strengths), we can state that 
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  (38) 

We cannot rearrange any linear combinations of communications modes to get more channels that 
are at least this strongly coupled. If we want more such channels, then we have to change the source 
and/or receiver points and/or Hilbert spaces.  

4. An introductory example - 3 sources and 3 
receivers 

To understand how this approach works, both mathematically and physically, we can look at a simple 
example, one that is large enough to be meaningful, but small enough for explicit details. Fig. 3 
shows the physical layout. We have 3SN =  point sources, spaced by 2λ in the “vertical” y direction,  
(with wavelength 2 / kλ π=  as usual for a wavevector magnitude k). These are separated by a 
“horizontal” distance 5zL λ=  from a similarly spaced set of 3RN =  receiving points.   

 
Fig. 3 A set of three sources, spaced by 2λ in the “vertical” y direction, separated from three similarly 
spaced receiving points by a distance 5λ in the “horizontal” z direction. 

4.1. Mathematical solution 
we use Eq. (7) to calculate the matrix elements ijg  of the coupling operator SRG . Explicitly, for 
example, for the matrix element 13g  that gives the wave amplitude at 1Rr  as a result of the source 
amplitude at 3Sr , noting first that 

 ( ) ( )2 2 2 2
1 3 1 3 1 3 4 5 41R S R S R Sy y z z λ λ− = − + − = + =r r   (39)  

then 

 
( ) ( )1 3

13
1 3

exp 41exp1 1 0.01020 0.00711
4 4 41

R S

R S

iik ig
π

π π λλ

2− −
= − = −

−

r r
r r

   (40) 

 Now we write distances in units of wavelengths for convenience (or equivalently, we set 1λ = ). To 
get numbers of convenient sizes and signs, we multiply by a factor  
 4 62.83SR zg Lπ= − = −  (41) 

So, then 

The number of orthogonal channels (communications modes) 
with power coupling strength 22

js s≥  is j 
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 ( )13 62.83 0.01020 0.00711 0.64 0.45SRg g i i− × − − +   (42) 

Proceeding similarly for the other matrix elements, we have 

 
1 0.7 0.6 0.64 0.45

0.7 0.6 1 0.7 0.6
0.64 0.45 0.7 0.6 1

SR SR

i i
g i i

i i

− + − + 
 ≅ − + − + 
 − + − + 

G    (43) 

The sum, Eq. (36), of the modulus squared of these matrix elements of SRG  as in Eq. (43) is the sum 
rule 
 27.67 / SRS g=   (44) 

The matrix †
SRSRG G  can be written, with a convenient scaling factor 2

SRg , 

 †2

2.47 0.67 0.08 0.42
0.67 0.08 2.72 0.67 0.08

0.42 0.67 0.08 2.47
SRSR SR

i
g i i

i

− − − 
 ≅ − + − + 
 − − − 

G G   (45) 

Note that this matrix is Hermitian, as required. Having established the matrix †
SRSRG G , we can now 

use standard numerical routines to find eigenvalues and eigenvectors. The resulting eigenvalues of 
†

SRSRG G  (and of †
SR SRG G ) are 

 2
1 2

3.41

SR
s

g
=  , 2

2 2

2.89

SR
s

g
= , and 2

3 2

1.37

SR
s

g
=  (46) 

Note that the sum of these is indeed also the sum rule S [52], i.e., 

 2 2 2
1 2 3 2 2 2 2

3.41 2.89 1.37 7.67

SR SR SR SR
s s s S

g g g g
+ + ≅ + + = =   (47) 

The corresponding eigenvectors of †
SRSRG G  are [53] 

 1

0.41
0.81 0.1

0.41
S iψ

 
 = − + 
  

,  2

0.71
0

0.71
Sψ

− 
 =  
  

, and 3

0.58
0.57 0.07

0.58
S iψ

 
 = − 
  

 (48) 

which are all orthogonal to one another [54], and the corresponding eigenvectors of †
SR SRG G  are 

 1

0.41
0.81 0.1

0.41
R iφ

 
 ≅ − − 
  

,  2

0.71
0

0.71
Rφ

− 
 ≅  
  

, and 3

0.58
0.57 0.07

0.58
R iφ

 
 ≅ + 
  

 (49) 

For this very symmetrical problem, the receiving wave vectors and the source vectors are just 
complex conjugates of one another, though that is not generally the case. In this case, the complex 
conjugation means that the “phase” curvatures are equal and opposite. (The idea of phase curvature 
becomes clearer as we consider more source and receiver points, so we postpone that illustration.) If 
we wanted to construct the strongest “channels” between these sources and receivers at this 
wavelength (or frequency), we would 

(a) choose to drive the point sources with relative amplitudes and phases given by one of the 
source eigenvectors in Eq. (48), and  
(b) at the receiving points we would add up the signals from the different points weighted with 
the relative amplitudes and phase shifts given by the corresponding receiving eigenvector in Eq. 
(49).  
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We can also send and receive three separate channels at once through this system if we construct 
appropriate systems to create and to separate the necessary signals. 

4.2. Physical implementation 
To see how to create and detect the necessary signals, including running all three channels at once, 
we can look at example physical systems. These are not meant to be engineered solutions to a real 
problem, but they make the mathematics more concrete physically.  

4.2.1. Acoustic and radio-frequency systems 
First, for acoustic or radio-frequency signals, we can likely generate and measure the actual field 
directly. We will not consider the actual corresponding loudspeakers, microphones, or antennas for 
the moment, just approximating them instead by ideal point sources and receiving elements. (We are 
still postponing any consideration of vector electromagnetic fields, just considering scalar waves.)  
We can then use appropriate electronic circuits that generate and collect the corresponding signals 
(Fig. 4). In these cases, we can imagine input voltage signals 1SInV , 2SInV , and 3SInV  that represent the 
signals (such as three different binary bit streams, for example) that we want to send on the three 
different “channels” in the communication between the three sources and the three receivers. We 
would like these signals (e.g., the three binary bit streams) to appear as the three output voltage 
signals 1ROutV , 2ROutV , and 3ROutV  at corresponding electrical outputs at the far end of the system.  

 
Fig. 4. Example electrical driving and receiving circuits to form the superposition of sources for 
transmission and to separate the channels again for reception. The input channels are the (voltage) bit 
streams SIn jV  and the outputs are the corresponding (voltage) bit streams ROut jV . The feedback 
conductances Sd  and Rd  set the overall electrical gain in transmission and reception in the operational 
amplifier circuits that sum the currents on their input “bus” lines as required to form the necessary linear 
superpositions. 

Each such input signal voltage has to generate the corresponding vector of amplitudes to drive the 
sources. So 1SInV  should generate a vector of voltage amplitudes 1 1SIn SV ψ∝ , and similarly for the 
other two input voltage signals, and these three vectors should be added to generate the corresponding 
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set of output voltages 1SV , 2SV , and 3SV  that drive the sources (e.g., loudspeakers) at the 
corresponding positions 1Sr , 2Sr , and 3Sr .    
We can perform this generation of the correct vectors of amplitudes and their summation by using 
the “analog crossbar” circuit on the left of Fig. 4. We presume we can make electrical phase shifters 
(circles in Fig. 4), whose phase delay is indicated inside the corresponding circle. The output of each 
such phase shifter is then passed as a voltage to drive a resistor (rectangular boxes in Fig. 4),  whose 
conductance (i.e., 1/resistance) is given by the value inside the box (in some appropriate units). The 
other end of the resistors is connected in each case to a common “bus” line that is a “virtual ground” 
input to an operational amplifier (the triangles in in Fig. 4). The operational amplifiers each sum all 
the currents on their input bus line and each generate an output voltage proportional to this sum, 
giving the set of output drive voltages 1SV , 2SV , and 3SV .  
At the receiving end of the system, we can construct a similar circuit. In this case the input voltages 
to the analog crossbar are the outputs 1RV , 2RV , and 3RV  from the measured fields at the three 
positions 1Rr , 2Rr , and 3Rr . If we have designed and set up our circuits correctly, the corresponding 
summed outputs, which become the voltage signals 1ROutV , 2ROutV , and 3ROutV , should each now be 
proportional to the original voltage signals 1SInV , 2SInV , and 3SInV  that we wanted to send through this 
three-channel system (just with some propagation time delay). If we make the feedback conductances 
in the operational amplifier circuits all identical at some value Rd , then, for equal overall magnitudes 
of input voltage signals 1SInV , 2SInV , and 3SInV ,  the relative sizes of the output voltage signals 1ROutV , 

2ROutV , and 3ROutV  would be weighted by the corresponding singular values js  for the jth channel 
through the system. (Of course, we could compensate for the different singular values by using 
feedback conductances js∝  in the circuits with the output operational amplifiers R1, R2, and R3.) 

Writing each of the vectors in Eqs. (48) and (49) with matrix elements in “polar” form, i.e., 
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where the a, b, θ, and η coefficients are all real, then we obtain the corresponding desired settings of 
the phase shifts and conductances in Fig. 4.  

Note that, in the receiving analog crossbar circuit, the phases are set to minus the corresponding 
phases in the receiving vectors themselves. This is because, in summing the currents in this crossbar 
we are actually performing the inner product Rq RInVφ , where RInV  is the column vector of 
received voltages [ ]1 2 3

T
RIn RIn RInV V V , so as to extract the appropriate component of the signal. 

Since the Rqφ  vector is in “bra” form RInφ  in the inner product, we must take the complex 
conjugate of the phase factors. 
Hence in this way, starting out with three quite separate signals, we are able to transmit them through 
the system and recover the original signals again. Note the three channels here have no crosstalk 
even though the waves from each source are mixed at the three receiving points. This remains true 
even if the three “channels” in the system have different coupling strengths (as given by the singular 
values js ), as they do here, with relative power strengths of 3.41, 2.89 and 1.37 respectively.  Taken 
together, these three channels use up all the available power coupling strength, as given by the sum 
rule (Eq. (47) or, more generally, Eq. (36)).    
The mathematical function performed by each of the crossbar circuits is, of course, simply a 
(complex) matrix multiplication. By use of appropriate analog-to-digital and digital-to-analog 
conversion, such multiplications could be performed digitally instead. 



 21 

4.2.2. Optical systems 
At optical frequencies, we generally cannot measure the field directly (certainly not in real time), and 
circuit approaches as in Fig. 4 are not viable. Indeed, until recently, it was not generally understood 
in optics how to separate overlapping optical signals (without fundamental loss) to turn them into 
individual output beams, which is a process we require at the receiver in our scheme. Similarly, it 
was not clear how to losslessly generate arbitrary linear superpositions of inputs to give overlapping 
outputs, as required at the source. Indeed, without some apparatus to perform such functions, in 
optics the multiple-channel schemes presented here would remain mathematical curiosities.    
Recently, however, specific schemes have been devised for both creating and separating arbitrary 
linear combinations of overlapping optical beams, and for emulating arbitrary linear optical 
components [24 - 27]. Indeed, these schemes constitute the first proof that arbitrary linear optics is 
possible [25]; the proof is entirely constructive because it shows specifically how to make the optical 
system, at least in principle. 
These schemes rely on meshes of two-beam interferometers, in appropriate architectures and with 
associated algorithms [24 - 28] to allow the meshes to be set up. We will not review these in detail 
in this article, but some key aspects are important here. In some of the architectures, the setup of the 
mesh (and, if required, the calculation of the necessary settings of the interferometers) can be entirely 
progressive [24 - 28]. The setup of the mesh can also be accomplished by “training” the mesh with 
the beams of interest [24 - 28], based on a sequence of single-parameter power minimizations, 
without calculation or calibration. 
For our present example, the electronic matrix multiplications implicit in the analog crossbar 
networks at the source and at the receiver can be implemented instead using the “triangular” source 
mesh and receiving mesh respectively, as in Fig. 5 (a). These meshes, which can also be viewed as 
analog crossbars, work directly by interfering beams in waveguides and waveguide couplers. The 
light in these meshes flows through them without fundamental loss, and they mathematically 
represent “unitary” (loss-less) matrix multiplications.  

 
Fig. 5. (a) Interferometer mesh architectures to generate and superpose the necessary source 
communications mode source vectors from the separate input signals on the left, and to separate out the 
corresponding communications mode receiving vectors on the right to reconstruct the original channels 
of information. These processes work directly by interfering beams, and without fundamental loss in 
the meshes. (b) Key to the various elements in (a). One example form of Mach-Zehnder interferometer 
and phase shifter is shown that has the necessary functions for the 2x2 blocks.  

In Fig. 5, we imagine that the input signals, instead of being voltages as in Fig. 4, are the amplitudes 
1SInE , 2SInE , and 3SInE  of the waves in single-(propagating)-mode input waveguides. By setting up 

the phase shifters and interferometers appropriately, the necessary superpositions are created as the 
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amplitudes 1SE , 2SE , and 3SE  in the output waveguides. These amplitudes  then feed the point 
sources at the corresponding positions 1Sr , 2Sr , and 3Sr .   
In this example, we pretend that the outputs of those guides essentially represent point sources of 
waves that we can also approximate as being scalar (which is reasonable if we consider only one 
polarization for the moment). At the receiving end, we imagine that the inputs to receiving mesh 
waveguides, at points 1Rr , 2Rr , and 3Rr  are essentially “point” receiving elements to couple light 
into these waveguides, with corresponding waveguide amplitudes 1RE , 2RE , and 3RE  respectively. 
The receiving mesh then performs the appropriate matrix multiplication to separate out the signals 
(again without fundamental loss) to the output amplitudes 1ROutE , 2ROutE , and 3ROutE , recreating the 
input bit streams. 
In Fig. 5 (b), we show one example way of making the necessary 2x2 interferometer block. This 
block should be able to control the “split ratio” of the interferometer – how the input power in, say, 
the top left waveguide is split between the two output waveguides on the right; this can be 
accomplished by controlling the phase angle θ (achieved by differentially driving the two phase 
shifters on the arms of the interferometer). The block should also independently be able to set one 
other phase on the outputs; in this example, this is achieved by the “common mode” drive of the 
phase shifters in the block, setting phase angle φ [55].  
The setup of these unitary meshes is relatively straightforward [56]. Such a mesh has exactly the 
right number of independent real parameters (here, 9 phase shifters altogether) to construct an 
arbitrary 3x3 unitary matrix. Such design calculations are presented explicitly in [25] together with 
the self-configuring algorithms to allow direct training.  
In a real system, rather than “bare” waveguide outputs and inputs for communications; likely one 
would add some optics, such as collimating lenses, in front of the waveguides, to avoid sending 
power in unnecessary directions. However, for our tutorial purposes at the moment, we will omit 
such optics (though it can ultimately also be handled by this approach by including the optics in the 
Green’s function for the system). 
The kind of architecture shown in Fig. 5 (a), with unitary meshes at both sides, has one other 
interesting property worth noting here. There is an iterative algorithm [12], based only on overall 
power maximization on one channel at a time, and working forwards and backwards through the 
entire system, that allows this system itself to find the best coupled channels. Essentially, by running 
such an algorithm, this system physically can find the SVD of the coupling operator SRG  between 
the source points and the receiver points, without calculations. The results are then effectively stored 
as the settings of the various elements in the two meshes.  This algorithm also still works even if 
there are other optics or scatterers between the source and receiver points, and so gives a way of 
finding the best orthogonal channels through any fixed linear optical system at a given frequency. 

4.2.3. Larger systems 
As we consider larger numbers of source and receiver points, the specific approaches in Fig. 4 and 
Fig. 5 would face technological limits of various kinds, especially for the purely optical approach of 
Fig. 5. However, practically, the ability to make large numbers of interferometers has been 
developing rapidly; working systems with up to 100’s of interferometers [57 - 64] and small self-
configuring systems [27, 29, 65] have both been demonstrated recently. Extensions to 1000’s of 
interferometers may be feasible with current technology, and that number may not represent any 
particular fundamental limit. Indeed, these demonstrations and the potential for expanding to larger 
systems is one of the reasons why we consider these “modal” approaches. We need them both in 
wireless systems, where they can be viewed as extensions to MIMO (multiple input multiple output) 
antenna and communications systems, and in optical systems where we are now able to explore such 
configurable and optimizable multiple channel systems.  
Whether we choose to make systems as in Fig. 4 or Fig. 5, these kinds of systems show the upper 
limits in terms of orthogonal channels and coupling strengths of what could be achieved through 
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such linear processing and the resulting optimum channels. The scheme of Fig. 5 gives a method in 
principle of constructing arbitrary unitary (and hence nominally lossless) transforms of a given 
number of inputs and outputs (given ideal physical components). It operates with the minimum 
number of adjustable components and no loss in principle. No physical linear system can in principle 
do better than this scheme in constructing the communications modes for given numbers of source 
and receiver points. The existence of these approaches shows in principle that such systems could be 
made, both as actual physical systems up to some scale and as thought experiments at arbitrary scales 
for more basic discussions.   
In what follows, we look at a variety of systems with larger numbers of source and receiver points 
in various different geometries. This progressively introduces many different behaviors. Some of 
these behaviors at large scales can relate to those seen in conventional optical systems, but some 
quite general behaviors have no particular well-known precedents. Though there are just a few results 
that can be expressed in analytic approximations for specific classes of systems (e.g., paraxial optics), 
there are several broader classes of behaviors that can be understood intuitively from these numerical 
simulations and some approximate heuristic results. These provide novel insights into 
communicating and sensing with waves in a wide range of systems, from acoustics, through radio 
and microwaves, to optics.  

5. Scalar Wave examples with point sources and 
receivers 

Now we continue to larger numbers and other geometries of source and receiver points to illustrate 
various behaviors. 

5.1. 9 sources and 9 receivers in parallel lines 
Now we space 9SN =  point sources over the same total length of 4λ  as in the 3 source case above 
(Fig. 3), and similarly for the 9RN =  receiving points, which means the points are spaced by / 2λ  
in each case [66].  

5.1.1. Channels and coupling strengths 
Using the same numerical approach as in the 3 3×  case above, but now with a 9 9×  matrix, there are 
9 orthogonal source vectors and 9 corresponding orthogonal receiving vectors, and the sum rule S is 
 272.65 / SRS g=   (51) 

The results for the coupling strengths are summarized in Table 1.    

Table 1. Mode coupling strengths for 9 point sources and receivers 

Mode number, j 2 2/j SRs g  % of S Cum. % of S  
1 20.73 28.54 28.54 
2 20.39 28.07 56.61 
3 19.09 26.28 82.89 
4 10.41 14.34 97.23 
5 1.90 2.62 99.84 
6 0.11 0.16 ~100 
7 0.0028 0.0038 ~100 
8 0.000027 0.000037 ~100 
9 0.000000065 0.000000089 ~100 
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Though there are formally 9 orthogonal channels, there are only three strongly coupled channels of 
approximately the same coupling strength, one other channel about half as strong, one weak channel, 
one very weak channel, and three other extremely weak channels. Though we have 9 sources and 
receivers, we certainly do not have 9 practically usable channels.We see immediately that 

increasing the number of sources and/or receivers in given source and receiving volumes past a 
certain point does not increase the number of well-coupled channels. 

The inability to form further well-coupled channels is being enforced by the sum rule S, and could 
be viewed as an effective “diffraction” limit.   

5.1.2. Modes and beams 
Once the eigenvectors Sjψ  of amplitudes of the sources in each mode are calculated, it is 
straightforward to calculate the resulting wave or “beam” at any point r in space. Explicitly, with 

SN  point sources, and writing out the jth (column) eigenvector as  

 1 2 S

T
Sj j j N jh h hψ ≡      (52) 

(with the superscript T indicating the transpose, used here just to save space) then the corresponding 
(complex) wave at point r is 
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In Fig. 6, we have plotted the resulting amplitudes and phases of the first three (strongest) modes, 
together with the resulting waves or “beams”. In Fig. 6, (a) is Mode 1, (b) is Mode 2, and (c) is Mode 
3. The wave plotted is the real part of the wave amplitude, so it is essentially a snapshot of the wave 
at an arbitrary time, here for the values in the plane of the source and receiver points (i.e., the plane 
of the “paper”).  
In Fig. 6, we have also chosen the phase of all the source modes (source and receiving) to be zero in 
the middle of each mode [67]. Here also, because of the symmetry of this problem, the receiving 
vectors are just the complex conjugates of the transmitting vectors. We have deliberately used a scale 
to plot the phase of the source points so that 2π  of phase corresponds to the same distance on the 
graph as one wavelength in the wave plot. This enables us to compare “phase curvatures” on the 
source vectors with the actual phase curvature as seen by eye on the wave plots.   
With this larger number of sources and receivers, though without increasing the overall “size” of the 
source and receiving spaces, we can get intelligible behavior of the waves, including relatively clear 
“phase fronts” in the wave propagation. Mode 1 and Mode 2 have almost exactly the same coupling 
strength, with Mode 1 being (possibly surprisingly) just slightly stronger. Mode 2 is the simplest, 
corresponding to a “single-bumped” beam in the region between the source and receiver positions. 
Mode 1 is a “two-bumped” beam, with the upper and lower halves having opposite sign.  
Note that the solution of these eigen problems has given the source vector a “phase curvature” that, 
for these first two Modes, leads to a beam “waist” approximately in the middle horizontally though, 
by eye, the beam in Mode 1 is wider “top to bottom” throughout than that of Mode 2. Again, the 
phase curvature of the source for these two Modes is such that, by eye, it is similar to the phase 
curvature of the wave. Mode 3 corresponds to a “three-bumped” beam, though the behavior overall 
is not so simple to describe as that of Modes 1 and 2. Note that the beam in Mode 3 in particular is 
nearly filling all the space between the source points and the receiver points.  
The calculations also show that the corresponding receiving vector in each case has the opposite 
phase curvature to that of the source.  In general  



 25 

the orthogonality of these three modes at both the source and receiver points is obvious 
graphically since they correspond to one, two, and three “bumped” beams over the lines of 

sources and receivers. 

    
Fig. 6. Plots of the source relative amplitude, the source relative phases, and the resulting waves for the 
three most strongly coupled modes, (a), (b), and (c) respectively, for the nine point sources and receiving 
points shown. The phase of each source mode is chosen to be zero in the center of the mode. For graphic 
clarity, the wave is multiplied by z , where z is the horizontal position relative to the source plane; 
the actual wave decays in amplitude from left to right, and the real part of the wave is plotted in false 
color. To avoid singularities, the waves just next to the source are not shown, so the positions of the 
sources, as shown, are just outside the graphed region on the left. The source amplitudes of the points 
in the “source amplitude” and “source phase” plots are also indicated using an amplitude false color of 
the points.  

Note, incidentally, that 

the solution of the singular value decomposition problem has “found” the necessary phase 
curvatures of the sources and corresponding receiver amplitudes so as to maximize the power 

coupling. These curvatures are not artificially put into the problem. 
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We can loosely interpret some of what is happening with these modes as diffraction limits. The 
beams associated with Modes 1, 2, and 3 are able to remain substantially within the space between 
the source points and the receiving points (at least in this two-dimensional plane). After these three 
Modes, however, attempts to create more orthogonal channels lead to waves that cannot be 
substantially contained in this way, and they start to “miss” the receiver points, as we will illustrate 
below for another case.  

 
Fig. 7. Two example modes using a double line of sources. (a) A “single-bumped” mode. (b) A “four-
bumped” mode that is only ~ half as well connected as the first three modes. (As can be seen, large 
parts of it miss the receiver positions entirely.) (As in Fig. 6, the real part of the wave is plotted in false 
color, and the wave is multiplied by z  for graphic clarity.) The use of a double line of sources avoids 
substantial “left-propagating” waves for these modes, making the beam behavior clearer in this larger 
picture. To avoid singularities in the graphics, the wave is not plotted in the region of the white 
rectangle. The two lines of sources are spaced by a quarter wave. In the plots of the source phase, the 
“left” column of sources lag the phase of the right column of sources by approximately  90° (π/2), and 
the amplitudes are approximately equal and opposite. (In (b), we have joined the amplitude points in a 
given vertical column of  sources by dotted lines to guide the eye.) The facts that the sources within a 
given “left-right” pair have opposite amplitudes and are phase-delayed in this way comes out of the 
numerical solution, and is not a starting constraint. This behavior is typical of “spatiotemporal dipoles” 
[68], and the calculations have “found” these as the best sources here.   

Now, point sources at different points in space are in one sense automatically orthogonal since they 
do not overlap, and each different point source is mathematically a vector with one “one” in one 
unique position and so is orthogonal to the other point source vectors. However, a key point is that  
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though the individual different point sources themselves can be orthogonal, the waves they 
generate in the receiving space are not necessarily orthogonal. To establish just what actual 

orthogonal sources give orthogonal waves in the receiving space, we need to perform the SVD, 
as we have done here. 

We can usefully illustrate more behaviors of such modes, and this becomes somewhat clearer if we 
use a double line of sources as in Fig. 7. A single line of point sources like those in Fig. 3 and Fig. 6 
actually broadcasts just as effectively “backwards” (i.e., to the left in these figures) as it does to the 
right [69]. To see more clearly what else is happening in the generated waves, we can first avoid 
such backwards waves. A double line of sources allows the sources to take the form of a “spatio-
temporal dipole” which can suppress the backward (leftward) radiation [68, 70, 71].    
In Fig. 7 (a) we show the “single-bumped” mode with such a “double line” set of sources, which is 
analogous to the similar mode in Fig. 6 (b) [72].    
We also show, in Fig. 7 (b), the next most strongly coupled mode (after these first three), which has 
only 14.4% of the sum rule. We can see here that in this mode, significant parts of the beam are 
missing the receiver positions, in two angled parts that are just overlapping with the top and bottom 
receiver positions; this behavior is consistent with the power coupling strength here only being 
approximately half of that of the first three strongly coupled modes.  
This fourth mode in Fig. 7 (b) illustrates another point. Note that, in this case, the beam is quite 
clearly not symmetrical about the center between the sources and receivers. (This asymmetry is not 
because we have different numbers of sources and receivers – similar behavior is seen with equal 
numbers of both.) Note that 

even with identical, symmetric source and receiver volumes and/or numbers, there is no 
requirement that the resulting beam for any given communications mode is similarly symmetric 

from “left” to “right”. 

With these first 4 modes, altogether ~97.16% of the available sum rule has been used up. The next 
(5th) mode looks somewhat similar to Fig. 7 (b), though with one more “bump”, and in this case, the 
upper and lower angled beam parts almost entirely miss the upper and lower receiver points. This 5th 
mode consumes ~2.67% of the sum rule, which leaves sum rule therefore essentially exhausted, with 
only just over ~ 0.17% of the sum rule to be divided among the remaining 4 possible orthogonal 
modes. (We will return to look in more depth at such very weakly coupled modes in a later example.)  

5.2. Two-dimensional arrays of sources and receivers 
As another example, we can look at “planes” of source and receiver points, as in Fig. 8. Here we 
have arranged 17 17 289× =  source and receiver points (so 289S RN N= = ), each spaced by the 
wavelength λ, to give parallel 16 16λ λ×  square source and receiver “surfaces”  positioned 50λ apart. 
Now we plot, in false color, a snapshot (the “real part”) of the amplitude of the wave on the receiver 
“plane” for each of the first 12 most strongly coupled modes (Fig. 8 (d)), in decreasing order of 
coupling strength. Also shown, Fig. 8 (c), is a graph of the relative magnitudes of the corresponding 
“power coupling strengths” [73] 2

js , expressed as a percentage of the total available sum rule S for 
this problem.  
The most strongly coupled mode, Mode 1, is a simple “single-bumped” beam. An early heuristic 
approach to understanding how many independent “channels” there are between two surfaces is due 
to Gabor [74]. In Gabor’s approach, he asks first what would be the minimum “diffraction limited” 
size of spot one would be able to form on the receiving surface using a source that is the size of the 
source surface. Then he asks how many such spots one could lay out on the receiving surface if those 
are to be approximately non-overlapping . If we interpret Mode 1 here as approximately a 
“diffraction-limited” spot, then by eye in Fig. 8 (b), we might reasonably expect that we could fit 
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about 9 such spots within the square “receiver” region, roughly imagining a 3 3×  array of such spots 
to fill that square region. In fact, this heuristic is a reasonable guess (and this correspondence is 
already known [5]). We will return to discuss such heuristics generally below.  

 
Fig. 8. (a) Layout of two-dimensional arrays of 17 17 289× =  point sources and receiver points, each 
on a square array, with points separated laterally by the wavelength λ, and the arrays separated, on the 
same axis, by 50λ. (b) End view of  the (real part of the) field amplitude for mode 1, with the receiver 
points superimposed. (c) In order, for the first 24 communications modes, the relative power coupling 
strengths ( 2

js ), as a percentage of the power coupling strength sum rule S. (d) False color plots of the 
(real part of the) field amplitude at the receiver plane, together with the corresponding percentage of 
the sum rule. The dashed square represents the extent of the array of receiver points in each case, as in 
(b). Plots are relative to the maximum.  

Looking at Fig. 8 (c), we see that there are roughly 9 Modes that are within just over a factor of 2 in 
relative power coupling strength (i.e., from 12.09% of S down to 5.61% of S). After that, there are 
about 6 weakly coupled additional modes, and then the coupling strengths fall to very low values.  
In all of these modes, the wave functions are orthogonal to one another within the square receiver 
region. This is even true as we go to the more weakly coupled modes (e.g., Modes 10, 11, and 12 in 
Fig. 8 (d)). From these views, it may not be obvious what is happening to the rest of the coupling. In 
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part, for these more weakly coupled modes, there is significant power in the regions outside the areas 
plotted in Fig. 8 (d). Though the solutions are giving orthogonal channels into the receiver region, 
they are also broadcasting significant power elsewhere. With these sizes of source and receiver 
regions and this separation between them, it is not possible to keep the wave within the receiver 
region for these higher-numbered modes (as we will see explicitly below for another example.)  
In this symmetric and “square” problem, we see behaviors in numbers and symmetries of beam forms 
that are typical in general of mode forms also found in related resonator problems. Because of the 
finite size of the region, however, the higher-numbered well-coupled modes, such as Modes 5 to 9, 
are showing strong influence of the finite size and shape of the receiver region, as also are the more 
weakly coupled Modes 10 – 12.  
We can also guess (correctly) that Mode 1 here is essentially as well coupled as it could be. In this 
case (other from the backward wave from this single “sheet” of sources), there is no “wasted” wave. 
Essentially, all the (“forward”) wave from the sources is indeed focused into the receiver plane. The 
corresponding 12.09% of S in 2

1s  therefore corresponds to a well-coupled communications mode, 
and we could deduce immediately that we could not expect more than 100/12.09 ~ 8 or 9 modes that 
are this well coupled. In fact, we do see about 8 or 9 relatively well coupled modes, with strengths 
falling off somewhat with increasing mode number.  
Not surprisingly with such square arrays of points, there are obvious degeneracies. Modes 2 and 3 
are have the same coupling strength, as do the pairs Modes 7 and 8, and Modes10 and 11. The 
resulting beams in each pair also have shapes that are related by simple symmetries (e.g., rotating by 
90°). We will call this particular kind of degeneracy a symmetry degeneracy (in part to distinguish 
from another degeneracy that emerges later). 

5.3. Paraxial behavior  
A common situation in optics is that the lateral sizes of the input and output spaces are relatively 
small compared to the separation between those spaces. Such situations are often called “paraxial” 
because much of the propagation is close to being parallel to the axis between the sources and 
receivers. Also, in optics often such input and output spaces are approximately surfaces (or lines) 
that are parallel to one another, and are both centered on the same axis that runs between them. The 
situations we have simulated so far (as in Fig. 3, Fig. 6, Fig. 7, and Fig. 8), are not well approximated 
as being paraxial (the lateral extent of the source and receiver spaces is somewhat too large for the 
separation between them). The situation of Fig. 9 is, however, approximately paraxial; the lateral 
extent here, 48 wavelengths, is relatively small (1/4) compared to the separation of 192 wavelengths. 
The paraxial case has a number of simplifying properties compared to the more general cases, and 
we can use it to illustrate several behaviors. 
In Fig. 9(a) we show the positions of the sources and receivers, together with the beam for one 
calculated mode (actually, the “first” mode – the one with the largest magnitude of singular value). 
As in Fig. 7, we have used two lines of sources to allow suppression of the generation of “backwards” 
waves (i.e., to the left), and the sources in a line are spaced vertically by / 2λ  to suppress generation 
of spurious “higher order diffraction” waves at large angles. In Fig. 9 we now are plotting intensity 
(presumed ( ) 2

φ∝ r , where ( )φ r  is the calculated complex wave amplitude at each point r). 
(Plotting the real part of the field would lead to a graph with too much structure on the very small 
wavelength scale for a graph of these dimensions.) 
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Fig. 9.  (a) Positions of sources and receivers superimposed on the beam for Mode in the plane of the 
source and receiver points. Here the intensity of the mode multiplied by the horizontal distance z from 
the source plane is shown in false color. This multiplication by z compensates in the graphics for an 
underlying fall-off in intensity proportional to ~ 1/z with such lines of sources. A small region 
immediately adjacent to the sources is not plotted so as to avoid singularities and/or some very large 
amplitudes there in the graphics. The sources consist of 97 pairs of sources in two vertical  lines. The 
sources in a vertical line are spaced by λ/2 (λ is the wavelength), and the two lines of sources are spaced 
horizontally by λ/4 (similarly to those in Fig. 7).  (b) Histogram of the modulus squared of the singular 
values 2

js  for the different Modes (numbered in decreasing order of the singular value magnitude). 
These are shown as a percentage of the total sum rule S. (c) Relative magnitude of the singular values 
of each Mode, compared to the first (and largest) singular value, and plotted on a logarithmic scale.  

5.3.1. Behavior of singular values 
Fig. 9 (b) and (c) show the behavior of the magnitudes of the singular values. The mode numbers 
correspond to sorting the modes in decreasing order of the magnitude of the corresponding singular 
value. So, Mode 1 has the largest singular value, and subsequent modes have progressively smaller 
singular values. Fig. 9 (b) shows the modulus squared of the singular values for each Mode, 2

js , 
shown as a percentage of the sum rule S for this set of sources and receivers (as calculated using Eq. 
(36)). Fig. 9 (c) shows the relative magnitude of the singular values of the Modes, plotted on a 
logarithmic scale.  
The relative sizes of the singular values in Fig. 9 (b) and (c) show two striking behaviors: (1) the 
singular values are nearly constant and equal up to a relatively abrupt threshold, here round about 
Mode 12 or so, after which they drop off rapidly with increasing Mode number; (2) for larger Mode 
numbers, in Fig. 9 (c) we see this drop-off becomes extremely rapid, with an apparently 
approximately exponential decrease in the singular value magnitude at large Mode numbers.  
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Fig. 10.  Intensity graphs of the beams associated with the odd-numbered Modes 1 – 19 for the source 
and receiver points, as in Fig. 9 (a) (with intensities multiplied by the distance z from the sources for 
graphic clarity). Relative intensities are rescaled for graphic clarity for each Mode plotted, so the 
absolute “brightness” has no meaning in comparing different Modes. 

5.3.2. Forms of the communications modes 
5.3.2.1. Strongly coupled modes 

In Fig. 10, we have plotted the beams for the odd-numbered Modes (in decreasing magnitude of 
singular value), as in Fig. 9 (a). At least for Modes 1 through 11, we can count the number of “bumps” 
relatively simply, which is an odd number in these cases. (The even-numbered Modes show similar 
behavior, though with even numbers of bumps.) The order of Modes 1 through 9 is somewhat 
surprising, being perhaps “backwards” compared to what we might expect. However, we should note 
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that these modes have almost identical singular values, so this is a nearly degenerate eigenproblem, 
at least for Modes 1 through 10, so the order of these modes may have little physical importance.  

5.3.2.2. Weakly coupled modes 
More strikingly, though, and more importantly for our discussion, once we pass Mode 11, the 
magnitude of the singular values starts to drop, and, consistent with that drop, the intensity starts to 
“miss” the line of receiving points.  
It might seem that there is no intensity left at the line of receiving points for Modes 13 and above, 
especially in the “middle” vertically; certainly it is so small that after Mode 13 the intensity at the 
receiver points does not show up on the graphics in Fig. 10. However, if we plot the actual Modes at 
the sources and at the receiver points, we see that there is field at the receiver points, with well-
defined if progressively very weak behavior for these higher numbered Modes.  

 
Fig. 11.  Illustration of two surfaces or phase fronts that are “confocally curved” – each one is curved 
round about the center of the other surface: (a) from confocally curved surfaces; (b) using lenses with 
focal lengths fS and fR equal to the separation L. 

Before plotting those higher numbered Modes, we should note the behavior of the phase curvature 
of the Modes. For the strongly coupled Modes 9, 8, 7, 6, 5, 4, 3, 2, 1, and then 10 and 11, the phase 
of the sources and of the waves at the receiver points goes (in this order) from being nearly a “flat” 
phase front for the approximately “single-bumped” Mode 9 to being progressively more curved, until 
by Mode 11 and for all the subsequent modes, the phases of both the sources and the receiver points 
show what could be described as approximately confocal curvature: for a pair of surfaces or phase 
fronts, the center of curvature of one surface or phase front is the center of the other surface (Fig. 
11(a)) . We can formally describe the confocal curvature at the source and receiver planes using  

 ( )2 2 2( , ) expS S S S Sc x y ik x y L L = − + + −   (54) 

and  

 ( )2 2 2( , ) expR R R R Rc x y ik x y L L = + + −    (55) 

respectively, where Sy  is the vertical coordinate in the source plane in Fig. 11, and Sx  is similarly 
the coordinate in the direction into the “paper” in the source plane in Fig. 11 (a), and similarly for 
the coordinates Ry   and Rx  in the receiver plane. By taking out the confocal curvature (by 
multiplying by ( ),S SSc x y∗  at the sources and by ( ),R R Rc x y∗  at the receiver points), and by choosing 
an overall phase factor that makes the resulting wave real in the middle of the line of receiver points 
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vertically, we can conveniently plot (Fig. 12) both the source and the receiver amplitudes for these 
modes from Mode 11 onwards using just the real part of the source and receiver amplitudes [75].  

 

Fig. 12.  Graphs for the source function amplitudes (left column) and the receiver function amplitudes 
(right column) for Modes 11, 13, and 19 for the sources and receiver points as in Fig. 9 and Fig. 10. The 
points are the amplitudes, and the lines join adjacent points to guide the eye. Underlying approximately 
confocal phase curvatures have been removed in each case, and the set of points in each graph has been 
multiplied by a constant phase factor to make the resulting points approximately real for graphic clarity, 
and only the real parts of the source and receiver function amplitudes are plotted. The receiver 
amplitudes are for the normalized vector of amplitudes. The vector of source amplitudes is also 
normalized, but because only the amplitudes of the “right” of the two vertical lines of sources is plotted 
here, this vector is additionally multiplied here by 2  to give the source function amplitudes plotted 
here for clarity in comparison since only half of the sources are plotted. The js  are the magnitudes of 
the singular values for each Mode.  

In the plots of Fig. 12, we see that the actual relative amplitudes of the sources and of the waves at 
the receiver points are remarkably similar in form in each case (though possibly with very weak 
amplitudes at the receivers). This similarity is despite the fact that the total wave when we consider 
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the region outside the receiver region is certainly not symmetric from left to right in Fig. 12 for the 
modes beyond Mode 11. The nominal behavior of the form of these source and receiver vectors is 
also relatively straightforward and similar for all of these higher numbered modes – we see a 
relatively sinusoidal behavior near the center, with correspondingly more “bumps” for the higher 
numbered modes, and with some increase in amplitude towards the edges (the top and the bottom of 
the source and receiver regions in Fig. 9 and Fig. 10) in all these modes.   
The major difference between these higher-numbered modes, other than the proportionate increase 
in the number of “bumps” is, however, that the singular value is dropping rapidly with increasing 
mode number. To see the actual receiver amplitudes for the higher numbered modes for normalized 
source vectors, we should multiply these normalized receiver amplitudes by the magnitude of the 
singular values. Graphically, that makes the receiver amplitudes essentially invisible, as in Fig. 10 
for these higher-numbered modes. 
So, though the source and receiver eigenvectors behave in a straightforward and similar manner for 
these higher numbered modes, the coupling strength is vanishing very quickly with increasing mode 
number. The effect of this behavior for these higher numbered modes becomes very important when 
we consider below what happens as we try to pass the “diffraction limit”, and we return to this point 
below.     

5.3.3. An additional degeneracy of eigenvalues – paraxial degeneracy 
We noticed above in considering a two-dimensional problem with square source and receiver “areas” 
(Fig. 8) that we had obvious 2-fold degeneracies that are associated with the symmetry of this 
problem. However, in this paraxial example (Fig. 9), we are seeing an additional behavior. Modes 1 
to 10 are approximately degenerate – their coupling strengths or singular values are nearly the same. 
This approximate degeneracy does not obviously result from symmetry, and we it a paraxial 
degeneracy [76]. 
This paraxial degeneracy is common in paraxial problems with either parallel surfaces of parallel 
volumes of uniform thickness, as we will illustrate below with more examples. This paraxial 
degeneracy generally applies only to well-coupled modes. Unless the modes are also symmetry 
degenerate, the paraxially degenerate modes are generally only approximately degenerate – that is, 
they only approximately have the same coupling strength. However, the eigenvalues can be so nearly 
the same, typically up to some specific number, that from a physical point of view they can practically 
be thought of as degenerate. As a result,  

for the well-coupled modes in simple paraxial cases, there will also be many approximately 
equivalent ways of choosing the communications modes. 

Again, just because there can be multiple approximately equivalent ways of choosing these modes 
does not change the counting of the modes or channels.  
Generally, these two concepts of symmetry and paraxial degeneracy are different and overlapping. 
We can have symmetry degeneracy that is part of paraxial degeneracy, as in well-coupled modes 
between square apertures. We can have symmetry degeneracy that is not part of paraxial degeneracy, 
as in two very weakly coupled modes that may nonetheless have equal coupling strengths because 
of symmetry. We can have paraxially degenerate modes even if the “apertures” in the problem have 
no particular symmetry (as we will illustrate below); in such cases, there would be no symmetry 
degeneracy. 
The number of geometrically degenerate modes in paraxial problems with large apertures is 
essentially the same thing as “space-bandwidth product” as used in Fourier optics, and can be 
described by a concept we will call the “paraxial heuristic number” HN , which we discuss next.  
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5.3.4. Paraxial degeneracy and paraxial heuristic numbers 
To establish the intuitive idea of the paraxial heuristic number, suppose we have two point sources, 
on the surface of the source space, separated in the y direction by a distance sd .  This separation sd  
is presumed small compared to the separation L between the source plane and corresponding 
receiving plane on the incident surface of the receiving volume. (See Fig. 13.) Then, as in a “two-
slit” diffraction, the resulting interference pattern on the receiving surface will approximately take 
the form, in the y direction, 

 ( ) 2 2exp exp
2 2

s sd dy ik y L ik y Lφ
      ∝ − + + + +               

 (56) 

where in all denominators we approximate the distance r between points on the two planes by L.  

 
Fig. 13.  Intensity pattern at the receiving space for two point sources on the source space. 

Taking the approximation 1 1 / 2ε ε+ +  for small ε, then we obtain the usual two-slit intensity 
pattern result for small y 

 ( ) 2 2cos sd yy
L

πφ
λ

 ∝  
 

 (57) 

So the intensity “fringe spacing” or periodicity on the receiving plane is  

 r
s

Ld
d
λ

=   (58) 

So, if the source space extends from Sy−∆  to Sy∆  in the y direction, and the receiving plane similarly 
extends from Ry−∆  to Ry∆ , then the maximum number of intensity fringes we can form in the 
receiving space in the y direction, with sources spaced as far as possible on the source plane, i.e., at 
distance 2s Sd y= ∆ , is 2 /Hy R rN y d= ∆ , i.e., 

 ( )( )2 2S R
Hy

y y
N

Lλ
∆ ∆

=   (59) 

This number HyN  is our paraxial heuristic number HN  of well-coupled channels for source and 
receiver spaces that are one-dimensional “lines” in the y direction. 

It represents the maximum number of (intensity) “bumps” we could reasonably form in the receiver 
space from such “two-slit” interference from two points in the source space, for such “line” source 
and receiver spaces.  
Note, for example that, for the situation in Fig. 9, we would have 

 48 48 12
192HyN ×

= =   (60) 
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We could therefore regard is as not surprising intuitively that the number of strongly coupled 
channels, as indicated by the strengths of the singular values, is ~ 12 in the numerical results of Fig. 
9. 
Of course, considering a similar “two-slit” interference for sources spaced in the x direction instead 
would lead to a similar result there. With source and receiver space sizes in the x direction 2 Sx∆  and 
2 Rx∆ , we would obtain a similar paraxial heuristic number for that direction    

 ( )( )2 2S R
Hx

x x
N

Lλ
∆ ∆

=   (61) 

We can then take one more step, asserting we can reasonably postulate that for rectangular surfaces 
the corresponding paraxial heuristic number would be the product  

 H Hx HyN N N=   (62) 

In this rectangular case, the areas of the surfaces are, respectively, for the source and receiver spaces 

 ( ) ( )2 2S S SA x y= ∆ × ∆  and ( ) ( )2 2R R RA x y= ∆ × ∆   (63) 

Then we can write 

 
2 2
S R

H
A AN

Lλ
=   (64) 

This number HN  is our paraxial heuristic number of well-coupled channels for planar source 
and receiver spaces. 

Though we have provided a rationalization of this paraxial heuristic number HN  only for the cases 
of rectangular source and receiver surfaces, we assert that can also use this as a useful characteristic 
number even when the source and receiver surfaces are not rectangular. The numerical calculation 
examples below will illustrate empirically the extent to which this number is useful in these cases.  

 
Fig. 14.  Illustration of the solid angles (a) SΩ  subtended by the source surface (area SA ) at the 
receiving surface, and (b) RΩ  by the receiving surface (area RA ) at the source surface. 

We can also usefully write Eq. (64) using solid angles. In a paraxial approximation, the solid angle 
subtended by one surface of area A at another surface or point at a (perpendicular) distance L is 

2/A LΩ  . So, for the solid angles SΩ  and RΩ  subtended by the source and receiver surfaces 
respectively at the other surface, we have, as in Fig. 14,  

 2/S SA LΩ    and 2/R RA LΩ    (65) 

So we can write Eq. (64) in the alternative forms 

 
2 2
R S

H S R
A AN
λ λ

Ω Ω    (66) 

We can also consider the source and receiver solid angles per “channel”, 1SΩ  and 1RΩ  respectively, 
which are 
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2

1
S

S
H RN A

λΩ
Ω = =   and 

2

1
R

R
H SN A

λΩ
Ω = =   (67) 

which will be useful for a comparison later.    

 
Fig. 15.  Coupling strengths 2

ns  in decreasing order as a function of the mode number n, as calculated 
for the SVD of the scalar wave coupling between the sets of source points and receiver points as shown. 

HN  is the paraxial heuristic number, here 2 2/ ( )S RA A Lλ , where SA  and RA  are the areas of the source 
and receiver surfaces, respectively, and L ( 256λ=  here) is the separation between the surfaces. Note 
that in each case 2

ns is nearly constant up to Hn N= , after which it starts dropping rapidly. 

5.3.4.1. Paraxial heuristic numbers with rectangular surfaces 
Fig. 15 shows the calculated coupling strengths 2

ns  for several situations with rectangular or square 
source and receiver surfaces under approximately paraxial conditions. In each case here, we have 
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approximate paraxial degeneracy up to the paraxial heuristic number of modes HN , after which the 
coupling strengths drop rapidly.  

 
Fig. 16.  Paraxial cases with source or receiver spaces with shapes other than rectangles. (a) An “L” 
shaped source space with a square receiving space. (b) A circular source space with a square receiving 
space. (c) and (d) – circular source and receiver spaces with (c) equal sizes and (d) different sizes. (All 
of these simulations were performed with arrays of source points and receiver points each spaced on a 
square grid of 2λ in both x and y directions, and truncated to fit within the corresponding shapes.) 

Note that this behavior is similar (i) for both rectangular and square source and receiver spaces, (ii) 
for aligned rectangular spaces (Fig. 15 (b)) and (iii) where one is rotated by 90° (Fig. 15 (c)). For 
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larger spaces, as in Fig. 15 (d), the paraxial (approximate) degeneracy of the 2
ns  is particularly 

smooth and relatively constant up to HN .    
5.3.4.2. Other planar shapes of source and/or receiver spaces in paraxial 

problems 
As we move to source and/or receiver spaces of different shapes, but still with plane-parallel surfaces, 
we see (Fig. 16 ) that the paraxial (approximate) degeneracy is retained, though possibly up to a 
number of modes somewhat smaller than the HN  value calculated from the areas using Eq. (64). 

HN  still remains a useful approximate guide to the number of strongly coupled modes, however. 
The case of an “L” shaped source space (Fig. 16 (a)) shows a slightly less uniform set of coupling 
strengths within the first HN  modes than for the “rectangular” cases (Fig. 15), but still shows an 
abrupt drop starting at HN . Once we introduce a circular source area (Fig. 16 (b)), the initial drop in 
coupling strengths near HN  is less abrupt, and we have fewer modes with the paraxial (approximate) 
degeneracy. This smoother drop in strengths is wider when both source and receiver spaces are 
circular (Fig. 16 (c) and (d)). (We find this less abrupt drop with the circular spaces is retained in 
other similar simulations with different sizes and separations.) So, empirically,  

the very abrupt drop in  mode coupling strengths at HN  appears to be a consequence of areas 
that are rectangular, but HN  remains a useful guide to the number of strongly coupled modes 

for other shapes. 

5.3.4.3. Effect of thickness on paraxial degeneracy 
So far, we have considered only uniform “sheets” of sources (or pairs of sources) and receivers. It is, 
however, straightforward to simulate other situations. For example, we can use a cubic lattice of 
source points that fit within some other shape. Fig. 17 shows various cases where the two circular 
faces of the source and receiver spaces retain the same size and separation, so the paraxial heuristic 
number HN  is the same in all these cases.  

In Fig. 17, we see that changing from a circular set of sources (the red line and points) to a cylindrical 
one (the dashed grey line) makes little difference to the relative strengths of the various modes. The 
(approximate) paraxial degeneracy in both of these circular cross-section cases is good up to about 
mode 20, illustrating that a finite but uniform thickness of the source volume can retain the existing 
paraxial degeneracy. However, as we change to a non-uniform thickness of the source volume, given 
here by using ellipsoidal bounding volumes of increasing thickness ( Eρ , in units of the circle radius), 
the paraxial degeneracy is progressively lost. Little evidence of such approximate degeneracy is left 
by the 0.45Eρ =  case, and there is essentially no such paraxial degeneracy by the 1.5Eρ =  case 
[77]. These simulations illustrate, then, that  

paraxial degeneracy is a characteristic of paraxial systems of uniform thickness, but the paraxial 
heuristic number HN  remains a good indicator of the number of strongly coupled modes, even 

if that coupling is not uniform between the different modes. 

5.3.4.4. Strengths of weakly coupled modes 
We have already seen in Table 1 for the case of 9 sources and receivers in a line, and in the similar 
case Fig. 9 (c) with 97 sources and receivers case, that, once we pass beyond the well-coupled modes, 
the singular values (or coupling strengths) drop off rapidly. For these “one-dimensional” (line) source 
and receiver cases, this drop-off becomes apparently exponential. This exponential behavior 
becomes quite general as we move to larger numbers of sources and receivers in these geometries. 
Three cases of progressively increasing HyN are shown in Fig. 18.  

Note first that all three of these case show clear paraxial degeneracy, with obviously nearly equal 
singular values for modes n up to very nearly HyN . As n increases, the drop-off in singular values 
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near HyN  is very abrupt, increasingly so on these graphs as we increase HyN  by using larger source 
and receiver spaces (though we have also increased their spacing to keep the relative geometry 
comparable).  

 
Fig. 17.  Illustration of how non-uniform depth removes paraxial degeneracy. The receiving volume in 
all cases is a set of receiving points, on 2λ centers in both directions that fit with a circle of radius 16λ. 
For the red points and line, the source is an identical circle of source points, at a distance 128λ away 
along their common axis. For the other sets of points and/or lines, the separation of the “faces” and the 
circular cross-section are retained, but the source consists of the points (also spaced on 2λ centers, now 
in all three directions) lying within a volume. For the grey dashed line, the volume is a cylinder of depth 
8λ. For the other three sets of points and lines, the bounding volume is half of an ellipsoid of revolution. 

Eρ  is the ratio of the depth of the half ellipsoid compared to its cross-sectional radius (which is fixed 
at 16λ) (so 1Eρ =  would be a hemisphere). (a) shows the cross-sections of the source points and the 
receiving points in each case. The inset in (b) shows a perspective view, with the circular cross sections 
and the axis of rotation indicated, of the 1.5Eρ =  case, which shows the ellipsoidal shape. The traces 
in (b) show the strengths of the various communications modes as a percentage of the sum rule.  

Once the singular values start dropping off, they tend to decrease exponentially with increasing n. 
The dashed lines in Fig. 18 are exponentials given by 

 ( ) ( )8exp 0.811 0.985 Hyh n n N = − −    (68) 

(This formula is not derived, nor is it a fit to the calculations; it is simply heuristic, being judged by 
eye to represent the form of the decay. However, with one set of numerical coefficients, it 
approximately models the decaying exponential in all three cases.) The factor 0.811 in the formula 
Eq. (68) means that, between each successive mode in this decaying region very near to and after 

Hyn N= , the singular value in all three cases decreases by a factor ( )exp 0.811 2.25 ; we can see 
this behavior in the equal vertical spacing of the successive points on the right in the logarithmic-
scale graph in Fig. 18. (In Eq. (68), the factor 0.985 accounts for the fact that the exponential decay 
starts slightly before HyN  in each case [78].) 

As a practical matter, then, once HyN  becomes a significantly large number (e.g., in the 100’s), there 
really will be essentially no usable modes beyond HyN  for this case of parallel one-dimensional 
source and receiver spaces.   
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Fig. 18.   Plots of the relative size of the singular values for several different approximately paraxial 
pairs of lines of source and receiver points, as a function of the mode number n compared to the paraxial 
heuristic number HyN  for each pair of source and receiver lines, on both linear (left graph) and a 
logarithmic (right graph) scales.  The values are shown as points, with the solid lines in the linear graph 
joining them to aid the eye. The dashed lines are exponential functions given in the text. Note that, 
because the fall-off of the singular values is very rapid above HyN , the horizontal scale is expanded to 
show the behavior just round HyN . Three cases are plotted for different lengths of source ( sw ) and 
receiver ( rw  ) lines and separation (L), as sketched on the left. Red points and lines (upper traces): 

1024s rw w λ= = , 4096L λ= , 256HyN  . Blue points and lines (middle traces): 2048s rw w λ= = , 
8192L λ= , 512HyN  . Orange points and lines (lower traces): 4096s rw w λ= = , 16384L λ= , 

1024HyN  . The number of source and receiver points used in the calculations was 513 (red), 1025 
(blue) and 1036 (orange).  

For two-dimensional source and receiver spaces, such as square arrays, Fig. 19 shows there is also a 
strong fall-off of the singular values above HN , with an underlying exponentially decaying form, 
though in this case in a “stair-case” curve. The dashed lines in Fig. 19 are exponentials given by  

 ( ) ( )34exp
5

H

H

n N
h r

N
 −

= −  
 

  (69) 

(Again, this formula is not derived, and is simply heuristic, judged by eye to show an approximate 
trend, though again only one set of coefficients (the numbers 4 and 3/5) is used for all three curves.) 
The “stair-case” behavior and the HN  in the denominator in the exponential can be rationalized 
[79].  
In this two-dimensional case, then, the fall-off in the coupling strengths is not so abrupt as in the case 
of the one-dimensional source and receiver spaces, but it still has a strongly exponential underlying 
form. Again, once we pass significantly beyond Hn N≈ , the coupling strengths become very weak, 
with an underlying exponential fall-off.  
In Fig. 19, in addition to plotting the relative strengths of the singular values between equal sized 
square source and receiver spaces, we have also plotted one additional set for a case where we have 
made the receiver “square” twice as large in linear dimension, but at double the distance (as shown 
by the grey points in the graph on the right). In this case, the solid angle subtended by the receiving 
space at the source space is retained; hence this additional case has the same paraxial heuristic 
number HN as the “orange” points and lines. We see that, indeed, the orange and grey relative 
singular values have very similar behavior. This similarity illustrates an important point. All of the 
modes we are showing here, including the ones past HN  on these curves, are propagating modes; 
their amplitudes are falling off in an inverse square fashion. If they did not do that, then the orange 
and grey “curves” would have different forms. In particular, we can restate this point as follows: 



 42 

These weakly coupled modes are not in general evanescent in the “far field”. 

 
Fig. 19.   Plots of the relative size of the singular values for several different approximately paraxial 
square arrays of source and receiver points, as a function of the mode number n compared to the paraxial 
heuristic number HN  for each pair of source and receiver squares, on both linear (left graph) and a 
logarithmic (right graph) scales.  The values are shown as points, with the solid lines in the linear graph 
joining them to aid the eye. The dashed lines are exponential functions given in the text. Note that the 
horizontal scale is displaced to show the behavior near to and above HN . The square source and 
receiver spaces have linear dimension sw  and rw , respectively, and separation L, and the points are 
equally spaced on square lattices in each case, and with equal number of source and receiver points N. 
Red points and lines (upper traces):  40s rw w λ= = , 160L λ= , 441N = , 100HN = .  Blue points and 
lines (middle traces): 60s rw w λ= = , 240L λ= , 961N = , 225HN = . Orange points and lines (lower 
traces): 80s rw w λ= = ,  320L λ= , 1681N = , 400HN = . Grey points (right graph only):  40sw λ=
, 80rw λ= ,  640L λ= ,  1681N = ,  400HN = . 

We might have thought that the exponential fall-off in the singular values was somehow associated 
with exponential fall-off in the field amplitudes with distance. In that case, the well-coupled modes 
with a “diffraction angle”, which have ordinary inverse-square behavior, would remain similar in 
their coupling strengths as we increased the distance (while retaining solid angle), but the weakly 
coupled modes would not. However, the weakly coupled modes are showing very similar relative 
coupling strengths (as we increase the distance while retaining the solid angle) - in fact, slightly 
stronger in this numerical example for the case of the more distant but larger receiving surface. 
There is some discussion in the literature of what is equivalent to our exponential fall-off in the 
singular values past our heuristic numbers, at least in the “Fourier transform” view, [80 - 82] for 
simple apertures [81] or some higher dimensional structures [82]. 

5.3.5. Use of point sources as approximations to sets of “patches” 
So far, we have discussed point sources and point receivers because they enable a relatively 
straightforward set of “toy” problems to illustrate various behaviors. Below we will consider the 
mathematics of continuous sources more deeply, and to get that correct, we need several additional 
concepts. However, we can already argue that, at least under some circumstances, such point sources 
and receivers are some reasonable approximation to a situation where we have uniform source 
“patches” covering the source surface and similarly for a receiving surface. In other words, we can 
argue that a point source in the middle of a “patch” can be a good approximation to a uniform source 
that covers the patch, and that a similar approach can also work for uniform receiving “patches”.  
We can construct a heuristic argument, at least for the paraxial case, to get a characteristic maximum 
separation we need between our point sources if they are reasonably to approximate continuous 
source line segments on a “line” source (e.g., as in Fig. 9, Fig. 10, and Fig. 18) or a uniform “patch” 
source (e.g., as in Fig. 15, Fig. 16, and Fig. 19). This argument is based on keeping the variation in 
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the path length to the receiving line or surface less than half a wavelength for two adjacent point 
sources (or, equivalently, between the extreme ends of the line segment or patch).  
For a line source of total (lateral) length w (e.g., the length of 48λ in Fig. 9) and separated from the 
receiver space by a distance L (e.g., the distance 192λ in Fig. 9), and for a paraxial condition where 
w L , we can argue (Appendix A) that the distance pd  between the source points should obey 

   (70) 

We can presume a similar constraint applies in each direction for a two-dimensional source, using 
different w in each direction if the overall source has different sizes in the two directions.  

For the paraxial situations above in Fig. 9, Fig. 10, Fig. 12, Fig. 15, Fig. 16, Fig. 17, Fig. 18, and Fig. 
19 where / 4L w  , we should therefore have a separation between the point sources of 2pd λ< if 
those point sources are reasonably to approximate uniform patches. For the “line” sources in Fig. 9, 
Fig. 10, Fig. 12, and Fig. 18, we have / 2λ  source spacing, so we easily satisfy Eq. (70). In the 
various “area” examples, Fig. 15, Fig. 16, Fig. 17, and Fig. 19, where the source spacings used are 

2λ  or slightly larger, we are just on the edge of violating this simple criterion.     
We could follow through similar arguments for the idea of replacing the point receivers with uniform 
patches of continuous “receivers”, with a similar result. So,  

with some care in the spacing of point sources and receivers, such an approach can mimic the 
behavior we would have for uniform patches of sources and/or receivers with dimensions equal 

to the spacing between the point sources and/or receivers. 

5.4. Non-paraxial behavior 

5.4.1. Longitudinal heuristic angle 
A set of sources can have directionality not only as a result of their transverse dimensions. 
Longitudinal sets of sources can also give rise to directional waves. This is routine in many designs 
of radio antennas, for example. This behavior is illustrated in the example in Fig. 20. Here we take 
horizontal lines of sources and of receivers and find the most strongly coupled communications 
mode.  
We can rationalize this behavior with a heuristic argument based on interference of sources at the 
two extreme ends of the line of sources, and we construct this argument in Appendix B. This leads 
to a longitudinal heuristic angle  

 
2L z
λθ =
∆

  (71) 

that characterizes the “cone angle” of the resulting diffraction, which is a measure of the 
directionality we expect to be possible in the longitudinal direction from a line source of length 2 z∆
. The calculated intensity pattern in Fig. 20 shows this angle Lθ  gives a good approximate description 
of the resulting beam. Incidentally, in this case, there is only one communications mode; within 
numerical accuracy (at least to 5 significant figures), all of the sum rule S is consumed by the coupling 
strength 2

1s  of this mode. 

We can also evaluate the effective solid angle of this channel. The area of the disk of half-angle Lθ , 
or equivalently, of radius given by the corresponding yδ , is ( )2 22

L o LA y zπ δ π θ= = , so the 
corresponding solid angle of this “disk” is  

/ 2pd L wλ<
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which is π divided by the length of the line source in wavelengths. We can compare this with the 
solid angle per channel for the two-dimensional surfaces, as in Eq. (67), which is 1 / (the area of the 
relevant surface in square wavelengths). This tells us that,  

for some object of comparable dimensions in all three directions, once the dimensions are some 
reasonable number of wavelengths, the solid angle per channel is determined more by the cross-

sectional area than by the thickness. 

  
Fig. 20. Illustration of the beam resulting from finding the best-coupled mode between two horizontal 
lines of sources and receivers, showing the longitudinal heuristic angle Lθ . Both sources and receivers 
use 201 points spaced by / 4λ , aligned in the z horizontal axis, and with center-to-center spacing of 

250oz λ= . From Eq. (71), 141mrad 8.1Lθ °   and the corresponding 35.35yδ λ . (a) is a cross-
section of the intensity. For graphic clarity, the magnitude is multiplied by 2z  once we leave the source 
region (technically, a factor 2[max(30 , )]zλ ). The intensity in the region immediately around the source 
is omitted from the graphics to avoid singularities. (b) An x-y cross-section of the intensity in the middle 
of the receivers; (c)  a perspective surface-plot view of the same data as in (b).   

Equivalently, for some cuboid of dimensions 2 x∆ , 2 y∆ , and 2 z∆ , the ratio of the solid angle per 
channel from the cross-sectional area 2 2x y∆ × ∆  to that from the length 2 z∆  alone is 
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   (73) 

For example, for 2 2 2x y λ∆ = ∆ = , to get this ratio to be 1 (i.e., the solid angle from the length 
comparable to that from the cross-sectional area), the length 2 z∆  would need to be 4 12.6π×   
wavelengths, much larger than any cross-sectional dimension. So, conventional “optical” situations 
with large cross-sectional dimensions in wavelengths have solid angles per channel roughly 
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independent of the depth of the volume for any thickness comparable to the cross-sectional 
dimensions.  
By contrast, if we consider transverse dimensions 2 2 / 2x y λ∆ = ∆ = , then once the length 2 z∆  
becomes significantly greater than a wavelength, the effect of the length will dominate in narrowing 
the solid angle of the channel. This is a typical situation in many multiple-element wireless or radio-
frequency antennas (such as the classic “Yagi-Uda” antenna, for example), and could also occur in 
nanophotonic systems. 

5.4.2. Spherical shell spaces 
Concentric spherical “shell” source and receiver spaces (see Fig. 21) are a good example of a case 
that is very much not paraxial. Indeed, there is no preferred axis at all in this case. This case is also 
interesting from a fundamental point of view; it may allow us to deduce some limiting behavior for 
any and all waves emitted from some space because there is no way for the generated wave from a 
smaller “source” spherical shell to miss a larger spherical shell “receiving” space that surrounds it. 

 
Fig. 21. Behavior of the magnitude of the singular values ns , as a function of communication mode 
number n, relative to that of largest singular value 1s , for three different centered spherical “shell” 
source and receiver spaces. In each case, the receiving points are on the surface of a 24λ diameter 
sphere. The source points are on the surfaces of spheres of diameters 2λ (upper, red line), 4λ (middle, 
blue line), and 8λ (lower, orange line), respectively. The solid lines are drawn between the calculated 
values of 1/ns s  in each case to guide the eye. The dashed and dotted lines are heuristic functions 
shown for comparison (see text). On the horizontal axis, the mode numbers for each curve are divided 
by the corresponding spherical heuristic numbers, which are 2 50.3SHN  , 4 201SHN  , and 

8 804SHN   for the 2, 4, and 8λ diameter source spheres, respectively. 1600 source and receiver points 
are used for the 2λ  and 4λ cases, and 2400 for the 8λ case, distributed approximately uniformly over 
the sphere surfaces [83]. 

Fig. 21 shows the calculated singular value magnitudes (relative to the strongest (first) one) for three 
different situations with increasing radius of the inner “source” spherical shell surface. The singular 
value magnitudes are plotted both on a linear scale (left graph) and a logarithmic scale (right graph). 
We see first from the left graph in Fig. 21 that this situation does not lead to anything like paraxial 
degeneracy of the “well-coupled” modes. Other than some “step” structure, there is no large 
“plateau” of approximately equal singular values. Indeed, intriguingly, as we increase the size of the 
“source” sphere, these “strongly coupled” singular values apparently asymptote towards a simple 
straight line (the dotted line in the left graph), with an intercept we call a spherical heuristic number 
of  

 2 216 /SHN rπ λ=   (74) 

where r is the radius of the sphere of sources; that is, the line goes from 1 at 1n =  down to 0 at 
SHn N= , or equivalently, a function 1 / SHn N− . We can justify this number also with a heuristic 
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argument given in Appendix C. This number SHN  corresponds to one mode for every square half 
wavelength (a surface area element 2( / 2)λ ) on the source sphere surface.  

As we continue past this SHN  in each case, we see an underlying exponential fall-off in the singular 
values on a “staircase” line in each case. The dashed lines in each case are given by the function  

 ( )1 3( ) exp
3 8

SH
SH

SH

n N
f n

N
 −

= −  
 

  (75) 

Note that this expression is heuristic; it is not derived, and the constants 1/3 and 3/8 are simply chosen 
to give exponentials that, by eye, approximately describe the apparent exponential fall of in the 
singular values as n begins to significantly exceed SHN  in each case. It is worth noting, however, 
that we are able to use the same coefficients, 1/3 and 3/8, for all three cases shown. We can however 
argue for the SHN  factor in the denominator in the exponential by a similar rationalization to that 
above for the paraxial case.  
Note that, despite there being nowhere for the wave go to avoid the receiving sphere, we still see an 
exponential fall-off in coupling the weakly coupled modes, rather similar in form to the two-
dimensional paraxial case above. It is also true in this spherical case that increasing the radius of the 
“receiving” sphere makes essentially no difference to the form of the lines in Fig. 21. Again, we 
conclude that the weakly coupled modes therefore also correspond to propagating (not evanescent) 
modes, with inverse square behavior of their intensities, at least for receiving radii much larger than 
the source sphere.   
The simplicity of the asymptotic behaviors of the singular values suggests some analytic solution 
may explain these. Indeed, we expect there may be analytic solutions in such a spherical case, likely 
involving spherical Bessel functions for the radial behavior and spherical harmonics for the angular 
behavior, for example.   

5.5. Deducing sources to give a particular wave 
The SVD approach gives a straightforward way to calculate just what source in the source space or 
volume is required to generate a specific wave in the receiving space or volume. Suppose we want a 
(normalized) wave (or vector of amplitudes) Roφ  in the receiving space. Because the (normalized) 

set of eigenfunctions or eigenvectors { }Rjφ  is a complete set for the receiving space, then we can 

expand Roφ  in this set, as 

 Ro j Rjj aφ φ= ∑   (76) 

where 
 j Rj Roa φ φ=   (77) 

Suppose, for the moment, that we want to generate just one component, q Rqa φ  of this sum (Eq. 
(76)). Then because SR Sj j Rjsψ φ=G  (Eq. (31)), to generate that component we need an amplitude 
of the (normalized) source function Sqψ  of /q qa s . We can repeat this argument for each 
component, adding up the results. So, quite generally, the required source function Soψ  to generate 

Roφ  is 

 1j
So Sj Rj Ro Sj

j jj j

a
s s

ψ ψ φ φ ψ= ≡∑ ∑  (78) 

This point has been known, at least for the specific case of prolate spheroidal basis sets and 
correspondingly simple apertures, for some time [84]. 
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5.5.1. Sources for an arbitrary combination of specific receiver modes 
In the example of Fig. 22, we have deliberately chosen to try to create a set of amplitudes at the 
receiver positions that is a specific arbitrary (normalized) superposition [85] of the first 14 “receiver” 
communications modes, here of the approximately paraxial example as in Fig. 9, Fig. 10, and Fig. 
12.  

 
Fig. 22.  Example of constructing the required sources to generate a specific received “wave” or set of 
received amplitudes. To avoid the additional graphic complication of handling phases, the values 
plotting in the graphs are for the squared magnitudes of the relevant quantities. The source and receiver 
points are as in Fig. 9, with the corresponding modes as in Fig. 10 and Fig. 12.  (a) Desired receiver 
values (points) and the calculated actual values generated (line) using the calculated source values.  (b 
) Corresponding sources values (points, joined by lines for visual clarity). (c) Values for each receiver 
mode used to construct the desired values at the receiver points. (d) Corresponding required values for 
each source mode to generate the desired receiver values. Note in particular in (c) and (d) that, though 
the required source values for each mode largely track the required receiver values for each mode for 
the first 10 modes (which all have similar singular values), for Modes 12, 13, and 14 in particular (which 
are highlighted in (c) and (d)), the required values for the source modes have to rise because the singular 
values are becoming smaller.   

The points in Fig. 22 (a) show the modulus squared of the desired amplitudes at the receiver points 
(so, the effective power desired at each of these points). In this case, because we restricted to waves 
that could be created just from these first 14 modes, we are able to generate exactly the wave we 
want by using Eq. (78) to set the corresponding amplitudes of the first 14 source functions. The grey 
curve that passes through the points in Fig. 22 (a) is not a line joining the points (as we have done in 
earlier graphics); rather it is the modulus squared of the calculated wave as a function of vertical 
position at the line of receivers. Obviously, this approach generates the form we wanted at the 
receiver points. The modulus squared of the corresponding amplitudes at the source points is shown 
in Fig. 22 (b).  
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Fig. 22 (c) shows the modulus squared of the corresponding receiver modal amplitudes using to make 
up the superposition. Note in particular that we have chosen finite amplitudes for Modes 12, 13, and 
14 (highlighted as the solid red bars in Fig. 22 (c)) so that we can see the effect of including some 
modes with relatively small singular values. The singular values are all similar for the first 10 modes. 
In general, we see from Eq.(78) the modulus squared of the required amplitude in the corresponding 
source modes should be larger by a factor 21 / js  for the jth mode so as to generate the required 
receiver values. For the first 10 modes in this approximately paraxial problem, this source quantity 
(Fig. 22 (d)) varies only slightly from 2

11 / 3752s   for Mode 1 to 2
101 / 3803s   for Mode 10. 

Consequently, the modulus squared of the source amplitudes for these first 10 modes (in Fig. 22 (d)) 
looks essentially identical in form for these first 10 modes to the corresponding modulus squared of 
the receiver mode amplitudes (Fig. 22 (c)).  
Note, though, that the required relative magnitudes of the source amplitudes grow substantially 
especially as we consider Modes 12, 13, and 14 (we have highlighted these also in Fig. 22 (d)). Once 
we get to Mode 14, 2

141 / 44694s  , and the required mode amplitude magnitude has grown 
accordingly. Hence we see explicitly in this example that, if our desired set of receiver amplitudes 
require the use of modes with small singular values, the amplitude of the corresponding source mode 
has to be increased accordingly. The reason why the shapes of the curves in Fig. 22 (a) and Fig. 22 
(b) are different is because we need these relatively larger amplitudes of the weakly coupled modes.  
.  
Note again that, for this case where we made up the desired set of amplitudes at the receivers as a 
specific linear combination of a finite number of the (receiver) communications modes, we were 
guaranteed to be able to make up the required source amplitudes from a finite linear combination of 
the corresponding source communications modes. If we examine more general functions, we are not 
guaranteed any such finite linear combination, however, and we look at some such examples next. 

5.5.2. Sources for a Gaussian spot – passing the diffraction limit 
A Gaussian “beam” is a well-known example form with straightforward mathematical properties, 
and is one that also occurs in optics as a good approximation to the beam form from confocal laser 
cavities. Such a Gaussian distribution of desired amplitudes at the receiver points does not, however, 
correspond to any of the communications modes for finite source and receiver spaces, and 
mathematically generating that set of Gaussian amplitudes will require a linear combination of 
multiple receiver communications modes.  
In the examples in Fig. 23 (which uses the same sets of sources and receivers as in Fig. 9, Fig. 10, 
Fig. 12, and Fig. 22), we have chosen to ask for receiver amplitudes of the form 

 ( ) ( ) ( )2

2
0, exp Rj o

Rj R Rj
y y

y c y
w

φ
 −
 = −
 
 

    (79) 

These amplitudes correspond to a Gaussian in the y direction (vertical on the graphs) with 1/e 
amplitude half width of w (which is also therefore 21 / e  “intensity” half width of the set of modulus 
squared amplitudes 2

Rjφ ), with unit amplitude at the center of the Gaussian (i.e., at the point oy ), 

and with confocally curved phase fronts from the factor ( )0,R Rjc y  (as in Eq. (55)). For all the graphs 

except Fig. 23 (e), we choose 0oy = , which corresponds to a Gaussian centered vertically.  Fig. 23 
(e) has the desired center shifted down (here, technically a positive shift) by 18λ.  
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Fig. 23. Plots of the required sources (the red points, joined by red lines for visual clarity, are the 
modulus squared of the amplitudes of the “front” line of sources) on the graphs on the left to attempt to 
synthesize the desired receiver values, shown as the red points on the graphs on the right (the modulus 
squared of the desired receiver amplitude is plotted). The actual resulting values of the modulus squared 
of the receiver amplitude are shown as the black line in these graphs on the right . Beam intensity, 
multiplied by the distance from the sources on the left for graphic clarity, is shown in the middle pictures 
in false color. Results for three different desired Gaussian widths are shown in (a), (b) and (c) 
respectively, with calculations based on using the first 20 communications modes. For (d) and (e),  the 
calculation is restricted to using only 12 modes, and for (e), the desired position is shifted down by 18λ.                                                                                                                                                                                             
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We have confocally curved the desired phase front because such waves are “easier” to construct, 
especially for “off-center” desired beams (as in Fig. 23 (e)), because of the underlying confocal 
curvature of the beams with large numbers of “bumps”. Constructing “flat” phase fronts away from 
the center tends to require the use of significant amplitudes of more modes than we might expect 
from just the intensity shape of the beam.  
In the superpositions, we only use the first 20 communications modes in our calculations for Fig. 23 
(a), (b), and (c), and the first 12 for (d) and (e). 20 modes are apparently sufficient for (a) 16λ and 
(b) 11λ full widths; the resulting generated amplitudes (the black lines) correspond well with the 
desired values (red points), at least as seen by eye in these calculations. The source form for the 16λ 
case also looks to be a smooth and essentially Gaussian curve. (We can rationalize later why the 
source form here is also Gaussian.)  
For the 11λ full-width case, the form of the source is more complicated, which essentially reflects 
the fact that we are close to violating what we typically regard as diffraction limits, which loosely 
here means we are starting to require the use of weakly coupled modes. As a result, we see significant 
amplitudes of some of the high numbered modes, which also shows in the emergence of parts of the 
beam that miss the receiver space.  
For the 6λ case in Fig. 23 (c), large amounts of weakly coupled high-numbered modes are required. 
Note in particular that the vertical scale maximum ( 64 10× ) on the source graph in (c) is 2000 times 
as high as that in Fig. 23 (a) and (b), and that there are particularly large amplitudes of the sources at 
the two extreme ends of the source region. Now in the picture of the beam intensity, on this false 
color scale, the amplitude of the desired Gaussian beam does not even show up, and large parts of 
the beam miss the receiver region entirely (above and below). Nonetheless, an approximately 
Gaussian beam of approximately the correct width is generated along the line of receivers, as we see 
in the graph on the right of Fig. 23 (c). The very large source amplitudes and the substantial parts of 
the beam missing the receiver space entirely are because there are significant amplitudes of high-
numbered and very weakly coupled communications modes.  
The red bars in Fig. 24 (b) show the amount of the various modes (as the modulus squared of their 
desired amplitudes) that we require. Now we see that for this 6λ wide beam, there are small but 
significant received amplitudes required though Mode 23 on this graph. If we include 23 modes in 
the calculation, we can do somewhat better in the beam shape, as shown by the orange curve in Fig. 
24 (a), though even then we still do not quite reach the desired shape. 
If we look closely at the graph on the right in Fig. 23 (c), we see that the desired Gaussian beam is 
not quite correctly created; the peak is not quite high enough in the center. The reason for this 
discrepancy is that we do not have enough modes in our calculation. We have plotted the region near 
the center in more detail in Fig. 24. Now the calculation for the 20 mode case is the light blue line in 
Fig. 24 (a), which is below the desired peak (as given by the red points) in the center (and is also 
slightly wider near the base of the curve).  
In principle, we could keep adding more, higher-numbered modes and continue to increase the 
accuracy of the created beam shape. However, the source amplitudes required for these higher-
numbered modes are increasing very rapidly because of the very small singular values associated 
with these high-numbered communications modes. In fact, beyond Mode 23, the coupling is so weak 
that the calculation starts to have significant numerical errors in conventional 64 bit calculations, and 
further improvements are essentially beyond such standard calculations.     
As we see in Fig. 24 (a), the shape calculated with just 12 modes is not much different from those 
with added higher-numbered modes. (In these calculations for a centered beam, only the odd 
numbered modes are actually required because of the symmetry, so we only plot values required for 
the source and receiver modes for the odd modes in Fig. 24 (b).) The first 12 modes here are all 
strongly coupled (see Fig. 9 (b)), with the first 10 being approximately equally well coupled. As we 
add in further modes (modes 13 and 15) for the 16 mode calculation, we see some improvement in 
the resulting shape (the pink curve in Fig. 24 (a)) with corresponding required additional source 
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modes (pink bars in Fig. 24 (b)). The required source mode values for the 20 mode and 23 mode 
cases are shown as the blue and orange bars respectively in Fig. 24 (b). 

 
Fig. 24.   Illustration of the effect of changing the number of modes used in trying to create the Gaussian 
amplitudes for the 6-wavelength wide Gaussian shape in Fig. 23 (c) (red points in (a) here). The red 
bars in (b) show the mode amplitudes (modulus squared) required for the receiver communications 
modes (up to Mode 23) to attempt to create the desired Gaussian shape.  The grey bars show the 
corresponding relative strengths of the (modulus squared of) the source mode amplitudes up to Mode 
12. (Only odd numbered modes occur in this problem because of the symmetry, and only those 
amplitudes are therefore plotted here.) The pink, blue, and orange colored bars show progressively the 
additional required (modulus squared) amplitudes for 16, 20, and 23 mode calculations. (The overall 
vertical position of the source mode (modulus squared) amplitudes on this logarithmic scale is adjusted 
to match the corresponding receiver mode (modulus squared) amplitude for the strongest coupled mode 
for easier comparison of relative magnitudes.) (a) shows that a sharper peak and a slightly narrrow shape 
do result from adding further modes, but (b) shows that the required amplitudes of the additional higher-
numbered modes become enormous, illustrating the practical impossiblity of substantial exceeding 
diffraction limits.            

In Fig. 24, we see that adding in higher-numbered modes makes only small improvements in the 
desired shape, and at the cost of extremely large amplitudes of the source modes. We are therefore 
illustrating the practical impossibility of substantially passing the diffraction limit; even extremely 
large amplitudes in the additional sources make relatively little improvement to the resulting shape. 
In this case, if we restrict ourselves to using only the well-coupled modes (e.g., up to Mode 12), we 
can generate a reasonable shape of received beam (Fig. 23 (d)), even if it is not quite as narrow as 
we would have wanted, while avoiding any large source amplitudes and while also having the beam 
essentially all arriving in the receiver space.  
Fig. 23 (e) illustrates what happens if we retain this 12 mode calculation but now ask for a beam 
displaced by 18 wavelengths from the center. We see that we are able to shift the beam while 
retaining what appears to be a similar shape, and we expect similar beam “scanning” behavior over 
the entire receiver space.  

5.5.3. “Top-hat” function 
As another example, we can attempt to generate a “top-hat” function – one that is constant within a 
range and zero elsewhere. We use the same configuration as in Fig. 23, and we ask in this example 
for a centered “top-hat” set of receiver amplitudes with a width of 18λ. The resulting actual receiver 
amplitudes and the relative mode amplitudes are plotted in Fig. 25. Except for the use of the top-hat 
function rather than the Gaussian, Fig. 25 is otherwise similar to Fig. 24.  
The top-hat function is approximately created, but the edges are not abrupt, consistent with 
diffraction limitations, and additionally there is “ringing” – spatial oscillations – in the amplitude 
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across the top of the “top-hat”, reminiscent of the Gibbs phenomenon in the use of Fourier series to 
represent “square” functions. We also see similar behavior to that seen with the Gaussian in that the 
inclusion of further higher-numbered modes in the calculation leads to relatively little improvement 
in the form of the actual amplitudes at the receivers, and very large amplitudes of higher-numbered 
source modes are required even for these benefits.  

  
Fig. 25.  (a) Receiver amplitude (modulus squared) for the desired “top-hat” function of width 18λ (red 
points and dashed light red lines to guide the eye) and the various actual amplitudes (modulus squared) 
for use of different numbers of modes, simlarly to Fig. 24 (a). (b) Relative amplitudes of the (modulus 
squared of) the receiver and transmitter modes, similalry to Fig. 24 (b). 

5.5.4. Notes on passing the diffraction limit 
Generally, these examples are illustrating that  

the reason why we cannot focus past conventional diffraction limits is that we must then use 
very weakly coupled communications modes, leading to very large source amplitudes. 

There is no way of avoiding this for given source and receiver spaces. If we look back at Fig. 12, we 
see that, once we pass the “well-coupled” modes, the number of “bumps” in the subsequent modes 
only improves linearly as the coupling strength falls of exponentially. Equivalently 

linear improvements in resolution past the diffraction limit essentially require exponential 
increases in source amplitudes 

Our discussion here is, of course, only an example to illustrate how this communications mode 
approach relates to resolution limits. Such limits are well understood and have been comprehensively 
reviewed [86, 87]. [88 - 90] are examples of using such a modal approach experimentally for super-
resolution, based on the analytic prolate spheroidal functions and/or equivalent “sampling theory” 
approaches (see section 7.3 and [33]). [90] explicitly makes the same point we are making here that 
the rapid fall-off the singular values prevents effective super-resolution. These conclusions are also 
consistent with recent innovative approaches to sub-diffraction imaging [91], which indicate large 
amplitudes of sub-diffraction effective image sources are required to image such features into the far 
field.  



 53 

6. Mathematics of continuous functions, operators, 
and vector spaces 

Using finite collections of point sources and receivers, we have seen many of the behaviors of 
orthogonal wave channels between sources and receivers. But we have two problems:  

1) Why is it that adding more sources and receivers (in given volumes) does not continue to increase 
the number of usable communications channels or “degrees of freedom”? We have some heuristic 
answers, but no general mathematical principle.  

2) How can we transition mathematically continuous functions rather than discrete “point” sources 
and receivers? For example, we may actually have current densities on antennas or in continuous 
solids,  and we may want to understand continuous waves in receiving volumes or even use them 
as effective continuous sources in diffraction problems.  

Both of these questions are answered in this section. To address them, we need to step back 
mathematically from finite matrices, and set up an approach based on functional analysis. The results 
are very general and powerful. 
To introduce functional analysis properly would take too much space. Unfortunately, though there 
are substantial texts in the field (e.g., [92 - 94]), their style and length can be forbidding. To help, I 
wrote a separate introduction [36] that, though shorter by about a factor of 10 than standard texts, 
does present all we need, including all proofs. With that as a reference, in sections 6.1 to 6.6, I 
introduce the main ideas and terminology, and give a path to the answers we need.  
As we progress, we develop extended ideas of the inner product (section 6.6). We need this to handle 
electromagnetism properly. This development clarifies how to get back to a simpler “matrix-vector” 
algebra (in what we call an “algebraic shift”). We also complete the mathematics of SVD in section 
6.7 and Appendix D.  
One other key point is that we argue from the physics (sections 6.8 and 6.9) that the core operators 
we need (such as Green’s functions) will be so-called Hilbert-Schmidt operators. That in turn allows 
us to use the particularly powerful mathematics of so-called compact operators, and also gives us the 
sum rule S that underlies why we can only have finite numbers of usable communications channels.  

6.1. Functions, vectors, numbers, and spaces 
In this mathematics, we can think of functions as being mathematical “vectors”, (e.g., column vectors 
of numbers), with possibly infinite numbers of elements; these might be the values of the function at 
each of a possibly infinite number of points, for example. If needed, we use the term “mathematical” 
vector to distinguish these from “geometrical vectors” such as a position vector r, or an electric field 
E. From here on, we use the terms “functions” and (mathematical) “vectors” interchangeably. 
Initially, we use Greek lower case italic letters, such as α, to represent functions (or vectors), and 
Roman italic letters, such as a, for (complex) numbers or “scalars”.  
An (abstract) space is simply a set (here, of elements that are vectors) with some additional axiomatic 
properties (such as the inner product). So our vectors (or functions) will be elements in (or members 
of) what we call a vector (or function) space. Defining spaces is important; specifically, we will have 
different spaces for source functions and for received waves (or wave functions). Though these 
functions will generally also be in different physical volumes, by space we mean this abstract space, 
not the physical volume. Our “source” and “receiving” spaces may also differ in other ways – they 
may even also have different “inner products”, for example.  
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6.2. Inner products  
The most important axiomatic property we add to our space is the “inner product”. This gives a well-
defined effective “length” of a function (a norm), and a “distance” between two functions (a metric). 
It also defines “orthogonality” of the functions. The following defines an inner product, and anything 
with these properties is an inner product. 

  (80) 
The first two “linearity” properties, (IP1) and (IP2), are useful in describing linear systems (as in 
linear superposition of waves) [95]. (IP3) gives a useful algebra for working with complex quantities, 
and (IP4) means that the inner product gives us a positive real norm  

 ( ),α α α=  (81)   

A space with a norm is called a normed space. A norm expresses an idea of “length” for a function 
as some single, real number. The existence of a norm then allows us to define a metric (the metric 
“induced” by the norm), which then gives a real number that we can use as the “distance” between 
two functions or vectors. For two vectors or functions α and β, that metric would be defined as  

 ( ) ( ), ,Pd α β α β α β α β≡ − = − −   (82) 

A space with a metric is called a metric space. 
With ordinary geometric vectors, the norm is just the length of the geometric vector, and the metric 
is the distance between the “tips” of the two vectors if their other ends are “joined” at the same point. 
The usual dot product of geometric vectors is an inner product, satisfying all the properties (IP1) – 
(IP4), though geometric vectors have only real components, so (IP3) just corresponds to the 
geometric dot product being commutative. Note that the inner product is not however in general 
commutative because of the complex conjugate in (IP3). A vector or function space that has an inner 
product with these properties is called an inner-product (vector) space.  
If some situation, such as waves in linear media, can be usefully described using vectors with such 
an inner product, then these properties of the norm and the metric mean that we can exploit much of 
the mathematics from real analysis; hence, we can use ideas of convergence of sequences of numbers, 
to discuss convergence of functions as well, and that idea is at the core of functional analysis.  
The other very important use of an inner product is to define orthogonality. Specifically,  

  (83) 
This is a generalization of the idea that the geometrical vector “dot” product is similarly used to 
define orthogonality (or “being at right angles”) in geometric space. Note here that we extend that 

For all vectors α, β and γ in a vector space, and all (complex) scalars a, we 
define an inner product ( ),α β , which is a (complex) scalar, through the 
following properties: 

(IP1) ( ) ( ) ( ), , ,γ α β γ α γ β+ = +   

(IP2) ( ) ( ), ,a aγ α γ α=  (where aα  is the vector or function in which 
all the values in the vector or function α are multiplied by the 
(complex) scalar a)  

(IP3) ( ) ( ), ,β α α β ∗=   

(IP4) ( ), 0α α ≥ , with ( ), 0 if and only if 0α α α= =  (the zero vector) 

a non-zero element α of an inner product space is said to be orthogonal 
to a non-zero element β of the same space if and only if ( ), 0α β =        
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idea to allow for complex vector “components” and for arbitrary, even infinite, numbers of 
dimensions.  
Note these essential properties of an inner product (IP1) to (IP4), listed in (80), leave considerable 
flexibility. When we set up a given vector space, we formally choose the inner product for that space; 
in different spaces we may make different choices. For a “receiving” space, we may want the inner 
product to correspond to the “energy” in a wave, and we can define such “energy” inner products. 
For the sources, on the other hand, we might just want a simple Cartesian inner product (as in ordinary 
vector multiplications), for example, for different current distributions. For a reason that will become 
clear later, we call such a choice the underlying inner product of the space [96]. We return to specific 
forms of inner products once we have defined the idea of “operators”.  

6.3. Sequences and convergence 
We can obviously write a list of multiple elements in a set or space, but we need to distinguish two 
kinds of list. The first kind simply lists elements in the set, conventionally written by enclosing the 
list within curly brackets. So { }1.7, 3.6, 2  is a set that contains the three real numbers 1.7, 3.6, and 
2. The order of the elements in this simple list does not matter, so { }1.7, 2, 3.6  means the same as 
{ }1.7, 3.6, 2 .  
We often do care about the order of numbers, however. 1.7, 2, and 3.6 might be the values of some 
function at successive points, or they might be the x, y, and z coordinates of some point in space. The 
second kind of list, called a sequence gives the elements in a given order, and is conventionally 
written by enclosing the elements in ordinary braces [97]. For example, ( )1.7, 3.6, 2  is a sequence 
of the real numbers 1.7, 3.6, and 2 in this order.   
In functional analysis, by default, a sequence of elements is usually an infinitely long [98] list of 
elements in a particular order, as in some (infinitely long) sequence ( )1 2 3, , ,α α α  of vectors. A 
subsequence is just some of the elements of such a sequence, but retaining the relative order. So, one 
subsequence of ( )1 2 3, , ,α α α   would be ( )1 3, ,α α  , where we have missed out element 2α , but 
have kept the order of the rest. (A subsequence is therefore also a sequence in its own right.)  
Many of the proofs in functional analysis depend on convergence of sequences (or subsequences). 
Specifically, does a sequence converge so that, for every element jα  after some specific nth element 

nα  (so for j n> ), each such element is closer and closer (in the sense of the metric) to some specific 
element β? If so, β is the limit of the sequence. In real analysis (the analysis of numbers rather than 
functions), the sequence ( )1 1 1 1

2 4 8 161, , , , ,  converges towards 0, for example.  
Another formal convergence is called Cauchy convergence, in which, essentially, the separation 
between elements gets closer and closer [99]. It can be proved that every convergent sequence in a 
metric space is such a Cauchy sequence of elements.  
Mathematically, it can be important whether or not the limit of a convergent sequence lies within the 
space. So, in our example ( )1 1 1 1

2 4 8 161, , , , , , it matters whether 0 is within the range of numbers 
allowed in the space or not. A (metric) space is said to be complete if every Cauchy sequence in the 
space converges to a limit that is also an element of the space. This completeness essentially means 
that we are not “missing out” specific functions from the space, and we are careful to include 
functions that might be at the “edges” in a mathematical sense of our space – i.e., that are the limits 
of sequences of functions that are otherwise within the space. These are all reasonable requirements 
in the physical problems of interest to us, and we presume such completeness in our spaces.   
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6.4. Hilbert spaces 
With this background, we can now define a Hilbert (vector) space.  

 A Hilbert space is a complete inner-product space. (84) 

Generally, we notate spaces using italic upper case letters such as D, F, G, and R, with subscripts to 
distinguish spaces if necessary, and if we use H (with or without a subscript) for a space, then it is 
certainly a Hilbert space. The mathematics of Hilbert spaces is powerful and very useful. One 
particularly powerful aspect is the idea of a basis set. 

6.4.1. Orthogonal sets and basis sets in Hilbert spaces 
An orthogonal set of elements (vectors) in a Hilbert space is a subset of the space whose (non-zero) 
elements are pairwise orthogonal – every member is orthogonal to every other member. So, for any 
two (non-zero) members α and γ of this orthogonal set, ( ), 0α γ =  unless α γ= . Even more 
convenient is an orthonormal set, which is an orthogonal set in which every element  is normalized 
to have a norm of 1, i.e., ( ) ( ), , 1α α α α= = . We presume that we can index the members with an 
integer or natural number index j or k, for example. Then, using the Kronecker delta (Eq. (27)), for 
an orthonormal set 

 ( ),j k jkα α δ=   (85) 

A linear combination of vectors 1, , mβ β  of a vector space is an expression of the form 
1 1 2 2 m md d dβ β β+ + +  for some set of scalars { }1 2, , , md d d . We can choose to have a set of 

vectors defined as those vectors γ that can be represented by a linear combination of the vectors in 
an orthonormal set { }1 2, ,α α  , i.e., by the sum  

 1 1 2 2 j jja a aγ α α α= + + ≡ ∑   (86) 

We  can also call such an expression the expansion of γ in the basis jα  (i.e., in the set { }1 2, ,α α  ), 
and the numbers ja  are called the expansion coefficients. A set of orthogonal (and, preferably, 
orthonormal) vectors that can be used to represent any vector in a space can be called an (orthogonal 
or orthonormal) basis for that space. The number of such functions in the basis – i.e., in the set 
{ }1 2, ,α α   – is the dimensionality of the basis set and of the corresponding space. Depending on the 
space, this dimensionality could be finite or infinite. By definition, a basis, because it can represent 
any function in a given space, is also said to be a complete set of functions for the space [100]. The 
coefficient ja  is easily extracted by forming the inner product with jα , i.e., 

 ( ),j jaα γ =   (87) 

Indeed, we this is the defining equation for the expansion coefficients ja . Now we come to a key 
attribute of a Hilbert space (see, e.g., [36]):  

 There is always a basis for a Hilbert space (88) 

That is, there is always some complete set of orthogonal (or orthonormal) functions { }1 2, ,α α   that 
forms a basis for any given Hilbert space. Importantly, this also applies to infinite-dimensional 
Hilbert spaces. Of course, if there is one basis set, then there are many possible basis sets – in fact 
an infinite number – because we can make them from orthogonal linear combinations of the set 
{ }1 2, ,α α  . 
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6.4.2. An “algebraic shift” to Dirac notation for vectors and inner 
products 

We can now view this set of numbers { }ja   as being the representation of the function γ  in the 
basis { }1 2, ,α α  , and we can choose to write them as a column vector,  

 
1

2

a
aγ γ

 
 = ≡ 
  

  (89) 

We can now use a Dirac “ket vector” notation γ  as a short-hand for just such a column vector of 
such expansion coefficients and, indeed, for the function it represents. The usefulness of this 
notational shift to Dirac notation goes deeper, however. Consider an inner product of two functions 
η and µ in a given Hilbert space. Expanding each function in this basis { }1 2, ,α α   gives  

 k kk rη α= ∑  and k kk tµ α= ∑  (90) 

where  

 ( ),k kr α η=  and ( ),k kt α µ=   (91) 

are inner products formed using the underlying inner product in the space. Using these expansions 
and the inner product “linearity” properties ((IP1) and IP2) in (80)), we have   

 ( ) ( ) [ ]
1

21 2
, , ,

, , , ,p q p q p q pq p q
p q p q p q

r
t r t r t r t t rµ η α α δ∗ ∗ ∗ ∗ ∗

 
 = = = ≡∑ ∑ ∑  
  





  (92) 

Once we make an “algebraic shift” of regarding the ket vectors in Dirac notation µ  and η  as 
being vectors of expansion coefficients constructed using the underlying inner product in the space, 
i.e., defining the Dirac ket vectors, using the underlying inner product, as in 

 
( )
( )

1

2

,
,

α η
η α η

 
 ≡  
  

  and 
( )
( )

1

2

,
,

α µ
µ α µ

 
 ≡  
  

 (93) 

then the subsequent mathematics of the inner products is simply the Cartesian inner product  

 ( ) ( ) ( )
( )
( )

1

1 2 2

,
, , , ,

α η
µ η α µ α µ α η µ η µ η∗ ∗

 
  ≡ ≡ ≡   
  





  (94) 

where we have now introduced the “bra” vector µ  as being the row vector whose elements are the 
complex conjugates of the expansion coefficients, and the shorthand µ η µ η≡  for such an inner 
product. We will take a further step in this “algebraic shift” once we have defined linear operators 
and their matrix representation below. 

6.5. Linear operators 
In our mathematics, we also need operators. An operator mathematically turns one function into 
another, or, equivalently, generates a “new” function from an “old” one. It maps from functions in a 
“domain” space D to a “range” space R (which may be a different space). In our case, we are 
particularly interested in operators that generate a “wave” function in a receiving volume from a 
“source” function in a source volume, for example. We notate operators using an upper-case letter 
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in a sans-serif font, as in A. We can write the action of the operator A on any vector or function α  
in its domain D to generate a vector or function γ  in its range R as  

 γ α= A   (95) 

6.5.1. Definition of linear operators 
The operators of most interest to us are linear operators, defined as follows: 

    (96) 
All operators we consider will be linear. Note all matrices are linear operators in this sense.  

6.5.2. Operator norms and bounded operators 
We can now usefully introduce the idea of operator norms. We need this because it allows us to 
consider convergence, now of the functions in the range that result from operating on functions in 
the domain, and to define “boundedness”. For an operator to be bounded, we require that, for any 
vector α in the domain D and with a finite norm ( , )D Dα α α= , the resulting vector αA  in the 
range R must have a finite norm ( , )R Rα α α≡A A A . (Here the subscripts D and R are allowing 
for possibly different inner products in the domain and range.) With physical operators representing 
waves, we expect boundedness – finite inputs should give finite outputs. Formally, we can restate 
this as 

 
 in 

0

sup R
sup

D Dα
α

α
α

≠

= < ∞
AA   (97) 

The supremum (“sup”) here essentially [101] means the largest value for any non-zero vector α in 
the domain D, so here the norm of the “largest” vector we could get in the range by operating with 
A  on a normalized vector in the domain. This expression also formally defines the supremum 
(operator) norm supA  for the operator, which can be used in various proofs. Later, we will define 
another operator norm (the Hilbert-Schmidt norm). Formally, the existence of such a norm implies 
the operator is bounded, and vice versa. Quite generally for operator norms, we can also write 

 α α≤A A   (98) 

which is obvious from Eq. (97) for the supremum norm. 

6.5.3. Matrix representation of linear operators and use of Dirac 
notation 

Because any Hilbert space has some complete basis set, we can use this property and the underlying 
inner product to represent a linear operator as a matrix. Suppose, then, that we have two Hilbert 
spaces, 1H  and 2H , which may be different spaces and may have different underlying inner 
products. We presume orthonormal basis sets { }1 2, ,α α   in 1H  and { }1 2, ,β β   in 2H . Both 
Hilbert spaces may be infinite dimensional, and so these basis sets may also be infinite.  
We presume that a bounded linear operator 21A  maps from vectors in space 1H  to vectors in space 

2H  – for example, mapping an vector η  in 1H  to some vector σ  in 2H  
 21σ η= A   (99) 

For any two vectors or functions α and β in its domain D, and any (possibly 
complex) scalar c, a linear operator A is required to have two properties: 

 O1 ( )α β α β+ =A A + A    

 O2 ( )c cα α=A A   
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Quite generally, we could construct the (underlying) inner product between this resulting vector and 
an arbitrary vector µ  in 2H . Specifically, we would have 

 ( ) ( )212 2, ,µ σ µ η≡ A   (100) 

Here, since both vectors µ and σ  are in 2H , we are using the underlying inner product in 2H  and 
we use the subscript “2” to make this clear. Now we can define a matrix element, which is generally 
a complex number, as 
 ( )21 2

,jk j ka β α= A  (101) 

Now we expand the vectors η and µ on their corresponding basis sets using the underlying inner 
product in each space. So, we have  

 k kk rη α= ∑  and  j jj tµ β= ∑  (102) 

where the kr  and the jt  are complex numbers given by 

 ( )1,k kr α η=  and  ( )2
,j jt β µ=  (103) 

Then, we can rewrite Eq. (100) as  

 ( ) ( ) ( )21 21 212 2, ,2
, , ,j j k k j k j k j jk k

j k j k j k
t r t r t a rµ η β α β α∗ ∗ ∗= = =∑ ∑ ∑ ∑ 

 
A A A  (104) 

Equivalently, substituting back for kr  and jt  using (103), and noting that, therefore, by IP3, 
( ),j jt µ β∗ =  we could choose to write 

 ( ) ( )21
,

, ,j jk k
j k

aβ α≡ ⋅ ⋅∑A  (105)  

where we substitute the vector being operated on for the dot “ ⋅ ” in each case, as in substituting µ for 
the dot in the left inner product and η for the dot in the right inner product to evaluate the same result 
as in Eq. (104) [102].  

Now we can to complete our an “algebraic shift” towards a matrix-vector algebra, written in Dirac 
notation. We can write the “ket” version of the vectors η and µ , though with the basis { }1 2, ,β β 

for µ because it is in space 2H , i.e., 
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  (106) 

Using Eq. (101) for the matrix elements, we can also write a matrix 21A  as a matrix representation 
of the operator 21A .  

 
11 12

21 21 22

a a
a a

 
 ≡  
  

A




  

  (107) 

(Note we use the same notation for these two technically different things – the operator and its matrix 
representation – but the context will resolve the confusion: if we are using Dirac notation, then we 
are using the matrix representation of the operator.) Then the sum 21, j kj k t a r∗∑  can be interpreted as 
the vector-matrix-vector product 
 21

,
j jk k

j k
t a r µ η∗ ≡∑ A  (108) 

This completes our “algebraic shift” to Dirac or matrix-vector notation. So, now,  
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we can use Dirac or matrix-vector notation as long as we presume 
• The bra or ket vectors are considered to contain the expansion coefficients constructed using 

a basis and the underlying inner product for that space in which the corresponding function 
exists, as in Eq. (106) 

• The operators are considered to be matrices with matrix elements as in Eq. (101), again are 
based on the use of the underlying inner products in the corresponding spaces. 

Note in writing underlying inner products with operators, such as 2 21 2( , ) ( , )µ σ µ η≡ A  in Eq. (100), 
we have only ever required the operator to operate to the “right”. Indeed, for some operators, such 
as conventional derivative operator, for example, that may be a “legal” requirement. One particular 
benefit of this “algebraic shift” is that, though the actual operator may only be able to operate to the 
“right”, in the matrix-vector/Dirac version, the matrix version of the operator can also “operate” to 
the left, which gives us the convenience of the usual associative laws of matrix-vector algebra. 
Explicitly, for example, we can “break up” 21µ ηA  as 

 ( ) ( )21 21 21µ η µ η µ η≡ ≡A A A   (109) 

So, summarizing these benefits, the use of Dirac notation in this way 
• “hides” the underlying inner products for subsequent algebra, leaving just a Cartesian inner 

product for bra and ket vectors  
• allows full use of associative laws as in matrix-vector multiplications  

So, used in this way, Dirac notation can handle situations with different underlying inner products in 
different spaces. It gives a simple and convenient algebra for working within and between these more 
sophisticated Hilbert spaces [103].  
We can usefully go one step further, writing the matrix 21A  itself in terms of bra and ket vectors. For 
the moment, we will be explicit about what spaces the vector are in by using “1” and “2” subscripts 
on the vectors. Specifically, we write a bilinear expansion [104] 
 21 12,

jk j k
j k

a β α≡ ∑A   (110) 

This form results in the same matrix elements as in Eq. (101). Explicitly,  

 
( )

( )
2 21 11 2 12,

112 2 1, , ,

jk j k
j k

p p jk j k q q p pj jk kq q j jk k
p j k q p j k q j k

a

t a r t a r t a r

µ η µ β α η

β β α α δ δ∗ ∗ ∗

≡ ∑

= = =∑ ∑ ∑ ∑ ∑ ∑ ∑

A
  (111) 

in agreement with Eq. (104), so this approach for writing matrices works here also. Dropping the 
subscript notation on the vectors, instead of Eq. (110) we can just write 
 21

,
jk j k

j k
a β α≡ ∑A    (112) 

Note that a linear operator like 21A  from one Hilbert space to another can be written in such an 
“outer-product” form as in Eq. (110) on any desired basis sets for each Hilbert space. Of course, the 
numbers jka  will be different depending on the basis sets chosen. From this point on, we will use 
either the “original” notation with explicit underlying inner products, or the Dirac notation, 
depending on which is the most convenient.  

6.5.4. Adjoint operator 
For an operator A that maps vectors in space 1H  to vectors in space 2H , the corresponding adjoint 
operator †A  (in a notation that anticipates a key result here) is one that maps vectors from  space 

2H  to space 1H , and that, for any vectors η  in 1H  and µ  in 2H , satisfies 

 ( ) ( )†
2 1, ,µ η µ η=A A   (113) 
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which is the defining equation for an adjoint operator. To relate this to matrices, we can consider 
orthonormal basis sets { }1 2, ,α α   in 1H  and { }1 2, ,β β   in 2H  and write the matrix elements of 
these two operators as 
 ( )2

,jk j ka β α= A   and ( )†
1

,kj k jb α β= A   (114) 

Then from Eqs. (113) and (114), and using the inner product property (IP3) from (80), we have 

 ( ) ( ) ( )† †
1 1 2

, , ,kj k j j k j k jkb aα β β α β α∗ ∗ ∗= = = =A A A   (115) 

which means that, as anticipated in the notation, in matrix form, the adjoint operator †A  is simply 
the matrix that is the Hermitian adjoint of the matrix version of A. Generally we can use this 
superscript †  to indicate the Hermitian adjoint operation. Note also that  

 ( )†† =A A   (116) 

6.5.5. Compact operators 
Compact operators are a key category for our purposes. One definition is as follows: 

   (117) 
Such a mathematical definition contains just enough to allow various useful mathematical proofs, it 
is rather technical, and does not directly reveal what is so powerful and relevant about them. For our 
purposes, however, compactness is what in the end allows us to deduce that we only have finite 
numbers of useful channels in communication.  
We can begin to see the point of these operators through an extreme example case. Consider an 
infinite-dimensional Hilbert space, with an orthonormal basis { }1 2, ,α α  . Physically, we could 
think of these as representing orthogonal source functions, such as orthogonal current distributions, 
inside a source space, for example. For any two such basis vectors, the “distance” between them is 
defined by the metric 

  ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,

1 1 0 0 2

j k j k j k j j k k k j j kd α α α α α α α α α α α α α α≡ − − = + − −

= + − − =
  (118) 

(This can be visualized as the distance between the “tips” of two unit vectors that are at right angles.) 
So, we can construct an infinite sequence that is just these basis vectors, each used exactly once, such 
as the sequence ( )1 2, ,α α  . This sequence does not converge, and has no convergent subsequences; 
every pair of elements in the sequence has a “distance” between them of 2  because they are all 
orthogonal.  
A compact operator operating on that infinite (and non-converging) sequence of different basis 
vectors will create a sequence of vectors that will have some convergent subsequence [105]. This 
will ultimately lead to only finite numbers of usable channels in communication, even with infinite 
dimensional spaces. 

6.5.6. Mathematical definition of Hilbert-Schmidt operators 
Hilbert-Schmidt operators form a particularly important class of compact operators. This is because, 
as we will discuss later, the important operators we encounter for Green’s functions for waves are 
such Hilbert-Schmidt operators, though we postpone that physical discussion. The mathematical 
definition of a Hilbert-Schmidt operator is as follows: 

The operator A (from the normed space F to the normed space G) is 
compact if and only if it maps every bounded sequence ( )mα  of vectors 
in F into a sequence in G that has a convergent subsequence.  
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  (119) 

Because we use this specific sum elsewhere, we name it the sum rule limit S. The square root of this 
sum-rule limit S can be called the Hilbert-Schmidt norm of the operator, i.e., 

 2
HS j

j
S α= ≡ ∑A A  (120) 

For any arbitrary complete basis sets { }jα  and { }kβ  in 1H , starting from this definition, we can 
prove three other equivalent expressions for S [36].  
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  (121) 

One particularly important property, as mentioned above, is that [36] 

 Hilbert-Schmidt operators are compact.  (122) 

Other important results for our purposes are that [36] 

 if A is a Hilbert-Schmidt operator, so also are †A , †A A  and †AA   (123) 

6.5.7. Hermitian operators 
The most general definition of a Hermitian or self-adjoint operator A is that, for all vectors or 
functions β  and γ  in the relevant Hilbert space or spaces, 

 ( ) ( ), ,β γ β γ=A A  (124) 

If we compare this with the definition of the adjoint operator, Eq.(113), we see that this means a 
Hermitian operator is equal to its own adjoint,  
 †A = A   (125) 
and for the matrix elements of the operator on some basis set(s), we have 
 jk kja a∗=   (126) 

Using the general mathematical relation for two operators or matrices B and C ,  ( )† † †=BC C B  (see 
Eq. (13), and easily proved in summation notations, for example), and Eq. (116), we see that both 

†A A  and †AA  are Hermitian, regardless of whether A is Hermitian. Hence,  

  (127) 
This is relevant because in general the Green’s function operator G, coupling sources in one volume 
to generate waves in another volume, is not generally Hermitian, though it will be a Hilbert-Schmidt 
operator; however, the operators †G G  and †GG  will be Hilbert-Schmidt, compact, and Hermitian.  
Quite generally, for an operator A, some vector α  is an eigenvector (or eigenfunction) of A if and 
only if, for some number c 

For a Hilbert space 1H  with an orthonormal basis { }1 2, ,α α   and a bounded 
operator A that maps from vectors in 1H  to vectors in a Hilbert space 2H , then 

A is a Hilbert-Schmidt operator if and only if  2
jjS α= < ∞∑ A    

for a Hilbert-Schmidt operator A (which is not necessarily Hermitian), the 
operators †A A  and †AA  are both compact and Hermitian  
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 cα α=A  (128)  
in which case c is the corresponding eigenvalue.  
With these definitions, we can write down several important and useful properties of Hermitian 
operators (see [36] for derivations and proofs).   

• for any Hermitian operator A, ( ),β βA  is a real number   
• all eigenvalues of Hermitian operators are necessarily real.  
• for a Hermitian operator, eigenvectors for different eigenvalues are orthogonal 
• if a non-zero eigenvalue of compact Hermitian operator has some number 1n >  of 

orthogonal corresponding eigenvectors (known as degenerate eigenvectors), then this 
number n (known as the degeneracy or multiplicity) is finite 

• if a compact Hermitian operator is operating on an infinite dimensional space, then the 
sequence of eigenvalues ( )pc  must tend to zero as p → ∞ . 

6.5.8. The spectral theorem for compact Hermitian operators 
The spectral theorem is a particularly important and powerful theorem for the eigenfunctions of a 
compact Hermitian operator, and can be stated as follows: 

  (129) 
A consequence is that we can write any such compact Hermitian operator in terms of its 
eigenfunctions and corresponding eigenvalues as 

 ( )
1

,j j j
j

r β β
∞

=
= ⋅∑A   (130) 

(where we substitute the vector being operated on for the dot “ ⋅ ”) or, in Dirac notation 

 
1

j j j
j

r β β
∞

=
= ∑A   (131)  

Here, the eigenvalues jr  are whatever ones are associated with the corresponding eigenvector jβ . 
(Note here that for the case of degenerate eigenvalues, we presume that we have written an 
orthogonal set of eigenvectors for each such degenerate eigenvalue (which we are always free to do) 
and for indexing purposes for an p-fold degenerate eigenvalue, we simply repeat the eigenvalue p 
times in this sum, once for each of the corresponding orthogonal degenerate eigenvectors.)  
Another important property is the following [36]:   

  (132) 
This means, physically, that the eigenfunctions are essentially the “best” functions we can choose if 
we are trying to maximize performance in specific ways (such as maximizing power coupling 

For a compact Hermitian operator A mapping from a Hilbert space H onto itself, 
the set of eigenfunctions { }jβ  of A is complete for describing any vector φ that 
can be generated by the action of the operator on an arbitrary vector ψ in the 
space H, i.e., any vector φ ψ= A . If all the eigenvalues of  are non-zero, then 
the set { }jα  will be complete for the Hilbert space H; if not, then we can extend 
the set by Gram-Schmidt orthogonalization to form a complete set for H. 

 

A

The eigenvectors jβ  of a compact Hermitian operator can be found by a progressive 
variational technique, finding the largest possible result for jβA  where jβ  is 
constrained to be orthogonal to all the previous eigenvectors. This will also give a 
corresponding set of eigenvalues jr  in descending order of their magnitude. 
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between sources and the resulting waves), and we could even find them physically just by looking 
for the best such performance. 

6.5.9. Positive operators 
A positive operator C  [106] is one for which, for any vector β in relevant space(s),  

 ( ), 0β β ≥C   (133) 

In particular, we can prove [36] that  

  (134)  
The property (133) automatically implies that 

  (135) 
Note then that, following from (127), (134) and (135) 

  (136) 

6.6. Inner products involving operators 
We have mentioned that there can be many ways of choosing the inner product for a Hilbert space, 
and the choice we make may depend on the problem. Positive Hermitian operators give a particularly 
broad class of ways we can set up inner products.  

6.6.1. Operator-weighted inner product 
Suppose we have a positive Hermitian operator W that acts on functions such as α, β, and γ, and 
suppose we already have defined an inner product of the form ( ),β α  with all the properties IP1 to 
IP4 as in (80). Now, the action of W on a vector γ  is to generate another vector α  as in α γ= W . 
So, we can form the inner product ( ) ( ), ,β α β γ≡ W . Now, from the Hermiticity of W, we know that 
( ) ( ), ,β γ β γ=W W , as in Eq. (124), and by (IP3), we know that ( ) ( ), ,β γ γ β ∗=W W . So, let us 
define a new entity, which we could call an operator-weighted inner product [107],  

 ( ) ( ), ,β γ β γ≡W W   (137) 

Then, using first Eq. (124) and then IP3, we have 

 ( ) ( ) ( ) ( ) ( ), , , , ,β γ β γ β γ γ β γ β∗ ∗= = = ≡W WW W W   (138) 

Hence this new entity, based on a positive Hermitian operator W, also satisfies the property IP3 of 
an inner product. It is straight forward to show that, because W is linear, this entity also satisfies 
(IP1), as in  

 
( ) ( )( ) ( ) ( ) ( )

( ) ( )
, , , , ,

, ,

γ α β γ α β γ α β γ α γ β

γ α γ β

+ ≡ + = + = +

= +
W

W W

W W W W W
 (139)  

and (IP2), as in   

any operator that can be written in the form †C = B B   
where B is a linear operator, is a positive operator 

any eigenvalues c of a positive operator 
are positive (non-negative), i.e., 0c ≥   

if A is a Hilbert-Schmidt operator, then the operators †A A   and 
†AA  (in addition to being Hermitian Hilbert-Schmidt (compact) 

operators) are positive operators and therefore any eigenvalues of 
either of them are necessarily positive (technically, 0≥ )   
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 ( ) ( ) ( ) ( ) ( ), , , , ,a a a a aγ α γ α γ α γ α γ α≡ = = ≡W WW W W    (140) 

As for (IP4), because W is by choice a positive operator we already know by Eq. (133) that any entity 
( ),β βW  is a positive real number, and hence ( ),β γ W   satisfies (IP4). So, for any positive (linear) 
Hermitian operator W, we can construct an (operator-weighted) inner product of the form given by 
Eq. (137).  
One simple example of such an inner product is what we could call a (simple) weighted inner product. 
If we have a non-zero positive real “weighting” function ( )w x , then we could use an expression   

 ( ) ( ) ( ) ( ), w w x x x dxα β α β∗= ∫    (141) 

to define a “legal” inner product. In this case, the weight function can be viewed as a diagonal, 
positive Hermitian operator on a “position” basis. 

6.6.2. Transformed inner product  
With a positive operator that can be written as in (134) in the form 
 †W =B B  (142)  
where B is a linear operator, we can take an additional step that opens another sub-class of inner 
products. Specifically, we could define what we could call a transformed inner product [107]. To do 
this, we first write the operator-weighted inner product with W as in Eq. (137), with this form (142) 

 ( ) ( ) ( ) ( )†, , , ,β γ β γ β γ β γ≡ = =W W B B B B    (143) 

where in the last step we have used the definition of an adjoint operator as Eq. (113) and the property 
(116).  
We can regard the operator B as transforming a vector β - after all, B operating on β is just a linear 
transform [108] acting on β – and we could write generally 
 ( ) ( ), Tβ γ β γ≡B B ,B    (144) 

where the subscript “T B ” indicates this inner product with respect to the transformation B of the 
vectors in the inner product. Because this is just a rewriting of an operator-weighted inner product, 
as in Eq. (143), we already know it is a “legal inner product. Note we can use any (bounded) linear 
operator B to construct such a transformed inner product because it can construct a (bounded) positive 
operator using Eq. (142). We will encounter just such an inner product as an energy inner product 
for the electromagnetic field.  

6.7. Singular value decomposition 
We have already discussed singular value decomposition (SVD) for finite matrices, where it is well 
known. With the mathematics of functional analysis, however, we can extend this idea more 
generally to any compact operators (so, even with infinite dimensional spaces). We can at the same 
time complete the formal proofs of the various statements, Eqs. (29) - (35), even for infinite 
dimensional spaces, and these statements now apply for SRG  as any compact operator. The results 
for finite matrices are then just a special case. Since this is now a purely mathematical argument, we 
defer it to Appendix D. 

6.8. Physical coupling operators as Hilbert-Schmidt operators 
We see that having coupling operators or Green’s functions that are Hilbert-Schmidt operators opens 
powerful mathematical tools for infinite-dimensional spaces, as required for continuous functions. 
We can, however, now argue, based on physical presumptions, that the free-space Green’s functions 
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associated with wave equations quite generally are Hilbert-Schmidt operators, as also are a wide 
range of physical coupling operators.  
We start with monochromatic scalar Green’s function as in Eq. (4), now written as being between 
points Sr  and Rr  in the source and receiving volumes, SV  and  RV , respectively. 

 ( ) ( )exp1;
4

R S
R S

R S

ik
Gω π

−
= −

−

r r
r r

r r
  (145) 

We follow an approach similar to [5], though using the notations and results from the general 
mathematics we developed above for Hilbert spaces. Presuming the source volume SV  is finite, and 
that the source and receiver volumes are separate (i.e., not overlapping) [109, 110], with some 
minimum distance minr  between them,  

 ( ) 2 3 3
2 22 2

1 1;
16 16S S

S
R S S S

V V minR S

VG d d C
rω π π

= ≤ =∫ ∫
−

r r r r
r r

 (146) 

where, with these assumptions, C is finite. Hence, integrating this finite quantity over a finite volume 
RV , also gives a finite result we can call S, given by 

 ( ) 2 3 3
22

;
16R S

R S
R S S R

V V min

V VS G d d
rω π

= ≤∫ ∫ r r r r   (147) 

Indeed, with this specific Green’s function we can even let the receiving volume RV  be a spherical 
shell of some finite thickness w but of arbitrarily large radius ar  and still get a finite, limiting result 
for S, i.e., because as ar → ∞ , 24R aV r wπ→  and min ar r→   

  as 
4

s
a

V wS r
π

→ → ∞  (148)  

which we can interpret as resulting from the “inverse square” behavior characteristic of power or 
energy in waves.    

With this finite S, we can examine the Hilbert-Schmidt nature of this Gω . Since by presumption our 
source and receiver spaces are Hilbert spaces, we have complete orthonormal basis sets in each, 
which we can write formally as { } { }1 2, ,Sq S Sα α α≡    and { } { }1 2, ,Rp R Rα α α≡  , respectively. Since 

these are just spatial functions, we can also write them in the form ( )Sq Sα r  and ( )Rp Rα r  
respectively. For the moment, we use simple Cartesian inner products in integral form for the 
underlying inner products i.e.,  
 ( ) ( ) ( ) 3,

S

S S S S S SS
V

dµ η µ η∗≡ ∫ r r r  and ( ) ( ) ( ) 3,
R

R R R R R R R
V

dµ η µ η∗≡ ∫ r r r   (149) 

where Sµ , Sη , Rµ , and Rη  are arbitrary functions in their spaces. 

Using the form Eq.(105) for expanding an operator on two basis sets, we can rewrite Eq. (147) using 
these basis sets [111]  
 ( ) ( )( ) ( ) ( )

, ,
; , ,R S pq Rp Sq pq Rp R SSq

p q p q
G g gω α α α α ∗≡ ⋅ ⋅ ≡∑ ∑r r r r    (150) 

Completing the inner products with basis functions ( )Ri Rα r  on the left and ( )Sj Sα r  on the right, 
and using the orthonormality of the respective basis sets, we obtain 

 ( ) ( ) ( ) 3 3;
S R

ij Ri R R S Sj S R S
V V

g G d dωα α∗= ∫ ∫ r r r r r r    (151) 

Now, using (150), we can write 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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So 

 

( )

( ) ( ) ( ) ( )
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∫ ∫

= ∑ ∫ ∫

= =∑ ∑

r r r r

r r r r r r   (153) 

Putting this result together with Eq. (147), then, we have a key result 

 ( ) 2 23 3

,
;

S R

R S R S pq
p qV V

S G d d gω= = ∑∫ ∫ r r r r   (154) 

Taking this result together with the definition of a Hilbert-Schmidt operator, Eq. (121), and the result 
(148), we therefore conclude that 

  (155) 

Note in particular that, by evaluating the integral in Eq. (147)  

  (156) 

We can see from the structure of this proof that even broader classes of physical operators between 
source and receiver spaces with also be Hilbert-Schmidt operators. First, note that  

  (157) 

To see this, we can repeat the formal integration as in Eq. (147) with D instead of Gω , which will 
give a finite result because of the finiteness of F and the finiteness of the volumes. Then we can 
follow through similar algebra as in Eqs. (150) to (153) to prove a result as in Eq. (154) with D 
instead of Gω . 
We can also extend the result to operator-weighted inner products, as in Eq. (137), at least if those 
operators are “local” – that is the action of this (bounded) (positive Hermitian) “weighting” operator 
W on a function at a point r in a given space only depends on the value and/or the spatial derivatives 
of the function at a given point, and so it can be written as ( )rW . This may be reasonably obvious 
but we give the full proof in Appendix E. So 

  (158) 

the scalar Green’s function ( ) ( )exp1;
4

R S
R S

R S

ik
Gω π

−
= −

−

r r
r r

r r
 operating from 

a finite source volume SV  to a receiver volume RV  that is either finite or is a 
spherical shell of arbitrarily large radius, is a Hilbert-Schmidt operator. 

 

we can establish the sum rule S without solving the SVD 
problem for the eigenfunctions and eigenvalues 

 

any finite coupling operator ( );R SD r r  between finite 
volumes SV  and  RV  is a Hilbert-Schmidt operator 

 

any finite coupling operator ( );R SD r r  between finite volumes SV  and RV  and 
for which any finite functions in the associated Hilbert spaces lead to finite 
operator-weighted inner products, is a Hilbert-Schmidt operator with respect to 
those inner products  
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This is then a very broad category of physical coupling operators. If the operator ( );R SD r r  is such 
that its magnitude falls off as ~ 1 / r  with distance r from the source, as is common in wave operators 
so that the energy in the wave does not grow with distance from the source, then the receiving volume 
can be a spherical shell of arbitrary radius, and the operator will still be a Hilbert-Schmidt operator. 
Thus far, we have only formally considered scalar operators, but the generalization to operators for 
vector fields (such as the electromagnetic field), is straightforward, and we complete this in section 
8.6 once we have introduced the necessary notations. The operators are then formally tensor or 
dyadic, but as long as they are bounded, they will also be Hilbert-Schmidt operators. 
Generally, we see that the Hilbert-Schmidt nature of these physical operators follows immediately if 
the operators give finite results in the receiving volume from finite sources in the source volume and 
if the source and receiver volumes are both finite. With wave operators, we expect this extends even 
to spherical shell receiving volumes of arbitrary radius. Hence, following from these Hilbert-Schmidt 
properties of the coupling operators, we have a key result that we can state informally but correctly 
as follows: 

For all operators that give waves in one volume from sources in another, the sum of the squares 
of the coupling strengths between orthogonal sources in one volume and orthogonal waves in 

the other is a finite “sum rule” number S that can be calculated by integration using the operator, 
without otherwise solving the problem. This is true even if the orthogonal sets are infinite. 

6.9. Diffraction operators 
So far, we have discussed actual sources in one space generating waves in another. Another very 
common class of problems uses wavefronts as effective sources to describe diffraction and beam 
propagation. So, if we know the wave on one surface, then we can hope to calculate it on another. 
This approach goes back to Huygens [112]. We could call the operator that relates the resulting wave 
on a second surface to the wave amplitudes on first surface the diffraction operator. In the simplest 
“Huygens” approach, then, we have a set of effective point sources on the first surface whose density 
is proportional to the wave amplitude on that surface. In that case, the diffraction operator for scalar 
waves is just the same Green’s function, Eq. (4), we have used when considering “actual” point 
sources, so in that approximation all our results using this Green’s function carry over to diffraction 
problems.  
The simple point-source approach to diffraction operators does have known problems; notoriously, 
it leads to non-existent “backwards” waves. The effective source also should not radiate uniformly 
in angle even in the forward direction; one solution, taken by Fresnel, introduces an ad hoc angle-
dependent “obliquity factor” to the Green’s function [68, 113], (and see [114] for a general discussion 
of diffraction).   
Generally, diffraction operators can be constructed using such integrations of the wave equation 
(Kirchhoff for scalar waves (e.g., [68, 114]), and Stratton and Chu [115, 116] for electromagnetic 
waves). Such integrations show that the waves generated from sources inside some closed surface 
can be emulated outside the surface by effective sources on the surface. Though technically only 
valid if we consider the entire closed surface, typically we pretend that we can consider effective 
sources only over some finite surface corresponding to the aperture of the system. See discussions 
of communications modes for scalar [117] and vector [118] diffraction, and [89] for the Debye-Wolf 
vector wave approach to a diffraction operator.  
We will not provide further details of such diffraction operators here. However, a key point is that, 
for the same reason that the actual Green’s functions between sources and receiving points are 
Hilbert-Schmidt operators, all such diffraction operators will be Hilbert-Schmidt as well, as in (158)
. The waves they give are finite, and the source area or volume is finite. So certainly the resulting 
Hilbert-Schmidt integral, as in Eq. (154) or Eq. (226), will be finite for any finite receiving volume, 
and also, we expect, for any spherical shell receiving volume of arbitrary radius because we also 
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expect the resulting waves to fall off as 1 / r  or faster.  Hence, we can apply the general results of 
our analysis also to diffraction operators, or, equivalently,  

within the limitations of diffraction operators, communications modes based on diffraction 
operators correctly model the channels for waves between surfaces. 

6.10. Using the sum rule to validate practical, finite basis sets 
The formal mathematics above for continuous functions generally leads to basis sets with infinite 
numbers of elements. In practice, we prefer finite sets that are “complete enough” for our problems. 
Using the sum rule of Eq. (154) (or, more generally, Eq. (226)), we can establish a simple criterion 
for knowing when to stop adding elements to our sets.  
First, we evaluate the sum rule S by performing the required Green’s function or coupling operator 
integral over the source and receiver volumes (as in Eq. (154) or Eq. (226)). Then we choose any 
convenient finite sets of orthonormal functions – SN  functions ( )NSq Sβ r  in the source space and 

RN  functions ( )NRp Rβ r   in the receiving space. Then we evaluate coupling matrix elements pqb  as 
in Eq. (151) or Eq. (225), but with our sets ( )NSq Sβ r  and ( )NRp Rβ r  instead of the complete basis 
sets ( )Sq Sα r  and ( )Rp Rα r . Then we compare 

 2

1 1

SR NN
b pq

p q
S b

= =
= ∑ ∑  (159) 

to S. If bS  is close enough for our purposes to S then we can stop adding functions to our basis. The 
most strongly coupled channel that we could be missing would be one with power” coupling strength 

bS S− . Once that power coupling strength becomes too small to be useful, we can stop, and work 
with the finite sets we now have.  
As a simple example, we can consider “uniform patch” basis functions for two surfaces, 
approximated by point sources at the center of the patch, as in section 5.3.5 above. We already have 
a hint as to how many such points we would require in each space from the heuristic results above 
in section 5.3.5; there we deduced desirable minimum spacings of such points (Eqs. (198) and (70)) 
if they are to be good approximations to uniform “patches” of sources and/or receivers. Consider, for 
example, the sets of 9 source and receiver points as in Fig. 6 above. We will consider these as 
approximating continuous lines of length 9 / 2 4.5h λ λ= × = , equivalent to assigning each “point” 
source to a linear “patch” of size (length) / 2λ . As in Fig. 6, these are separated by a distance 

5L λ= . In this case, the sum rule integrals become, with a scalar Green’s function as in Eq.(4), 
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For a “patch” source or receiver of length / 2λ , so that the source or receiver function is normalized 
on integrating over the patch, the linear source or receiver density in the patch should be 2 / λ . For 
the equivalent point source, that entire density over a / 2λ  length  is concentrated now in a “point”, 
so an effective point source amplitude of ( )/ 2 2 / / 2λ λ λ× = , and similarly for the equivalent 
point receiver. So, with this normalization, we should use an expression  
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   (161)  
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where Sjy  and Riy  are the 9 source and receiver vertical positions. Summing over all 9 source and 
receiver points gives 

 
( )

9 9 2
2

1 1

0.726
4

b ij
i j

S g
π= =

= ∑ ∑    (162) 

which is identical to the result in Eq. (160) within numerical error. The near exact equality here 
between the results in Eqs. (160) and (161) is somewhat accidental, because the point sources are 
already an approximation to line-segment sources. The agreement nonetheless confirms that, in this 
case, no additional points should be required for a useful model here, and the point sources and 
receivers effectively capture all the strongly coupled channels. So, some further subdivision into 
smaller patches, hence adding more basis functions, would essentially make no difference; it would 
find no further strongly coupled channels.  

7. Communications modes and common families of 
functions 

So far, we evaluated communications modes numerically for several representative “toy” problems, 
and have justified that, with point sources chosen sufficiently close, such results are valid 
approximations to continuous source distributions and effective sources in diffraction problems. We 
also know, however, that under analytic paraxial approximations, useful families of continuous 
functions emerge, and we consider these here.  

7.1. Prolate spheroidal functions and relation to Hermite-
Gaussian and Laguerre-Gaussian approximations 

Paraxial analysis of laser resonators without considering the finite size of the mirrors [119] leads to 
Hermite-Gaussian functions in rectangular coordinate systems and to Laguerre-Gaussians in 
cylindrical coordinates. With finite mirror sizes in laser resonators [120], and in work with a 
diffraction operator for waves between finite apertures [33], the so-called prolate spheroidal 
functions emerge; with finite rectangular apertures, we obtain the linear prolate functions, and finite 
circular apertures lead to circular prolate spheroidal functions.  
Hermite-Gaussian and Laguerre-Gaussian families are discussed extensively in connection with laser 
resonators (e.g., [2]), and Laguerre-Gaussians have received much recent interest because of their 
so-called “orbital” angular momentum (OAM) [30, 31] (see section 7.2 below). Prolate spheroidal 
functions are less well known, possibly because we cannot express them in simple formulas (though 
we can calculate them [121 - 124]), but they have some important mathematical properties.  
Prolate spheroidal functions (see [33] for a discussion) arose for solving some quite unrelated 
problems in prolate spheroidal coordinates [125], but the linear versions became better known for 
being the eigenfunctions of the finite Fourier transform. (The circular version correspondingly gives 
the eigenfunctions of the finite Hankel transform.) They are thus of some interest in signal processing 
problems.  
We do not have space here to discuss the mathematics of these functions in detail, but we can show 
the relation to our approach. First, generally, these functions can emerge in scalar communications 
mode analysis if we take a paraxial approximation, which means (i) that we approximate the distance 

S R−r r  in the denominator of the Green’s function (Eq. (4)) by L, the separation between the 
surfaces, and (ii) in the complex exponential ( )exp R Sik −r r  we approximate  

 ( ) ( )2 2
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Then, for rectangular source and receiver apertures of equal size, for example, linear prolate 
spheroidal functions (with confocal phase curvatures) emerge as the communications mode functions 
in each aperture [5, 126]. Notably, the eigenvalues (or singular values) clearly show the same 
“paraxial degeneracy” we saw in our numerical examples above – nearly constant up to the paraxial 
heuristic number, and then falling off rapidly. Similarly, for circular apertures, the circular prolate 
spheroidal functions are the communications mode functions in each (circular) aperture. 
Hermite-Gaussians and Laguerre-Gaussians are only approximate communications modes functions 
to the extent that they are approximations to the corresponding prolate spheroidal functions. Once 
significant field amplitudes approach the boundaries of the rectangular or circular apertures, the 
corresponding prolate spheroidal functions correctly incorporate the effects of those boundaries, but 
the Hermite-Gaussians and Laguerre-Gaussians do not. Hermite-Gaussians and Laguerre-Gaussians 
can be derived as solutions to differential equations under conditions without boundaries [119], but 
they do not usefully emerge as solutions to our integral equation approach [127]. The absence of 
boundaries can also lead to apparently infinite sets of communications modes with finite coupling 
strengths, but this is unphysical, and is cut off when the problem is solved correctly with boundaries 
on the volumes or surfaces. A failure to understand this point can lead to confusion on available 
channels, especially for Laguerre-Gaussians as OAM beams. 

7.2. Orbital angular momentum beams and degrees of freedom 
in communications 

Given the considerable recent interest in OAM beams and modes [30, 31], it is important here to 
make three points explicitly. In systems in which positive and negative angular momentum “modes” 
are degenerate – that is, they have the same coupling strength (which is usually the case in systems 
without some explicit helicity or nonreciprocity), we can make the simple statement that 

the use of orbital angular momentum does not increase the number of usable channels beyond 
those already available without the use of orbital angular momentum 

and, indeed 

we can obtain the same number of usable channels when using beams of zero orbital angular 
momentum 

The proof of these statements is straightforward [128]. Furthermore, for reasons associated with the 
Hilbert-Schmidt nature of the Green’s functions in wave problems, 

the use of orbital angular momentum or any other form of spatial multiplexing does not allow 
for infinite numbers of usable channels in communicating between finite volumes 

A communications mode analysis removes any such confusion about the available modes. See also 
these critiques of OAM modes and comparisons to other approaches [18, 22, 23, 129 - 136].  

7.3. Paraxial degeneracy, sets of functions, and Fourier optics 
When we have paraxial (approximate) degeneracy, up to the paraxial heuristic number PN  we have 
some reasonable flexibility in the choice of our sets of communications mode functions. If this 
paraxial degeneracy were perfect, mathematically any orthogonal linear combination of those 
degenerate functions would be an equally good choice, at least for the first PN  functions. If the 
degeneracy is not perfect, then such orthogonal linear combinations of source functions will lead to 
receiver functions that are in general not quite orthogonal. Then we would have some crosstalk, but 
this would be a matter of degree, and we would therefore have some practical freedom. 
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This paraxial (approximate) degeneracy also allows us to connect to other descriptions of optics, 
especially as PN  becomes large, as it may be in conventional optical systems. For example, we can 
ask, in an approximately paraxial system like Fig. 9 or Fig. 15 (d), for the sets of source functions 
that would generate sinusoidal-shaped transverse field patterns (with confocal curvatures), with 
integer numbers of half periods fitting within the receiver surface. If we do that, we would find 
numerically that, up to some number somewhat smaller than the appropriate paraxial heuristic 
number (in each direction for Fig. 15(d)), we would be able to create such sinusoidal patterns. The 
mathematics of the problem also looks numerically similar to a Fourier transform between the source 
surface and the receiving surface. Hence, we can find a correspondence to the common Fourier optics 
approach [114] to optical systems, at least as the paraxial systems become large. This is only 
approximate, of course, and plane waves or simple interfering combinations of them are not generally 
the true communications modes of the system, but this paraxial degeneracy allows us to link 
approximately to those kinds of descriptions.   

8. Extending to electromagnetic waves 
So far in our explicit simulations and discussions we have considered just the simplest case of scalar 
waves and the corresponding Green’s functions, and a simple “Cartesian” inner product to enable 
the results of functional analysis. For electromagnetic waves, however, we need to go beyond this, 
both in the way we describe the wave and in the form of the inner product we need in some situations. 
Fortunately, we can derive relatively simple results for both the Green’s function and an energy inner 
product. In Appendix F, we derive these results in detail for a uniform isotropic medium. Here we 
summarize key results. 

8.1. How many independent fields? 
A first question is how many effective “fields” do we need to count? We know that electromagnetism 
can be described using the electric field E and the magnetic field B. Each of these is a vector with 
three components at each point in space, so naively we might think we need 6 scalar fields to describe 
them. Of course, Maxwell’s equations relate E and B to each other and to the charge density ρ and 
the current density J, and ρ and J are themselves related by conservation of charge. One way of 
reducing the number of scalar fields is to change to a description in terms of a (magnetic) vector 
potential A and a scalar potential Φ, thereby reducing to 4 scalar fields. But there is still arbitrariness 
here, which formally appears as the freedom to choose the “gauge” or, equivalently, set ∇ ⋅ A .  
In communications problems, we are not interested in any static fields; communicating information 
requires changing fields. In Appendix F, we show that, if we separate out any static fields, then we 
can set up a new gauge – the M-gauge.  
This new M-gauge allows us to express the (changing) electromagnetic field in terms only of the 
vector potential in this gauge, MA , and using only the current density J as the source of the fields.  
So, we can conclude that 

we only need consider 3 independent scalar fields in counting modes and “degrees of freedom” 
of the electromagnetic field for communication problems. 

For such a gauge, if we know MA , we can get back to the electric and magnetic fields (neglecting 
any static fields) using 

 M
M t

∂
= −

∂
AE   (164) 

 M M= ∇ ×B A   (165) 
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8.2. A vector wave equation for electromagnetic fields 
In this M-gauge, we find we can write a wave equation for A, driven by the current density 
distribution J. For monochromatic waves at (angular) frequency ω, we find 
 2

M Mkω ω ωµ∇ × ∇ × − =A A J    (166) 

with  
 2 2 2 2/k vω εµ ω= ≡   (167) 

with dielectric constant ε, magnetic permeability µ, wave (phase) velocity  

 1 /v εµ=    (168) 

and the monochromatic driving current density 

 ( ) ( ) ( ), exp . .t i t c cω ω= − +J r J r    (169) 

This wave equation uses the ∇ × ∇ ×  operator rather than the 2∇  of the scalar wave equation, but 
this allows just one wave equation for the entire vector field, and driven just by the current density. 
(Full time-dependent versions are given in Appendix F.) 

8.3. Green’s functions for electromagnetic waves 
The resulting Green’s function for Eq. (166) is more complicated than the scalar Green’s function 
for two reasons. First, needs to embody the necessary vector attributes. Since in general the resulting 
wave vector field at a point may not be in the same direction as the vector current density at some 
other point that generates the wave, the Green’s function has a corresponding “dyadic” character 
(signified by a “double line” notation (as in Eq. (170) below). (Dyadics and their algebra are 
introduced and described in Appendix H.) Second, though the resulting Green’s function has far-
field “propagating” parts that fall off as ~ 1/ R   (where R  is the distance from the source), just like 
the scalar Green’s function, it has additional near field parts falling off as 2~ 1/ R   and 3~ 1/ R . The 
full dyadic Green’s function with all these terms is derived in Appendix F, for both monochromatic 
and full time-dependent cases.  
In communications we are likely most interested in the propagating (“ ~ 1/ R ”) waves. If ′= −R r r  
is the vector separation between a source point ′r  and the point of interest r, (so these points are 
separated by a distance R), then in this M-gauge, the far-field (propagating) monochromatic dyadic 
Green’s function for the vector potential is 

 ( ) ( ) ( )1 1 2 2ˆ ˆ ˆ ˆ; ;MPG Gω ω′ ′= − +r r e e e e r r   (170) 

where ( );Gω ′r r  is the scalar Green’s function as before Eq. (4), and the unit vectors 1ê   and 2ê  are 
perpendicular to each other and to R (Fig. 26). (We are otherwise free to choose the directions of 1ê  
and 2ê .)  
We have had to use a dyadic notation in Eq. (170). Briefly, a “dyad” such as ˆ ˆa be e  can be viewed as 
a pair of vectors, one, here ˆae , “waiting to be operated on” by a vector from the left, and the other (
ˆbe ) similarly “waiting to operate” on by a vector on the right. (See Appendix H for an extended 
discussion of dyads.) So, for example, we could operate mathematically on the left and right of ˆ ˆa be e  
using the vector dot products with, say, a vector potential A and a current density J  to obtain 

 ( )( )ˆ ˆ ˆ ˆa b a b a bA J⋅ ⋅ ≡ ⋅ ⋅ ≡A e e J A e e J    (171) 

which is the product of the component bJ  of J in the ˆbe  direction and the component aA  of A in the 
ˆae  direction.  
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The specific dyads 1 1ˆ ˆe e  and 2 2ˆ ˆe e  have a simple physical meaning in Eq. (170): the resulting 
propagating vector potential field at r has two polarization components (see Fig. 26), in perpendicular 
directions 1ê  and 2ê , that are transverse to the “direction of propagation” (the vector R), and that are 
each driven by the corresponding component of the current density at the “point” source at ′r . (Note 
that the electric field ME , from Eq. (164), is parallel to MA , so ME  and MA  have the same 
polarization directions.)  

 
Fig. 26. Illustration of current density elements 1J  and 2J   at ′r , in two directions 1ê   and 2ê , both perpendicular to 
each other and to the vector ′= −R r r , generating corresponding  vector potential components 1A  and 2A  in those 
same directions at r. Note that, for propagating waves, a current density RJ in the direction of R does not generate a 
corresponding “longitudinal” vector potential component in that direction at r, though near-field (“non-propagating”) 
terms can do so. 

This might seem almost a trivially obvious answer from our normal understanding of polarization in 
optics, but note that we have constructed this limiting case from a novel full treatment of the 
electromagnetic field, and a rigorous counting of the independent field components.  
We also have rigorous results that extend beyond this limiting case. The full monochromatic Green’s 
function is the sum  

 M MP MNG G Gω ω ω= +    (172) 

of this “propagating” Green’s function ( );MPGω ′r r  and the near-field (“non-propagating”) Green’s 
function 

 ( ) ( )1 1 2 2
1 1 ˆ ˆ ˆ ˆ ˆ ˆ2MNG i G R

kR kR
ω ω

  = − − −    
RR e e e e   (173) 

which also gives “longitudinal” fields – i.e., vector components that are not perpendicular to R (or 
the corresponding unit length vector R̂ ). The full dyadic time-dependent Green’s functions are also 
give below in Eqs. (289), (290), and (291).  
In a paraxial approximation, we might also approximate the vector directions 1ê , 2ê , and R̂ , which 
generally depend on the choices of the points ′r  in the source plane or volume and r in the receiving 
plane or volume, with the fixed coordinate directions x̂ , ŷ , and ẑ  respectively. In that case, Eq. 
(170) would separate into two scalar Green’s functions, one for the x̂ -polarized field, driven by the 
x̂  component ( xJ ) of J, and the second for the ŷ -polarized field, driven by the ŷ  component ( yJ ) 
of J, for two planes or volumes separated in the ẑ  direction. Generally, however, we do not have to 
make that paraxial approximation, and we should note that these coordinate directions 1ê  and 2ê  
change depending on ′r and r. 
Finally, we can note for the specific case of monochromatic fields at (angular) frequency ω, for the 
amplitudes ( )MωA r  and  ( )MωE r  of the “positive frequency” (i.e., ( )exp i tω∝ − ) parts of the vector 
potential and the electric field in a standard complex notation (see Eqs. (299) and (305) below), then 
Eq. (164) becomes 
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 M Miω ωω=E A   (174) 

So, within this constant factor iω , the electric field and the magnetic vector potential are identical, 
and conceptually we can work just with the electric field, deducing the magnetic field if necessary 
just using the monochromatic version of the corresponding Maxwell equation (see below, Eq. (232)), 
or, equivalently, from Eq. (165), with MωB  as in Eq. (300) 

 ( )1/M Miω ωω= ∇ ×B E    (175) 

For full time-dependent cases, as for pulsed fields, however, we should continue working with the 
magnetic vector potential to derive the full electromagnetic behavior.  

8.4. Inner products for electromagnetic quantities and fields 

8.4.1. Cartesian inner product for sets of sources or receivers 
We could have some set of SN  sources, driven by some (complex) mathematical vector  of  
amplitudes, such as voltages or currents from some output amplifiers. Similarly we could have some 
set of RN  receivers that give a (complex) mathematical vector of received amplitudes  with  
elements, which might also be voltages or currents. As long as the generated wave is linear in the 
source amplitudes and the received signals are linear in the wave amplitude, we can choose to 
perform simple Cartesian inner products in the space of source (mathematical) vectors  and in 
the space of received (mathematical) vectors . In this case, we are essentially defining our ideas 
of orthogonality in these mathematical spaces before transmission and after reception. It makes no 
difference in principle to such inner products if the sources have particular vector directions and the 
receivers detect waves with particular vector directions. Of course, such vector aspects will come 
into the matrix of coupling coefficients between sources and receivers. Such simple Cartesian inner 
products are likely to be useful in situations, as in acoustics or radio-frequency electromagnetics, 
where we have corresponding separate source and receiver elements like sets of loudspeakers, 
microphones, and antennas.  

8.4.2. Cartesian inner product for vector fields 
We can extend the idea of a simple Cartesian inner product, as in Eq. (149), to vector fields using the 
ordinary dot product between the vectors. For two vector fields ( )µ r  and ( )η r  in some volume V, 
we could write such a Cartesian (vector) inner product as 

 ( ) ( ) ( ) 3,
V

dµ η µ η∗≡ ⋅∫ r r r     (176) 

which is valid because it would satisfy all the mathematical criteria as in Eq. (80). 
Just what inner product we want to use in a given situation might depend on the physical system in 
a given space. For example, for some currents out of a set of amplifiers each driving wires as 
radiators, we might use such a simple Cartesian inner product of the currents (or current densities) 
to define orthogonality between different overall “transmitting” outputs, so such a Cartesian inner 
product like Eq. (176) might be appropriate for current density J in a source volume.  

8.4.3. Electromagnetic mode example 
We show an electromagnetic example in Fig. 27 (based on the Cartesian inner products of both source 
and receiver amplitude vectors). Here we presume point sources and receivers, spaced as in the earlier 
scalar wave example in Fig. 6; here, though, these sources contain three (geometrically) orthogonal 
vector current sources, each of which can be set separately, and similarly each receiver detects field 
amplitude (vector potential, or more realistically, electric field) separately in three orthogonal 
directions. Now, instead of 9 mathematical sources and receivers in this example, we have 27 of 
each, in vector groups of 3 at each point. Using the dyadic Green’s function, Eq. (172), we now 

Sψ SN

Rφ RN

Sψ
Rφ
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construct a 27 27×  matrix coupling these sources and receivers, and perform the singular value 
decomposition to establish the current source modes, which are now 27-element vectors. In Fig. 27, 
we show the mode coupling strengths (the modulus squared of the singular values) in decreasing 
order for all 27 of the resulting modes.  

 
Fig. 27. Mode coupling strengths 2

ns  and vector source current and (vector potential) fields for two 
example modes for an electromagnetic system with lines of point vector sources and receivers, spaced 
vertically by / 2λ  in lines 5λ  apart, as in the earlier scalar wave example of Fig. 6. Mode 4 is a well-
coupled mode whose polarization, both in the current sources and the resulting waves is in the plane of 
the paper and is also substantially tranverse to the propagation direction from left to right.  The vector 
field plots and the source current vectors show only the real part of the complex values, so are essentially 
“snapshots” of the current and field vectors. Some of the modes have source and wave polarization 
entirely in the direction out of the plane, and transverse to the propagation direction in this plane (red 
bars). All other modes have polarizations of currents and waves in the plane. Some of those are 
substantially transverse (blue bars); others of those are mixed between transverse and longitudinal (i.e., 
with polarization in the horizontal z direction) (grey bars). Some are almost entirely longitudinal (orange 
bars), with Mode 14 being the strongest of these longitudinal modes. For graphic clarity, the amplitude 
of the wave is multiplied by a factor depending on the horizontal distance z from the sources. For Mode 
4, this factor is z  to compensate for the expansion of the wave in the directions out of the plane. For 
Mode 14, we also need to compensate for the additional “1/ R ” fall off because the longitudinal wave 
Green’s function falls off at least as fast as 21/ R . To prevent the particularly large near-field amplitudes 
from dominating the drawn vector lengths, the factor used is 3/2( 0.2 )z λ−   rather than just 3/2z . Though 
the amplitude changes from left to right are therefore artificial, the relative amplitudes within a vertical 
column of vectors, and the directions of the vectors, are, however, correct.  
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Because of the geometry of this example, there are 9 resulting modes for which the sources and 
receivers are entirely polarized out of the plane, and the wave field in the cross-section that is the 
plane of the paper is also polarized this way. The polarization for the sources and receivers of the 
remaining 18 modes lies entirely in the plane, as does the wave field polarization in the plane plotted. 
The 9 “out of plane” modes (red bars) have behavior quite similar to the scalar results in Fig. 6, with 
3 or 4 strongly coupled modes (here Modes 1, 3, 5,and 8). The first 3 or 4 other strongly coupled 
modes are substantially (Modes 2, 4, and 6 (blue bars)) or mostly (Mode 7 (grey bar)) transverse in 
the plane. The vector field plot for Mode 4 is shown in Fig. 27; this is a “single bump” beam. We 
can reasonably interpret these results as showing that, using propagating vector waves, we have twice 
as many well-coupled channels as in the scalar case because we can now use two polarizations.  
The various other modes here are not strongly coupled, and hence might be practically uninteresting. 
Various other of the in-plane modes have a somewhat mixed character, with some significant 
longitudinal components in the polarization. It is, however, worth noting that we do also acquire 
additional modes strongly associated with the longitudinal polarization. There is a group of 3 of these 
(Modes 14, 15, and 16), with approximately equal coupling strength; Mode 14 is plotted, which 
shows dominant longitudinal polarization and a “single bump” character. Modes 15 and 16 have two- 
and three-bump character. These three modes can be seen as longitudinal analogs of the sets of 
transverse polarized and strongly coupled modes. They are weakly coupled because they result from 
terms in the Green’s function that fall off as 21 / R  or faster; however, we see that 

longitudinally polarized electromagnetic waves show diffraction behavior similar to that of 
transverse waves. 

We can understand this because, though their wave amplitude falls off faster with R, the wave still 
incorporates the underlying scalar Green’s function that determines the interference behavior 
underlying diffraction. See [118] for other vector field examples. 

8.4.4. Energy inner product for the electromagnetic field 
We might be passing the wave in a receiving volume into some lossless optical network to separate 
out the power or energy to different output ports. Then we might want the inner product to define 
orthogonality so that adding up the energy or power in the different orthogonal channels or ports 
gave the total energy or power in the field. In general, for an electromagnetic field, a simple Cartesian 
inner product as in Eq. (176) does not separate out orthogonal parts of the field whose energies we 
can add to get the total, and this inner product ( ),M MA A  does not reliably give a measure of the 
energy in the field MA .  
In such a case, when considering inner products and orthogonality directly in the field itself, not in 
the sources or receivers, we would like an “energy” inner product; specifically, we want the property 
that the sum of the energies in the orthogonal components of the field is the total energy of the field. 
Such an energy inner product is also useful for quantizing the electromagnetic field (section 9). Using 
the M-gauge, we derive an energy inner product for the electromagnetic field in Appendix F, which 
we summarize here.  
Since the entire properties of the electromagnetic field (at least for communications) can be described 
using the vector potential in the M-gauge, we set up the inner product using that. Briefly, we use an 
operator that we call U  to mathematically generate the ME  and MB  electric and magnetic fields 
from the vector potential MA . Then we can formally calculate the energy density u in the (time-
varying) field based on a standard expression (see Eq. (295) and associated discussion)  

 1 1
2

u ε
µ

 
= ⋅ + ⋅ 

 
E E B B   (177) 

The transformed inner product (Eqs. (143) and (144)) with respect to U  is formally 
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 ( ) ( ), T ≡U U , Uµ η µ η  (178)  

where now ( )µ r  and ( )η r  are vector potential fields (e.g., in the “receiving” volume). We derive 
the full time-dependent form of (178) below (see Eqs. (310) to (313)). From this we can deduce the 
simpler monochromatic case, for which we have the operator  
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(using dashed lines to separate the matrix elements). So, with three orthogonal coordinate directions
1x̂ , 2x̂ , and 3x̂ , and writing ( ) ( ) ( ) ( )1 1 2 2 3 3ˆ ˆ ˆM M M MA A Aω ω ω ω= + +A r r x r x r x  
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where by the notation ( )Mω ω 
 A rU  we mean the 6-element column vector version. Note here that 

have explicitly clarified that this operator essentially generates the electric and magnetic field 
components, appropriately weighted for constructing the total energy density. (The factor ½ in Eq. 
(177) disappears in Eq. (180) because of the way we define monochromatic field amplitudes.) To 
complete the construction of the inner product as in Eq. (178), we formally construct the 6-element 
mathematical column vectors   and ( )ω 

 rU η , which are both functions of space. Then we take 

the Hermitian adjoint ( )
†

ω 
 rU µ , which is a 6-element row vector, and form the product 

( ) ( )
†

ω ω   
   r rU Uµ η , which is a scalar function of r. Then we integrate that over the volume V 

of interest (e.g., the receiving volume), as in  

 ( ) ( ) ( )
†

3, T
V

d
ω

ω ω   ≡ ∫    r r rU U Uµ η µ η   (181) 

For a monochromatic vector potential ( )MωA r , the total energy of the field in V is then 

 ( ),M M TU
ω

ω ω= A A U   (182)  
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8.5. Energy-orthogonal modes for arbitrary volumes 
Typically, in considering “modes” of the electromagnetic field in free space, we pretend we have 
some resonator, and we presume that its resonant modes will be orthogonal in some suitable sense. 
For free-space, for example, it is common to pretend we have some cuboidal box, with perfectly 
reflecting walls. This box will therefore have standing plane wave resonant oscillation modes, which 
we can check satisfy Maxwell’s equations, and which we can then count. Possibly, we will take some 
limit as we make the box large, to get some density of modes per unit box volume. We may also just 
presume that we can using traveling waves instead of the standing ones, possibly with periodic 
boundary conditions (though those would not be resonant modes). Generally, the justification for 
such choices is weak; we do not have such a box, nor is free space periodic. A rationalization is that 
these fictitious approaches give results that ultimately seem to agree with experiments, such as for 
the thermal radiation of light fields in arguments like Planck’s radiation law and Einstein’s A&B 
coefficients.  
Now that we have an energy inner product, in the monochromatic (Eq. (182)) or full time-dependent 
(Eq. (314)) version, we can directly define electromagnetic fields that are orthogonal in energy. And, 
we can do this in any volume, without the fiction of a resonator or spatial periodicity. The total energy 
of a field that is a linear combination of these functions is the sum of the energies in these orthogonal 
components. 
There could be many ways of setting up such (energy) orthogonal waves in some arbitrary 
“receiving” volume RV , which we also require to be solutions of Maxwell’s equations. Note first 
that we can guarantee the waves are Maxwell equation solutions by formally generating them using 
current sources in some other “source” volume SV . We could then proceed as follows. (We will give 
this for the monochromatic case, though we could use a full time-dependent case instead.) 

1) Choose a current source function ( )1b SJω r  in SV . (Here the subscript b indicates that this is 
going to be a basis function for the source space.) For later convenience, we can choose this 
to be a function that is normalized (using a simple Cartesian inner product in SV  as in Eq. 
(176)). 

2) Calculate the resulting vector potential wave (in the M-gauge) ( )1M RωA r  in RV  using the 

dyadic Green’s function ( );M R SGω r r  as in Eq. (172) using the corresponding Green’s 
function integral  

 ( ) ( ) ( ) 3
1 1;MM R R S b S SV G dωω ωµ= ⋅∫A r r r J r r    (183) 

and construct a normalized version ( )1Mb RωA r  (using the energy inner product in RV  as in 
Eq. (181)).   

3) Choose a second (normalized) current source function ( )2b SωJ r  in SV , orthogonal to 
( )1b SωJ r  [137, 138]. Now calculate the corresponding wave ( )2M RωA r  as in Eq. (183). Now 

retain only the part ( )Sω⊥A r  that is orthogonal to ( )1Mb RωA r , using the energy inner product 
Eq. (181) in RV , which we can do by formally, “projecting out” the component of ( )1Mb RωA r   

 ( ) ( ) ( ) ( )2 1 2 1,R M R Mb M Mb RT ω
ω ω ω ω ω⊥ = −A r A r A A A rU  (184) 

Now normalize ( )Sω⊥A r   to give the second wave function ( )2Mb RωA r .  
We then proceed similarly, choosing a subsequent source functions ( )bn SωJ r , orthogonal to all 
preceding ones ( )bm SωJ r . Then, in the resulting vector potential field in RV , using an extended 
“projecting out” of the components in all previous functions, we retaining only the (normalized) part 

( )Mbn RωA r  of the resulting wave in each case, which will be orthogonal all previous such functions 
( )Mbm RωA r . This process is just a version of a Gram-Schmidt orthogonalization, and it will generate 

a set of waves ( )Mbn RωA r  in RV  that are orthogonal with respect to the energy inner product in RV .  
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We have also incidentally generated an orthogonal set of source functions ( )bn SωJ r  during this 
process. So, now we have basis sets, ( )bn SωJ r  and ( )Mbn RωA r , each orthonormal with respect to the 
underlying inner products in their respective spaces (Cartesian for the source space, energy for the 
receiving space).  
To emphasize, with such a process, and noting explicitly that orthogonality here is in the sense of the 
entire vector functions being orthogonal, whether or not the geometrical vector components of the 
fields are at right angles, 

we can construct orthogonal sets of electromagnetic waves for any shape of volume, avoiding 
fictitious boxes or resonators, with the energy of any superposition being the sum of the 

energies of the orthogonal components. 

If we wanted to make sure, for example, that we had a set that corresponded to any possible 
propagating electromagnetic waves for that volume RV , for SV  we could use a large spherical shell 
surrounding RV .  

8.6. Sum rule and communications modes for electromagnetic 
fields 

We briefly discussed the concept of the sum rule for the electromagnetic field case above in section 
6.8. Now that we have the necessary notation and definitions we can now explicitly write the integral 
for the sum rule S in this electromagnetic case, using the energy inner product, Eq. (181), in RV , as 

 ( ) ( )
†3 3

3 3

1 1
ˆ ˆ; ;

S R

p R S R S q R S
p qV V

S G G d dω ωω ω
= =

   = ⋅ ⋅∑ ∑∫ ∫       
x r r r r x r rU U   (185) 

Now that we have constructed basis sets ( )bn SωJ r  and ( )Mbn RωA r  that are orthogonal with respect 
to the underlying inner products in their respective spaces, we can now generate a coupling matrix 
between these orthogonal sets. With these sets, the matrix elements would be 

 ( ) ( ) ( )
†

3 3;
S R

ij Mbi R R S bj S R S
V V

g G d dωω ω ω ω
  = ⋅∫ ∫     

A r r r J r r rU U  (186)  

We could also keep on adding functions until 2
, iji j g∑  was sufficiently close to S, as discussed in 

section 6.9, and then we would have a finite matrix that we could practically call SRG  for this 
problem. Then we could perform the singular value decomposition of this matrix to construct the 
singular values js  and the corresponding sets of communications mode functions { }jψ  and { }jφ . 

The { }jψ  would now be mathematical vectors whose elements were the expansion coefficients jqh  

on the basis ( )bq SωJ r , and similarly { }jφ  would be vectors of expansion coefficients jqf  on the 

( )Mbn RωA r  basis.  

For subsequent work, we might well want to use the current density and vector potential functions 
corresponding to these communications modes, i.e.,  
 ( ) ( )CMj S jq bq S

q
hω ω= ∑J r J r  and ( ) ( )CMj S jp Mbp R

p
fω ω= ∑A r A r   (187) 

as appropriate orthogonal basis sets since they represent the “best” choices of basis functions.  
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9. Quantizing the electromagnetic field using the M-
gauge 

Typical standard approaches [9, 139 - 141] to quantization of the electromagnetic field are based on 
the Coulomb gauge and “transverse” vector potentials, with monochromatic modes chosen either 
arbitrarily as plane waves or as modes of some resonator. Now that we know that we can generate 
some complete (or complete enough) set of (energy) orthogonal functions ( )Mj RωA r  for representing 
any electromagnetic wave in RV , we can use these to quantize the electromagnetic field in the M-
gauge. As a result, 

we need no fictitious resonator or “box”, allowing quantization for any volume 

and we avoid the formal problems of the Coulomb gauge [142, 143]. The resulting quantization then 
proceeds otherwise essentially similarly to those standard approaches. (As in typical standard 
approaches, we will consider waves only in a uniform isotropic background medium.) Note also that 
our approach can also be based on the full dyadic Green’s function, including all near field terms if 
we wish; we would simply include those in the evaluation of the ( )Mj RωA r .  

To start, we formally expand any (classical) electromagnetic wave in RV  in the basis ( )Mj RωA r . We 
formally choose expansion coefficients ( )ja t  that explicitly include the time-dependent factor 

( )exp i tω−  (and that is their only time dependence). To make the ( )ja t  dimensionless, we can 
introduce a multiplying factor with dimensions of the square root of energy, choosing ω  
(cunningly anticipating a later result). So, formally,  

 ( ) ( ) ( ) ( ) ( )*,M R j Mj R j Mj R
j

t a t a tω ω ωω ∗=  + ∑  A r A r A r  (188) 

Now we can formally evaluate the energy, or equivalently the (classical) Hamiltonian in this field 
using the energy inner product in the receiving volume. That becomes [144] 

( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

,

,

, , , ,R R R R m Mm R n Mn RT Tm n

m n mn j j
m n j

H t t a t a t

a t a t a t a t

ω ω
ω ωω

ω δ ω∗ ∗

= = ∑

= =∑ ∑

A r A r A r A r
U U



 
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where we have used the (energy) orthonormality of the ( )Mj RωA r . We see, not surprisingly, that the 
resulting (classical) Hamiltonian is just the sum of the Hamiltonians  

 ( ) ( )j j jH a t a tω ∗=     (190) 

We give the detailed steps in the resulting quantization of such Hamiltonians below for completeness 
in Appendix I, but the results are straightforward. We obtain the familiar quantum-mechanical 
Hamiltonian form  

 † 1ˆ ˆ ˆ
2j jjH a aω  = + 

 
  (191) 

for the jth mode, where the annihilation  and creation operators ˆ ja  and †ˆ ja   obey the usual 
commutation relations and other algebraic properties (see Eqs. (373) - (375)). We can also write 
appropriate field operators for the vector potential and the electric and magnetic fields (see Eqs. (370) 
- (372)). 
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10. Linear scatterers and optical devices 
As we have set up the physics and mathematics of our SVD approach to linear wave systems, we 
have mostly used the example of a free-space or “uniform medium” Green’s function as the coupling 
operator between the source space and the receiving space. However, as we discussed in section 6.8, 
as in the statement (157), any finite coupling operator ( );R SD r r  between finite volumes SV  and RV  
is a Hilbert-Schmidt operator (and including even dyadic operators for electromagnetic fields). Any 
fixed physical linear system can be described by such an operator, which we could call a scattering 
operator or a “device” operator. We can model any fixed linear scatterers or linear optical devices, 
or more generally linear “objects”, in this way – free space propagation, complex multiple scatterers, 
waveguide channels, sophisticated linear optical systems or devices, or any object behaving linearly 
with respect to the incident field (including those that absorb radiation). Of course, the detailed 
analysis could be complicated, especially for systems involving multiple scattering. However, we 
can draw some conclusions here that apply even without knowing the details of the scattering or 
device operator. 

10.1. Existence of orthogonal functions and channels 
First, we note that all the mathematics of the SVD, following from the Hilbert-Schmidt nature of any 
such system, applies also to any finite linear scattering or device operator. The SVD can always be 
performed on any such compact operator (see section 6.7), leading to the existence of orthogonal sets 
of functions in the source space and the receiver space. So, we can formally conclude, as mentioned 
in section 1, that any linear optical “device” can be viewed as a mode converter, converting from 
specific sets of functions in the input space one-by-one to specific corresponding functions in the 
output space. Also, as stated in section 1.4, there is a set of independent channels through any linear 
scatterer; that is, there is a set  { }jψ  of orthogonal source functions jψ  that couple, one by one, 

to corresponding members jφ   of the orthogonal set { }jφ  of wave functions  in the receiving 
space (even if we do not know what these functions are). 

These mode-converter basis sets { }jψ  and { }jφ  and the associated singular values js  tell us 
everything that can be known about this scatterer or device based on waves generated from the source 
volume and detected in the receiving volume; they are a complete description as far as these sources 
and detectors are concerned. They are sufficient to reconstruct the matrix D  corresponding to some 
scattering or device operator D for these source and receiver spaces. Note explicitly, now that we are 
considering wave systems other than just free-space propagation, this approach is valid even if the 
system is lossy, as long as that is “linear” loss – that is, the “output” field amplitude is linearly 
proportional to the “input” field amplitude – and for systems with finite linear gain. 

10.2. Establishing the orthogonal channels through any linear 
scatterer 

Though we might not know the operator D or its matrix D , there are at least two ways to establish 
it for any scatterer. One way is simply to measure the scattering matrix from some set of sources to 
some set of receiving points (see, e.g., [145 - 148]) in some interferometric optical experiment. Of 
course for a complex scatterer, this could take some time, but it is possible, and it is then also possible 
to perform the mathematical SVD of that matrix to establish the functions jψ , jφ , and the 

singular values js .  

A second approach [12] is to have a physical system find the SVD by a sequential maximization 
process. In this case, we can in principle use two meshes of interferometers as in Fig. 5(a), but with 
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the scatterer in the space between the two meshes, as in Fig. 28 [149]. By an iterative procedure back 
and forward between one side and the other, and based only on single-parameter power 
optimizations, it is possible for the meshes to set themselves up so that the one on the left generates 
the jψ  from the corresponding single-mode inputs on the left, and couples the resulting jφ  into 
corresponding single-mode outputs on the right, automatically establishing the best channels through 
the scatterer. Effectively, the physical system has performed the SVD of the optical system [150] and 
has embedded its results in the settings of the interferometers.  

 
Fig. 28. Conceptual apparatus for finding the best orthogonal channels through any reciprocal linear 
scatterer or optical system at a given frequency (after [12]), nominally described here by some coupling 
operator D  from left to right, using two interferometer meshes on either side of the scatterer. To find 
the most strongly coupled channel, we shine light into the “red” input waveguide 1 on the left, and 
adjust the interferometers in row A on the right to maximize the output “red” power in the output 
waveguide 1 on the right. Then we run in reverse, shining the “orange” power (actually, at the same 
wavelength as the “red” power – colors here are for graphic clarity only) backwards into the “output” 
waveguide 1 on the right, and adjust the row A interferometers on the left to maximize the “orange” 
power backwards out of “input” waveguide 1 on the left. We repeat this “red”/”orange” process 
forwards and backwards until the system converges, having found the most strongly coupled channel 
through the system. Then, leaving row A on both sides set, we repeat a similar process with the “green” 
and “purple” beams, now in waveguide 2 on both sides. This will find the second most strongly coupled 
channel. We can then repeat for the waveguides 3. (No final “waveguides 4” process is required because 
it is automatically configured as the only remaining orthogonal channel). The process has found the 4 
most strongly coupled channels in this system. Technically, this process has effectively found the 
singular value decomposition of the optical system between the waveguide amplitudes at the  “source” 
dashed line on the left and those at the “receiving” dashed line on the right, effectively embedding the 
unitary matrices †U  and V  of the SVD of  †

diagD = VD U  in the interferometer settings in the meshes 
on the left and the right.     

10.3. Bounding the dimensionalities of the spaces  
If the scatterer or device has some finite volume DV , we could think of two separate problems, 
especially if we know what are the coupling operators SDG , from the source space to the device 
volume DV , and DRG , from the device volume to the receiving space (see Fig. 29.).  
These might, for example, just be simple free-space Green’s functions. Then solving for the 
communications modes of SDG  (from sources to the device) and DRG  (from the device to the 
receiving volume) would give us maximum numbers of usable channels into the device and out of 
it.  
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Immediately, for example, such an approach would tell us how many channels we need to block or 
emulate to make some object appear “invisible” as seen from some receiving volume, based on 
sources in some source volume, limiting the necessary complexity of any active “cloaking” device 
[151] around the scattering object. 

 
Fig. 29. Configurations to consider either the full coupling operator D  from source to receiving 
volumes,  or a succession of three operators, including an “internal” scattering operator DDD  that 
generates effective sources for waves to the receiving volume from the incoming waves from the source 
volume). 

We could also choose to look at an “internal” device operator DDD  as one that maps from the input 
waves into the device to the effective sources inside the device that generate the resulting “external” 
scattered waves. In that case, we could view the overall operator coupling D  from the original source 
volume SV  to the ultimate receiving volume RV  as being the product 

 DR DD SD=D G D G   (192)  

Such an approach could then begin to link to approaches to limits to optical devices, as in [152, 153], 
and also to discussions of the necessary complexity of optical devices, as in [154], though detailed 
discussions of these topics are beyond the present work.  

10.4. Emulating an arbitrary linear optical device and proving any 
such device is possible – arbitrary matrix-vector 
multiplication 

We have discussed above that we can approximate linear optical systems by using sufficiently many 
“patches” of sources (or waves acting as sources through diffraction operators) and corresponding 
“patches” of receivers, or equivalently any appropriate and sufficient large orthogonal basis sets of 
sources or input waves and of output waves. Explicit discussions above were for simple “free-space” 
propagation, but the same concepts and limits apply as we want to approximate optical devices.  
Suppose, then, that we make some optical apparatus that effectively samples a “source” light field, 
such as with grating couplers acting as appropriate “patch” collecting devices, and delivers the output 
of each such patch into a single mode waveguide to pass into some optical waveguide system, and 
similarly couples output waveguides into similar output “patches” to generate output waves. Then, 
if we can make the waveguide system in the middle so that it can implement arbitrary linear mappings 
between the input waveguides and the output waveguides, then, within the approximation of the input 
and output light fields by these patches, we can make an arbitrary linear optical component.  
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Fig. 30. Singular value decomposition architecture for constructing any matrix (here 3 3× ) in optics 
between a sets of waveguide input and output amplitudes [25]. 

Fig. 30 shows one way of making such an arbitrary linear mapping between input and output 
waveguides. Here we exploit the idea of SVD, but in this case using it as a way to construct a matrix 
physically [25]. We know from Eq. (221) that any compact matrix or operator can be written in the 
form †

diagD = VD U . So if we can emulate an arbitrary unitary matrix †U , a diagonal matrix diagD , 
and another unitary matrix V , in the correct sequence in some waveguide system, then we physically 
create a system to give the effect of an arbitrary matrix or operator D , at least up to the 
dimensionality of this waveguide system, and within the approximation of the actual light fields by 
“patches” or some other form of sampling or transformation.  
In Fig. 30, an input unitary mesh of interferometers (see Fig. 5) implements any †U  (at least up to a 
dimensionality of three in this simple example). A line of modulators (with controllable phase and 
amplitude implements the singular values (the diagonal elements of diagD ), with gain if needed for 
singular values greater than 1. Another unitary mesh implements V . Hence, we can emulate any 
matrix, up to the dimensionality of the mesh (here 3 3× ).  
This approach may be practically useful for various linear processing functions [25, 57, 58]. Note, 
incidentally, that, unlike some previous approaches to optical “matrix-vector” multipliers [155], this 
approach does not have fundamental “splitting” loss; unless we want loss so we can implement non-
unitary matrices, this approach has no loss other than background loss in the components. This class 
of architectures can also be trained directly and progressively using the mode-converter basis 
functions of interest to implement the corresponding matrix [25].  
Because it gives a constructive proof that any linear optical component is possible in principle, this 
approach also gives us an apparatus for thought experiments, as in the derivation of new radiation 
laws [7], which we discuss below.    

11. Mode-converter basis sets as fundamental optical 
descriptions 

Note that, for any linear scatterer, device or “object” with the mode-converter basis functions jψ  

and jφ  

  (193) 

and  

the only radiation scattered into an “output” wave jφ  
is from the corresponding input wave or source jψ  
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  (194) 

These statements follow automatically from the orthogonality of the sets jψ  and jφ  and the 
“pairing” in the communications mode or mode-converter description. These sets therefore acquire 
a “fundamental” status for describing any linear scatterers, devices or objects, and we can use them 
to derive some quite basic (and novel) results. 

11.1. Radiation laws 
Kirchhoff’s radiation law states that the “absorptivity” and the “emissivity” of an object must be 
equal so that the object can come to thermal equilibrium with other bodies just by exchanging 
radiation (see, e.g., [7]). For the total radiation from a body at a given wavelength, this is 
straightforward. It is sometimes extended to a “directional” radiation law, though the proof of that 
neglects diffraction, and none of these laws applies to non-reciprocal objects. Using a thought 
experiment that exploits an arbitrary linear optical system and the properties of the mode-converter 
basis sets, new laws can be derived, including the effects of diffraction and non-reciprocity [7].  
Suppose that the object O in Fig. 31 has a specific mode-converter pair of input and output functions 

1ψ  and 1φ . Suppose also that the optical machine in Fig. 31 is set so that any input light at its 
input port 1 generates such a wave 1ψ  at the outputs of the waveguide to free-space converters; we 
imagine we have enough of these “patch” generators to do a sufficiently good job of synthesizing all 
the possibly well-connected input mode-converter functions. Similarly, any light in the 
corresponding mode-converter output function 1φ  is collected and appears at output port 1 of the 
optical machine.  

 
Fig. 31. Thought-experiment apparatus for establishing a modal thermal radiation law (after [7]). 

the input wave or source jψ  only scatters 
into the corresponding output wave jφ . 
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Note that no light into any of the other ports leads to any scattering into this mode 1φ  by (193), and 
none of the light from 1ψ  is scattered into any other output mode by (194). Indeed, we can simply 
connect the other output ports of the machine back round to the corresponding input ports. There is 
no interaction between these channels through scattering.  
Now we presume that the black body 1B  emits and absorbs light only through a single-mode 
waveguide. A circulator separates forward and backward light. So, any light emitted by 1B  appears 
as light in mode 1ψ . Some of that light may then be absorbed by the object O. Any light that is not 
absorbed is then scattered into 1φ  and sent back to 1B . But to establish thermal equilibrium between 
the black body and the object, we therefore require that an amount of light is emitted from the object 
into 1φ  that is equal to the amount absorbed from 1ψ . Hence  

  (195) 

establishing a previously unknown “modal” radiation law (Law 1 of [7]). Note this law includes all 
effects of diffraction, and it is also valid even if the object O is non-reciprocal.  
From this modal law, we can algebraically derive three other laws of thermal radiation, one of which 
(Law 3) is essentially the original law for total absorptivity and emissivity, and another (Law 4) is a 
correct (and much more general) version of the “directional” law:  

for reciprocal objects, the absorptivity of any input beam is equal to the emissivity back into 
that same beam. 

11.2. A modal “A and B coefficient” argument – the M coefficient 
for emission and absorption 

Following an approach related to that used for the above radiation laws, we can construct an argument 
similar to Einstein’s classic “A and B” coefficient argument (see, e.g., [139]), relating absorption, 
spontaneous emission, and stimulated emission based on thermodynamic and statistical mechanics 
arguments; now, however, we construct it directly for a mode-converter pair. We give the detail of 
this argument in Appendix J. Now we presume we have some quantum “two-level” system inside 
some otherwise-lossless optical environment, which can be anything we want – e.g., free space, a 
resonator, or a waveguide – and we establish the corresponding mode-converter basis sets { }jψ  

and { }jφ , or at least some pair or pairs of interest. Specifically, we conclude the following:  

  (196) 

Now, instead of the A and B coefficients, we only have one coefficient, M, for a given mode-
converter pair [156]. This simple result works mode by mode. We have avoided using the free-space 
density of states and any fictitious boxes or resonators we might use to construct that. The modal 
basis is derived entirely based on the actual optical configuration of quantum system and any 
otherwise loss-less optical system in which it is embedded, thereby giving a more general result.   

the absorptivity of mode-converter input mode 1ψ  is equal to the 

emissivity into corresponding mode-converter output mode 1φ  

If a quantum system has probabilities 2P  and 1P  of being in its upper and lower 
states respectively, and if the probability per unit time that a photon in the mode-
converter input mode jψ  is absorbed by the quantum system is 1MP , then if there 

are pn  photons in input mode jψ  the probability per unit time that a photon is 

emitted into the corresponding mode-converter output mode jφ  is ( ) 21pn MP+ . 
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11.3. Mode-converter basis sets as physical properties of a system 
Necessarily, much of the discussion so far has centered on the mathematical process of SVD for 
establishing the communications modes and mode-converter basis sets. However, an important point 
is that these can be established entirely physically, at least in principle, without any mathematics. We 
already made this point in section 10.2, showing how to establish these mode pairs by maximization 
of transmission through a scatterer. With the radiation laws, we have another option in principle: we 
could establish by some iterative process just what input mode leads to the largest absorption in some 
(partially) absorbing object, thereby establishing 1ψ . If necessary, then we can find the 
corresponding 1φ  by looking at the thermal emission and establishing the best possible mode power 
collection (e.g., into a single mode fiber). We could use similar apparatus as in Fig. 28, and that 
would then let us progress to finding the next such pair, using the second waveguide on each side, 
and so on. This is not necessarily a very practical approach, but it emphasizes that these modes are 
physical properties of the systems that can be established by measurement.  

12. Conclusions 
The idea of considering modes as pairs of functions determined from singular value decomposition 
is a useful and powerful approach for understanding waves in communications and in linear 
scattering and optics more broadly. It is supported by rigorous mathematics and by deep physical 
concepts in waves generally, including for full vector electromagnetic waves. This approach is 
applicable in acoustics, in wireless communications, and in optics, and provides a unified framework 
for such problems. 
This approach clarifies the number and specific nature of orthogonal channels in communication 
with waves – the communications modes – including rigorous counting of these channels, and shows 
how to establish them – mathematically, in calculations, and in practice. It introduces and rationalizes 
many “heuristic” behaviors of numbers of usable channels. It provides the “best” modal basis sets 
for describing any optical component or wave scatterer. Those mode-converter basis set pairs are the 
most economical ones for describing and analyzing any such component or scatterer, and they lead 
to fundamental physical laws that apply one-by-one to these mode pairs, including new and more 
general radiation laws and a new compact version of the fundamental argument relating absorption, 
spontaneous emission and stimulated emission of quantum systems. 
These approaches are valid for any size scale of object or system, from large imaging optics to radio 
antennas and nanophotonic devices. As such they complement and complete the many existing 
approaches – from conventional ray-tracing imaging optics, through Fourier optics and standard 
families of functions and beams, to direct solutions of wave equations – that are useful separately at 
different scales and complexities of systems. We might expect these communications mode and 
mode-converter basis set approaches to be particularly useful for systems that are too large for 
convenient direct wave calculations and too small for the simpler Fourier and ray-tracing approaches. 
At any scale, however, they can offer the most economical description in terms of the modes that 
matter most.  
We can hope that the ultimate simplicity, clarity and rigor of these approaches will be practically 
useful, fundamentally significant, and stimulating to new insights into waves and how we can use 
them.  
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Appendix A Approximating uniform line or patch 
sources with point sources 

Suppose we divide a source surface or line into “patches” of area pA  (for a surface) or width pd  
(for a line). Our question is whether there is much difference between considering a point source of 
amplitude h in the middle of the patch or a uniformly distributed source over the entire area or length 
of the patch, with source (areal) density /A ph Aη = , or source (linear) density /d ph dη = .  

 
Fig. 32. Schematic for estimating the largest size of source “patch” for which a uniform source density 
across the patch can be approximated by a point source in the middle of the patch. 

We can consider the most distant point P from this source on the receiving surface, at some distance 
maxL  from the (center of) the patch (see Fig. 32). If there is no difference in the wave amplitude at 

P between a source at one extreme end of the patch and one at the other, then we can consider that it 
makes no difference whether we consider the point source or the equivalent source density spread 
over the entire area or width of the source patch. 
We presume that the linear dimension of these patches is much smaller than the separation L between 
the source and receiver surfaces, so there is negligible difference in the “1 / r ” factor in the Green’s 
function between these two extreme points. However, we do have to consider the phase difference 
between these two extreme source points for waves arriving at P. In Fig. 32, we illustrate the case of 
a “line” source patch. We can consider that our approximation will start to break down if the 
difference in the two lengths tL  from the “top” point and bL  from the “bottom” point reaches / 2λ , 
because then we will have destructive interference between the waves from these two extreme 
sources.   
From Fig. 32, ( )/ 2 sint max p maxL L d θ= +  and ( )/ 2 sinb max p maxL L d θ= −  so 

 sint b p maxL L d θ− =   (197) 

So, keeping this below / 2λ  requires 

 / 2sinp maxd λ θ<  (198) 

The situation for an area “patch” is slightly different in that the most extreme distance difference 
would be between the diagonally opposite corners of the patch, so possibly up to 2  larger than the 
largest linear dimension. However, for this simple heuristic we neglect that minor difference, and 
conclude that the spacing of our point sources (in either direction for area patches) should satisfy the 
approximate limit of Eq. (198) if they are reasonably to approximate uniform patches.  
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If the source and receiving surfaces are approximately the same size (with a linear dimension w) and 
are centered on a common axis, then tan /max w Lθ = . For paraxial situations, so where w L , then 

( ) ( )sin tanmax maxθ θ , so we have / 2pd L wλ< , which is the result Eq. (70) in the main text.    

Appendix B Longitudinal heuristic angle 
To understand the effective “diffraction angle” from a longitudinal line of sources, we can construct 
an argument based on two point sources, A and B, spaced a distance 2 z∆  apart in the z direction, as 
in Fig. 33.  
Suppose the relative phase of the two sources is such that they add constructively along the z direction 
(i.e., the direction from A or B to P). As we move away from P in a direction perpendicular to z, such 
as by some amount yδ  in the y direction to some point Q, the relative distance to the points A and 

B will change. Specifically, the distance from A to Q is ( )
1/22 2

AQ os z z yδ = + ∆ +  and from B to Q, 

( )
1/22 2

BQ os z z yδ = − ∆ +  .  

 
Fig. 33.  Two point sources A and B spaced 2 z∆  apart along the z axis, at a very large distance oz  from 
a point P. Point Q is spaced a relatively small distance yδ  away from P in the y direction. θ is the angle 
subtended by the line segment PQ relative to the midpoint between A and B. (Not to scale; 2oz z∆ .) 

We can also think of the separation between P and Q as an angle θ. Presuming oy zδ  , then 
/ oy zθ δ , or equivalently oy zδ θ= . Writing 

 BQ AQs s s∆ = −  (199) 

and dropping terms ( )2/ oz z∝ ∆  as being relatively too small as we let oz  become arbitrarily large, 
we have 

 ( ) ( ){ }1/2 1/22 21 2 / 1 2 /o o os z z z z zθ θ∆  − ∆ +  −  + ∆ +       (200) 

Using [157] ( ) ( )21 1 / 2 / 8ε ε ε+ + − , after some algebra, 22s z zθ∆ − ∆ + ∆ . But 
2BP APs s z− = − ∆ . So the change in the relative distance from points A and B as we move from P to 

Q is 
 ( ) ( ) 2

BQ AQ BP APs s s s s zδ θ= − − − ∆  (201) 

We are interested specifically in the angle Lθ  by which this relative distance has changed by / 2λ , 
corresponding from a change from constructive to destructive interference, and hence a minimum in 
the intensity. So, for / 2sδ λ=  we have what we call the longitudinal heuristic angle 

/ 2L zθ λ= ∆  , which is the desired result (Eq. (71) in the main text).  
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Appendix C Spherical heuristic number 
We can rationalize the approximate effective number of channels for a spherical source as follows. 
Consider some small lateral line AB of length d on an outer “receiving” sphere of a very large radius 
R (Fig. 34), and consider two point sources P and Q on the extreme sides of the source sphere and in 
the same plane as AB and on a line parallel to AB.  

 
Fig. 34. Construction for deducing an effective number of degrees of freedom from a spherical source. 

We ask that d is small enough such that the distance difference 1 2l l l∆ = −   from the two point sources 
changes by just / 2λ  as we move from the middle (point C) to one end (point B) of this line, so we 
could move from constructive interference to cancellation. So 

 
( ) ( )2 22 2

2 2

/ 2 / 2

1 / 2 1 / 21 1
2 2 2

l r d R r d R

r d r d rdR
R R R

λ

∆ = + + − − +

 + −   + − − =         
 

   (202) 

So / 2d R rλ= . We can reason similarly in the other direction (out of the “paper”) leading to a patch 
of area 2 2 2 2/ 4d R rλ= . The total number of such patches on the surface area 24 Rπ  of the receiving 
sphere is therefore 2 2 2 24 / 16 /SHN R d rπ π λ= = , which is the result Eq. (74) in the main text. Note 
that this result depends only on the radius r of the source sphere. [158] derives a number equivalent 
to this by a “sampling” argument.  

Appendix D Singular value decomposition of compact 
operators 

For a compact (but not necessarily Hermitian) operator A  that maps from a Hilbert space SH  to a 
Hilbert space RH  (which will be the source and receiver spaces in our physical problems), the 
operator †A A  maps from SH  back into SH , and the operator †AA  maps  from RH  back into RH
. We know that both of these operators are then compact and Hermitian (see (127)), so by the spectral 
theorem for compact Hermitian operators (129), the set of eigenfunctions { }jψ  of  †A A  is a 

complete set for SH , and the set of eigenfunctions { }jφ  of †AA  is a complete set for RH , and we 
will choose these sets to be orthonormal in their spaces. In SVD, we are interested in both of these 
sets of eigenfunctions, and the corresponding eigenvalues.  
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Both †A A  and †AA  are also positive operators by (134) (or (136)). So, by (136), their eigenvalues 
are also positive (non-negative). So, we can choose to write the eigenvalues of †A A  as 2

j jc s= . 

The eigen equation for †A A  is then  

 2†
j j jsψ ψ=A A   (203) 

So, using the expansion of the form Eq. (131) for †A A , we have 

 2†

1
j j j

j
s ψ ψ

∞

=
= ∑A A  (204) 

So,  

 2 2†
n n n nsψ ψ ψ= =A A A  (205)  

Then  

 n nsψ =A    (206) 

So for all non-zero eigenvalues ns   we can construct a set of functions{ }nφ  in RH  (where we have 

used a notation that anticipates the answer – we have not yet proved these are also the eigenfunctions 
of †AA ), that we define as  

 1
n n

ns
φ ψ= A   (207) 

This set of functions is, first, normalized; that is 

 
2

†1 1n
n n n n

n n n n

s
s s s s

φ φ ψ ψ
∗ ∗

= = =A A    (208) 

and we have 

 

2†

1

2 2

1 1

2 2

1 1

1 1

m n m n m j j j n
jm n m n

j m j j n j m j jn
j jm n m n

n n
m n mn mn

m n m n

s
s s s s

s s
s s s s

s s
s s s s

φ φ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ δ

ψ ψ δ δ

∞

∗ ∗ =

∞ ∞

∗ ∗= =

∗ ∗

 = = ∑ 
 

= =∑ ∑

= = =

A A

  (209) 

so this set { }nφ  is also orthonormal.  

Now suppose we consider an arbitrary function ψ  in SH . Then we can expand it in the orthonormal 
set { }jψ , as in Eqs. (86) and (87), to obtain 

 j j
j

ψ ψ ψ ψ= ∑   (210) 

So, using (207), and the associative law (109) for products in Dirac notation  

 
( )

j j j j j j j
j j j

j j j j j j
j j

s

s s

ψ ψ ψ ψ ψ ψ ψ ψ ψ φ

φ ψ ψ φ ψ ψ

= = =∑ ∑ ∑

= =∑ ∑

A A A
 (211)  

Since ψ  was arbitrary, we can therefore write 
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 j j j
j

s φ ψ≡ ∑A   (212) 

which is the singular value decomposition (SVD) of the operator A  from a space SH  to a possibly 
different space RH . The complex numbers js  are the singular values. Note this definition can be 
for infinite-dimensional spaces. 

Finally, it remains only to verify that the { }jφ  are the eigenfunctions of †AA . From (212) and the 
general algebraic identity for Hermitian adjoints of vector-vector products [159],   

 †
k kk ks ψ φ∗≡ ∑A  (213) 

So from (212) 

 
( )( )†

, ,

2

,

j j j k k j j j k kk k
j k j k

j j jk k j j jk
j k j

s s s s

s s s

φ ψ ψ φ φ ψ ψ φ

φ δ φ φ φ

∗ ∗

∗

≡ =∑ ∑

= =∑ ∑

AA
  (214) 

Hence  

 2†
j j jsφ φ=AA   (215) 

So the { }jφ  are indeed the eigenfunctions of †AA , and note that they have the same eigenvalues 

as †A A  [160]. Note, finally, from (212),  
 k j j j k j j jk k k

j j
s s sψ φ ψ ψ φ δ φ= = =∑ ∑A  (216) 

So the operator A  maps one-by-one from the set of orthogonal functions { }jψ  in SH  to the 

corresponding member of the set of orthogonal functions { }jφ  in RH  with coupling amplitude js  
in each case. There is also a complementary mathematical relation that we can similarly deduce from 
Eq. (213)  

 †
k kksφ ψ∗=A    (217) 

We can also formally rewrite the SVD, Eq. (212), in matrix form. To do so, we  can write a matrix 
that is diagonal on some basis { }jγ  as 

 diag j j j
j

s γ γ= ∑D   (218) 

where js  are the diagonal elements, and we can define two matrices  

 p p
p

ψ γ∑U=   and q q
q

φ γ∑V =   (219) 

both of which are technically unitary [161]. Then 

 
( )( )( )†

, ,

diag q q j j j p p
q j p

q qj j jp p j j j
q j p j

s

s s

φ γ γ γ γ ψ

φ δ δ ψ φ ψ

= ∑ ∑ ∑

= = =∑ ∑

VD U

A
   (220) 

Hence, an equivalent form for writing singular value decomposition is the “matrix” version 

 †
diagA = VD U    (221) 

with U and V  as in (219). In this case, we can view the jφ  as being the columns of V  and jψ  

as being the rows of †U  (or jψ  as being the columns of U).  
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Appendix E Hilbert-Schmidt operators with weighted 
inner products 

Suppose we have two possibly-different weighting operators ( )R RrW  and ( )S SrW  in source and 
receiving spaces respectively. We can now follow through an argument similar to that in section 6.8. 
Instead of (149), we can write the operator-weighted inner products   
 ( ) ( ) ( ) ( ) 3,

S
S

S S S S S S S SS
V

dµ η µ η∗≡ ∫ r r r rW W   (222) 

 ( ) ( ) ( ) ( ) 3,
R

R

R R R R R R R R R
V

dµ η µ η∗≡ ∫ r r r rW W  (223) 

We also formally presume that, for finite functions Sµ , Sη , Rµ , and Rη , these inner products are 
finite. So, for some coupling operator (which may be a Green’s function) 
 ( ) ( ) ( ) ( ) ( )

, ,
; , ,

R S
R S pq Rp Sq pq Rp R SSq

p q p q
d dα α α α ∗= ⋅ ⋅ ≡∑ ∑r r r rW WD  (224) 

We can find the ijd  as usual by premultiplying by ( )Ri Rα ∗ r , postmultiplying by ( )Sj Sα r , we can 
integrate with the weighting operators as in 

 ( ) ( ) ( ) ( ) ( ) 3 3;
S R

ij Ri R R R R S S S Sj S R S
V V

d d dα α∗=    ∫ ∫    r r r r r r r rW D W      (225) 

Here we have used square brackets [ ]  to indicate explicitly that the weighting operators only have 
to operate on the function to their immediate right. Now consider the integral 

 ( ) ( ) ( ) ( )† 3 3; ;
S R

D S S S R R R R S R S
V V

S d d=    ∫ ∫    r r r r r r r rW D W D      (226) 

where 

 ( ) ( ) ( ) ( )†

,
; ;S R mn Rm R Sn S R S

m n
d α α∗ ∗ ∗= ≡∑r r r r r rD D    (227) 

By presumption, ( ) ( );R R R Sr r rW D and ( ) ( )† ;S S S Rr r rW D  are finite. So the integral (226) of finite 
functions over finite volumes is finite. Then  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

†

, ,

, , ,

; ;S S S R R R R S

mn S S Sn S Rm R pq R R Rp R SSq
m n p q

mn pq S S S Sn S Rm R R R Rp RSq
m n p q

d d

d d

α α α α

α α α α

∗ ∗ ∗

∗ ∗ ∗

      
  =    ∑ ∑       

=    ∑    

r r r r r r

r r r r r r

r r r r r r

W D W D

W W

W W

 (228) 

Formally integrating (228) over the two volumes, as in (226), gives 

 2

, , , ,
D mn pq qn mp pq

m n p q p q
S d d dδ δ∗= =∑ ∑  (229) 

which, since we know DS  is finite, proves this is a Hilbert-Schmidt operator.  

Appendix F Electromagnetic Gauge, Green’s 
functions and energy inner product  

Here we derive Green’s functions and energy inner products for electromagnetic fields in uniform 
media. The electromagnetism background is relatively standard (see, e.g., [41, 110, 116, 162 – 164]. 
However, we need a new “gauge” – the “M-gauge”. This gauge lets us write all fields of interest just 
using the magnetic vector potential and clarifies that there are altogether only three independent field 
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components for communications. That then allows a single, novel dyadic vector potential Green’s 
function and a novel “energy” inner product for the electromagnetic field.  

F.1. Background electromagnetism 
We presume an isotropic uniform medium, so with constant, scalar permeability µ and permittivity 
ε. We consider a free charge density ρ and a corresponding “conduction” current density J of that 
charge. Then, we can write Maxwell’s equations as 
 (M1) ε ρ∇ ⋅ =E   (230) 

 (M2)  0∇ ⋅ =B     (231) 

 (M3)  
t

∂
∇ × = −

∂
BE    (232) 

 (M4) ( ) 1

t
µ ε− ∂

∇ × = +
∂
EB J   (233) 

We can also explicitly write out the charge conservation condition 

 
t
ρ∂

∇ ⋅ = −
∂

J   (234) 

We want to know how many independent field components we need to describe communication. To 
reduce from the nominal 6 different scalar field quantities required to write the vector components 
of E and B, we change first a description using the magnetic vector potential A and a scalar (electric) 
potential Φ. To relate these to E and B, we follow several standard steps. Since for any vector field 
F 

 ( ) 0∇ ⋅ ∇ × =F   (235) 

then, since 0∇ ⋅ =B  (M3) (Eq. (231)), we can write 
 = ∇ ×B A   (236) 
where A is the (magnetic) vector potential. Next, from (M3) (Eq. (232), we now have 

 
( )

t
∂

∇ × = − ∇ ×
∂

E A
   

so, presuming we can interchange the order of differentiations, we can write 

 0
t

∂ ∇ × + = ∂ 
E A   (237) 

Now we also have the vector calculus identity 

 ( ) 0F∇ × ∇ =   (238) 

for any scalar field F. So, we can argue that any such field / t+ ∂ ∂E A  whose curl is zero can always 
be written therefore as the gradient of some other scalar function, i.e.,  

 
t

∂
+ = −∇Φ

∂
E A   (239) 

for some scalar field Φ , which we call the scalar potential. Rewriting Eq. (239), we have 

 
t

∂
= −∇Φ −

∂
E A   (240) 

These two equations (236) and (240) describe the magnetic and electric fields in terms of these two 
potentials. Using Eq. (240) in (M1) (Eq.(230)) gives (with constant isotropic ε)  



 96 

 
t

ρ
ε

∂ ∇ ⋅ ∇Φ + = − ∂ 
A    (241) 

Noting that ( )F∇ ⋅ ∇  is just another notation for 2F∇  for any scalar field F, and interchanging the 
order of the derivatives, gives 

 ( )2

t
ρ
ε

∂
∇ Φ + ∇ ⋅ = −

∂
A   (242) 

From (M4) (Eq. (233)), and using Eq. (236) for B and Eq. (240) for E, we have 

 ( ) 1

t t
µ ε− ∂ ∂ ∇ × ∇ × = + −∇Φ − ∂ ∂ 

A J A   (243) 

Interchanging the order of the derivatives and rearranging gives 

 ( )
21

2t t
µ ε ε− ∂ ∂∇Φ

∇ × ∇ × + + =
∂ ∂

AA J   (244) 

Since we are presuming that ε and µ are simply constants, then Eq. (244) becomes 

 
2

2t t
εµ εµ µ∂ ∂∇Φ

∇ × ∇ × + + =
∂ ∂

AA J   (245) 

Using the vector identity 

 ( ) ( ) 2∇ × ∇ × ≡ ∇ ∇ ⋅ − ∇F F F   (246) 

it is common to rearrange Eq. (245) to obtain  

 
2

2
2t t

εµ εµ µ∂ ∂Φ ∇ − − ∇ ∇ ⋅ + = − ∂ ∂ 

AA A J   (247) 

though we will deliberately not take this approach below. 
These equations (242) and (245) (or (247)) are still coupled between the two potentials A and Φ. To 
simplify further, we need to choose a gauge for these potentials – i.e., the specific choice of A and 
Φ for given E and B fields. To understand why we need to make a choice, note, first, that we could 
represent a specific B field using a first or “old” choice oldA , with old= ∇ ×B A  as in Eq. (236). 
Because of the vector calculus identity  ( ) 0F∇ × ∇ =  (Eq. (238)), we could add the gradient of some 
scalar function Ψ , called the gauge function, to oldA  to create a new vector potential  

 new old= + ∇ΨA A   (248) 

without making any change to the magnetic field B; specifically, 

 old new= ∇ × = ∇ ×B A A  (249) 

However, if we make no further changes, we see from Eq. (240) that the new vector potential would 
add a term / t−∂∇Ψ ∂  to the electric field E. To avoid this, therefore, we can add a term / t−∂Ψ ∂  to 
the potential Φ ; that is, we write 

 new old t
∂Ψ

Φ = Φ −
∂

  (250) 

We can check this explicitly by calculating E using newΦ  and newA ; that is, 

 
( )new new old old

old old old old

t t t

t t t t

∂ ∂Ψ ∂ = −∇Φ − = −∇ Φ − − + ∇Ψ ∂ ∂ ∂ 
∂ ∂Ψ ∂ ∂

= −∇Φ − − ∇ + ∇Ψ = −∇Φ −
∂ ∂ ∂ ∂

E A A

A A
  (251) 
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where we presume we can interchange the order of temporal and spatial derivatives. So, Eq. (251) 
shows explicitly that we are free to choose the gauge function Ψ as long as we use the transformation 
rules Eqs. (248) and (250). A new choice of gauge function Ψ gives a gauge transformation.  

F.2. Choosing a gauge for communications problems 
We want to choose a gauge that leaves only the minimum number of field components so that we 
can count modes properly. The Coulomb and Lorentz gauges are particularly common (see, e.g., 
[116, 162, 163]). Typically, a gauge is set in practice by some choice for ∇ ⋅ A . For the Coulomb 
gauge (with subscript “C”), that choice is 

 0C∇ ⋅ =A   (252) 

and for the Lorentz gauge (with subscript “L”) 

 
2

1 L
L c t

∂Φ
∇ ⋅ = −

∂
A   (253) 

Many other choices are possible (see, e.g., [165, 166]). Using each such choice in the wave equation 
(247) leads to four “scalar” equations or their equivalent, one wave equation for each vector 
component of A, and another equation for the scalar potential Φ. In the Coulomb and the Lorenz 
gauges, the driving source terms are the charge density ρ  and the current density J. Immediately, 
this tells us that there are no more than 4 independent functions required to specify any field that we 
would create as a result – one for ρ  and one each for the three vector components of J. However, 
the charge density ρ  and the current density J are linked by conservation of charge, Eq. (234), so 
even these 4 may be too many. There are also technical problems with the Coulomb gauge in 
particular [142, 143] as we describe waves coming from sources.  

F.2.1. A gauge for communications – the M-gauge 
We are interested here in sending changing fields from a source. We can, without significant 
restriction, suppose that before some time ot , all electric and magnetic fields have been constant, and 
that we have a known charge density ( )oρ r  that has been fixed up to this point. (We can also 
presume all effective magnetic currents ( )mJ r   have been stable and fixed, and that we have had 
other fixed “solenoidal” current densities ( )oJ r , i.e., ones for which 0o∇ ⋅ =J ). So before time ot ,  
we have some electrostatic field ( )oE r that we could obtain by a solution of Maxwell’s first equation 
(M1) with this charge density ( )oρ r , as well as possibly some magnetostatic field ( )oB r from 
Maxwell’s fourth equation (M4), with some (fixed) ( )oJ r  and ( )mJ r . 
Now we presume that after time ot , we have some new additional current density ( ),tJ r . These new 
currents give changes ( ),tρ∆ r  in charge density that necessarily and only result from such currents, 
so we should not need an additional independent driving term corresponding to the change in charge 
density. The changes in the electromagnetic field, and any propagating components of that, should 
result only from these currents ( ),tJ r .  
Now our task is to construct a new gauge, which, using the “m” from “coMmunications”, we call the 
“M” gauge [167], with the only time-dependent driving terms being from the three vector 
components of the current density ( ),tJ r .The key to this gauge is to choose the scalar potential as 
being associated just with the original fixed charge density ( )oρ r , so it obeys a simple, fixed Poisson 
equation 

 ( ) ( )2 o
M

ρ
ε

∇ Φ = −
r

r   (254) 

which, within an arbitrary additive constant, has the solution 
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 ( ) ( ) 31
4

o
M d

ρ
πε

′
′Φ = ∫ ′−

r
r r

r r
  (255) 

Because neither oρ  or MΦ  has any time dependence, we therefore have  

 0M

t
∂Φ

=
∂

 (256)  

and, trivially,  

 0M

t
∂Φ

∇ =
∂

  (257)  

We have, as usual in any gauge (Eq. (240)) 

 M
M t

∂
= −∇Φ −

∂
AE   (258) 

With the fixed electrostatic field 

 o M= −∇ΦE   (259) 

we could write 

 o M= +E E E   (260) 

with /M M t= −∂ ∂E A  (Eq. (164) with ME  containing all the time-varying and propagating electric 
fields [168]. Similarly, we could write  

 M o= +B B B   (261) 

with M M= ∇ ×B A  (Eq. (165)) as usual for gauge potentials.  

Generally, a gauge is practically defined by the choice of ∇ ⋅ A , and we need this result later. We 
give the formal derivation of this below in Appendix G, with the result 

 ( ) ( )1, ,
o o

t t

M
t t t t

t t dt dt
ε

′

′ ′′= =
′′ ′′ ′∇ ⋅ = ∇ ⋅∫ ∫A r J r   (262) 

F.2.2. Wave equations in the M-gauge 
Now returning to Eq. (245) and using Eq. (257) to eliminate the term ( )/ tεµ ∂∇Φ ∂  because it is 
zero in this gauge, we obtain the wave equation 

 
2

2
M

M t
εµ µ∂

∇ × ∇ × + =
∂
AA J   (263) 

which lets us define what will be the phase velocity 1 /v εµ=  (Eq. (168)). 

Often we are most interested in monochromatic fields – that is, fields whose time dependence can be 
written in the form ( )sin tω , ( )cos tω , ( )exp i tω , or ( )exp i tω− , or linear combinations of these, 
with some specific choice of the angular frequency ω . In this case,  

 
2

2
2
M

Mt
ω∂

= −
∂
A A  (264) 

For the definiteness and simplicity, for such monochromatic fields we can use the form  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), exp exp exp . .M M M Mi t i t i t c cω ω ωω ω ω∗= − + ≡ − +A r t A r A r A r  (265) 

where “c. c.” stands for “complex conjugate. The addition of the complex conjugate ensures that the 
field ( ),M tA r  is real. In Eq. (265) ( )MωA r  is in general a complex amplitude function (which 
therefore holds any phase information for the fields). As is common, we perform the algebra for the 
field ( ) ( )expM i tω ω−A r . If necessary to get back to real fields, we can formally repeat the 
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calculation with the complex conjugate of the form in Eq. (265), and add the two. In the 
monochromatic case, therefore, instead of Eq. (263) we have 2

M Mkω ω ωµ∇ × ∇ × − =A A J  (Eq. 
(166)), with 2 2 2 2/k vω εµ ω= ≡  (Eq. (167), and ( ) ( ) ( ), exp . .t i t c cω ω= − +J r J r (Eq. (169)). 
So, the answer to the number of independent functions required to specify an electromagnetic field 
is that there are three such functions of space and time for all communications purposes, plus other 
functions of space only to specify background static fields. Our choice of gauge has separated these 
out, as desired. The consequent price is that is that the resulting wave equation (263) has a ∇ × ∇ ×  
spatial derivative rather than a more common 2∇  one [169]. However, this is manageable and even 
useful, as we show below.  

F.3. Dyadic Green’s function for the vector potential in the M-gauge 
Approaches to the mathematical Green’s function solutions for A for equations of the form of (263) 
or (166) can be repurposed from discussions of “dyadic” Green’s functions that can be derived 
directly for E and B in electromagnetism [41, 110, 170 - 173]. A dyadic Green’s function expresses 
that fact that the resulting vector field or vector potential function may not be parallel to the vector 
source that generates it [174]. We give a brief tutorial introduction to dyadics [175], together with 
some necessary identities, in Appendix H below. 

F.3.1. Derivation of general form for monochromatic waves 
In part because the vector and dyadic calculus becomes somewhat involved here, we will consider 
the monochromatic version of the wave equation, Eq.(166), first. We now propose a dyadic Green’s 
function ( );MGω ′r r  that, starting from some vector “point source” element at position ′r will lead 
to some vector wave (not necessarily in the same vector direction) at position r.  Following the usual 
approach with Green’s functions, we write in this dyadic case 

 ( ) ( ) ( ) 3;MM
V

G dωω ωµ ′ ′ ′= ⋅∫A r r r J r r   (266) 

and we formally write the corresponding wave equation for the dyadic Green’s function as 

 ( )2M MG k G Iω ω δ ′∇ × ∇ × − = −r r   (267) 

Note the presence of the idem factor (unit dyadic) I  on the right in Eq. (267), as required to make 
the right hand side a dyadic entity to match the left hand side. Taking the divergence of both sides of 
Eq. (267), and noting that the divergence of the curl of a function is necessarily zero (a result that 
also works in dyadic form [170]), we have  

 ( )( )2 Mk G Iω δ ′− ∇ ⋅ = ∇ ⋅ −r r   (268) 

So, using the identity Eq. (345) and rearranging, we have [176] 

 ( )
2

1
MG

k
ω δ ′∇ ⋅ = − ∇ −r r   (269) 

Now, using the identity Eq.(246), which also works in dyadic form [170], Eq. (267) becomes 

 ( ) ( )2 2M M MG G k G Iω ω ω δ ′∇ − ∇ ∇ ⋅ + = − −r r   (270)  

and we can substitute using Eq. (269) for MGω∇ ⋅  to obtain, after rearrangement, 

 ( ) ( )2 2
2

1
Mk G I

k
ω δ  ′∇ + = − + ∇∇ − 

 
r r  (271) 
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Now let us propose a form for MGω , and check to see whether it can be a solution to Eq. (271), and 
hence to (267). Specifically, we propose 

 ( ) ( )
2

1; ;MG I g
k

ω
 ′ ′= − + ∇∇ 
 

r r r r   (272) 

where ( );g ′r r  is a scalar function to be determined. Substituting this into Eq. (271) gives 

 ( ) ( ) ( )2 2
2 2

1 1;k I g I
k k

δ   ′ ′∇ + + ∇∇ = + ∇∇ −   
   

r r r r  (273) 

Exchanging order of terms and derivatives on the left gives 

 ( ) ( ) ( )2 2
2 2

1 1;I k g I
k k

δ   ′ ′ + ∇∇ ∇ + = + ∇∇ −       
r r r r   (274) 

This equation can be satisfied if   

 ( ) ( ) ( )2 2 ;k g δ′ ′∇ + = −r r r r  (275) 

But this is just the Green’s function equation for a scalar wave equation, as in Eq. (4), so  

 ( ) ( ) ( )exp1; ;
4

ik
g Gω π

′−
′ ′≡ = −

′−

r r
r r r r

r r
  (276) 

So, substituting back into Eq. (272) we have  

 ( ) ( ) ( )
2 2

exp1 1 1; ;
4

M
ik

G I G I
k k

ω ω π

′−   ′ ′= − + ∇∇ = + ∇∇    ′−   

r r
r r r r

r r
  (277) 

Hence, we now have a relatively straightforward expression for the Green’s function of the “ ∇ × ∇ ×” 
wave equation (166).  

F.3.2. Explicit form for the dyadic Green’s function for monochromatic 
waves 

In the Green’s function in Eq. (277) the only variable is R ′= −r r , which we can regard as a radius 
variable in spherical coordinates around the fixed point ′r . So, with no dependence on the θ and φ 
coordinates  

 ( ) ( ); dG G R R
dRω ω

 ′∇ ≡ ∇  
r r   (278) 

Now 

 ( ) ( ) ( ) ( )
2

exp1 1 1 1exp
4 4

ikRd d ikG R ikR ik G R
dR dR R R R Rω ωπ π

     = − = − − = −     
    

 (279)  

So, from Eq. (278), and using the identity ˆR∇ = R  (Eq. (350)) 

 ( ) ( )1 ˆ;G ik G R
Rω ω

 ′∇ = − 
 

r r R   (280) 

Continuing,  

 ( ) ( ) ( )1 1ˆ ˆ;G ik G R ik G R
R Rω ω ω

    ′∇∇ = ∇ − + − ∇        
r r R R   (281) 
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where we use  I∇ =R  (see Eq. (351)). We can now progressively work out the remaining  parts of 
this expression (281).   

 

( ) ( ) ( )

( ) ( ) ( )
2 2

2 2

1 1 1

ˆ 1 1 1ˆ ˆ

ik G R G R ik G R
R R R

G R ik G R ik G R
R R R R

ω ω ω

ω ω ω

      ∇ − = − ∇ + − ∇            
    = + − = − +    

     

R R R
 (282)  

where we have used the result ( ) 2ˆ1 / /R R∇ == −R  (Eq. (352)). Substituting using Eq. (353) (

( )( )ˆ ˆ ˆ1 / R I∇ = −R RR ) and (282), we can therefore rewrite Eq. (281) as 

 
( ) ( ) ( )

( ) ( ) ( )

2

2

2
2

1 1 1 1ˆ ˆ ˆ ˆ;

1ˆ ˆ ˆ ˆ ˆ ˆ3 3

G ik ik I G R
R R R R

ikk I I G R
R R

ω ω

ω

      ′∇∇ = − + + − −     
       

 = − + − − −  

r r RR RR

RR RR RR

  (283) 

So, finally, using Eq. (283) in Eq. (277) gives 

 
( ) ( ) ( ) ( )

( ) ( )

2 2

1ˆ ˆ ˆ ˆ ˆ ˆ; 3 3

1 1ˆ ˆ ˆ ˆ3

M
iG I I I G R

kR k R

I i I G R
kR kR

ω ω

ω

 ′ = − − + − − −  
  = − − + − −    

r r RR RR RR

RR RR
 (284) 

We see from Eq. (284) that we have two different kinds of terms. Specifically, writing 

M MP MNG G Gω ω ω= + (Eq. (172)) we can define a “propagating” Green’s function 
 

 ( ) ( )ˆ ˆMPG I G Rω ω= − − RR   (285) 

and a “near-field” Green’s function 

 ( ) ( )1 1 ˆ ˆ3MNG i I G R
kR kR

ω ω
  = − − −    

RR   (286) 

The magnitude of the propagating Green’s function MPGω  falls off as 1 / R , from the 1 / R  
dependence of the scalar Green’s function ( )G Rω , and its behavior is characteristic of a propagating 
wave. The “near-field” Green’s function, by contrast, consists only of terms whose magnitude is 
falling off as 21 / R  or 31 / R , which are characteristic of near-field fields, not propagating ones.  
We can usefully rewrite these Green’s functions Eqs. (285) and (286) by rewriting the unit dyadic I  
using a coordinate direction R̂  and two other directions, given by unit vectors 1ê  and 2ê , which are 
perpendicular to each other and to R̂ , giving  (as in Eq. (338)) 

 1 1 2 2ˆ ˆ ˆ ˆ ˆ ˆI = + +RR e e e e   (287) 

so, substituting Eq. (287) in Eq. (285) gives ( ) ( )1 1 2 2ˆ ˆ ˆ ˆMPG G Rω ω= − +e e e e  (Eq. (170)). 

So, in this propagating Green’s function there is never any component of the vector potential in the 
direction of propagation (the “radial” direction R̂ ) (i.e., there is no “longitudinal” propagating vector 
potential wave); all the propagating vector potential waves are “transverse”. 
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By contrast, the “near-field” Green’s function actually has a larger magnitude in the “longitudinal” 
radial direction R̂  than in each of the other two transverse directions 1ê  and 2ê ; specifically, 
substituting using (287) in Eq. (286), gives (Eq. (173)) 

 
( ) ( )1 1 2 2

1 1 ˆ ˆ ˆ ˆ ˆ ˆ2MNG i G R
kR kR

ω ω
  = − − −    

RR e e e e
  

F.3.3. Green’s functions for general time-dependent waves 
We can follow through a similar analysis for the full time-dependent case, based on a scalar retarded 
Green’s function 

 ( ) ( )/1, ; ,
4

t t v
G t t

δ
π

′ ′− − −
′ ′ = −

′−

r r
r r

r r
  (288) 

For reasons of space, we omit the detailed derivation here, but the dyadic aspects are all similar. The 
resulting Green’s function of the full time-dependent wave equation Eq. (263) also can usefully be 
written (using the notation also of (287)) as a sum  

 M MP MNG G G= +   (289) 
of a propagating term 

 
( ) ( )( ) ( ) ( ) ( )

( ) ( )1 1 2 2

ˆ ˆ ˆ ˆ, ; , 1 / 4 / , ; ,

ˆ ˆ ˆ ˆ , ; ,

MPG t t R I t t R v I G t t

G t t

π δ′ ′ ′ ′ ′= − − − = − −

′ ′= − +

r r RR RR r r

e e e e r r
  (290) 

and a near- field term 

    
( ) ( ) ( ) ( )

( )( ) ( ) ( )

2

1 1 2 22

ˆ ˆ, ; , 3 / /
4

ˆ ˆ ˆ ˆ ˆ ˆ2 / /
4

MN
v vG t t I t t v t t v
R R

v vt t v t t v
R R

π

π

 ′ ′ ′ ′ ′ ′= − Θ − − − + Ξ − − −  
 ′ ′ ′ ′= − − − Θ − − − + Ξ − − −  

r r RR r r r r

RR e e e e r r r r
 (291) 

where ( )aΘ  and ( )aΞ  are the Heaviside and “ramp” functions, respectively, defined as 

 ( )
1,  0
0,  0

a
a

a
≥

Θ =  <
 and  ( )

,  0
0,  0
a a

a
a

≥
Ξ =  <

  (292) 

and we use the formal results 

 ( ) ( )/ /
b

a o

t

a a b
t t

t t R v dt t t R vδ
=

′ ′− − = Θ − −∫   (293) 

 ( ) ( ) ( )/ / /
b

b o a o b o

tt t

a a b b b
t t t t t t

t t R v dt dt t t R v dt t t R vδ
= = =

′ ′ ′− − = Θ − − = Ξ − −∫ ∫ ∫   (294) 

Just as for the monochromatic case, the propagating term gives “transverse” vector potential waves.  

F.3.4. Green’s functions for the electric and magnetic fields 
The Green’s function formalism we have set up so far for the vector potential in the M-gauge is 
complete for describing the electromagnetic field resulting from (time-varying) current sources (and 
any corresponding changing charge distributions). It can therefore be used to derive dyadic Green’s 
functions for the electric and magnetic fields, based on the relations Eqs (164) and (165) that give 
the electric and magnetic fields from the vector potential in this gauge. For reasons of space, we omit 
this here. Also, these can be derived directly from Maxwell’s equations (see, e.g., [41, 170]). As we 
would expect, the choice of gauge does not make any difference to the result for the electric and 
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magnetic fields. The point of our approach with the M-gauge is to clarify how many independent 
variables and fields there are and to give an inner product form that is directly suitable for use in 
functional analysis, which we derive next. 

F.4. Energy inner product for the vector potential 
Using the M-gauge, we can conveniently set up an inner product for the electromagnetic field, and 
this can be an “energy” inner product. With this inner product to define orthogonality and energy, 
the total energy of a field is the sum of the energies of its orthogonal components.  

F.4.1. Expressions for energy density in electromagnetic fields 
F.4.1.1. General time-dependent form 

A standard expression for the energy density in an electromagnetic field is ([162], p. 259) 

 ( )( )1/ 2u = ⋅ + ⋅E D B H    (295) 

In a lossless, uniform, isotropic medium with dielectric constant ε  and magnetic permeability µ, 
this can be rewritten as ( )( )11 / 2u ε µ −= ⋅ + ⋅E E B B  (Eq. (177)).  

F.4.1.2. Monochromatic form 
If we are considering a monochromatic field at angular frequency ω, we can write 

 ( ) ( ) ( ), coso et tω ω θ= +E r E r    (296) 

 ( ) ( ) ( ), coso mt tω ω θ= +B r B r    (297) 

where eθ  and mθ  are phase angles [177], and where both ( )oωE r  and ( )oωB r  are real [178]. Then 
the energy density of Eq. (177), now considered to be averaged over a cycle (which introduces a 
factor of ½) [179], can be written 

 ( )( )11 / 4 o o o ou ω ω ω ωε µ −= ⋅ + ⋅E E B B   (298) 

However, we also can conveniently write [180] (e.g., for work in quantum mechanics)  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), exp exp exp . .t i t i t i t c cω ω ωω ω ω∗= − + ≡ − +E r E r E r E r   (299) 

 ( ) ( ) ( ), exp . .t i t c cω ω= − +B r B r   (300) 

where  ωE  and ωB  are complex numbers, incorporating the phase shifts, i.e., 

 ( ) ( )( ) ( )/ 2 expo eiω ω θ= −E r E r   (301) 

 ( ) ( )( ) ( )/ 2 expo miω ω θ= −B r B r  (302) 

We will then get the same answer as in Eq. (298) for the (time-averaged) energy densities if we write 
with our new ωE  and ωB , instead of Eq. (298), 

 1u ω ω ω ωε µ∗ − ∗= ⋅ + ⋅E E B B    (303) 

Below we will need the monochromatic forms of the vector potential. We make similar definitions 
to those for the electric and magnetic fields. So, with a real monochromatic vector potential that we 
could write, analogously to Eqs. (296) and (297), as 

 ( ) ( ) ( ), cosM o M Mt tω ω θ= +A r A r  (304) 

for a phase angle Mθ (which may also be a function of position) and, analogously to Eqs. (299) and 
(300), we can write Eq. (265) ( ( ) ( ) ( ), exp . .M M i t c cω ω= − +A r t A r ), where, analogously to Eqs. 
(301) and (302)  
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 ( ) ( )( ) ( )/ 2 expM o M MA iω ω θ= −r A r   (305) 

F.4.2. Inner product form 
Our goal here is to construct an inner product that works with the electromagnetic field expressed 
through the vector potential. Using the vector potential in the M-gauge, we can deduce the entire 
electromagnetic field responsible for any communications, as expressed by ME  and MB .  

F.4.2.1. General time-dependent form 
Now, immediately from Eq. (177), and using the expressions for the electric field, Eq. (164), and the 
magnetic field, Eq. (165), in the M-gauge, we have 

 [ ] [ ]1 1
2

M M
M Mu

t t
ε

µ

∗
∗ ∂ ∂   = − ⋅ − + ∇ × ⋅ ∇ ×    ∂ ∂   

A A A A   (306) 

Now, in component form, with 

 1 1 2 2 3 3ˆ ˆ ˆM M M MA A A≡ + +A x x x  (307) 

then  

 1 2 3
1 2 3ˆ ˆ ˆM M M MA A A

t t t t
∂ ∂ ∂ ∂

− = − − −
∂ ∂ ∂ ∂
A x x x   (308) 

and 

 3 2 1 3 2 1
1 2 3

2 3 3 1 1 2
ˆ ˆ ˆM M M M M M

M
A A A A A A
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂     ∇ × = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂    
A x x x  (309) 

So, now we can construct a 6 3×  matrix, which we will call U  for a reason that will become 
apparent later. The idea of this matrix is that it will operate on the three vector components of MA , 
expressed as a 3-element column vector, to generate a six-element column vector whose first three 
elements are the three vector components of E (weighted by / 2ε ) and whose second three 
elements are the three vector components of B (weighted by 1 / 2µ ). This matrix then becomes 
(inserting dashed lines to separate elements explicitly in the matrix) 

  

3 2

3 1

2 1

0 0

0 0

0 0
1

1 102

1 10

1 1 0

t

t

t

x x

x x

x x

ε

ε

ε

µ µ

µ µ

µ µ

∂ − ∂ 
∂ − ∂

 ∂ −
 ∂
 = − ∂ ∂ 

∂ ∂ 
 ∂ − ∂ 
 ∂ ∂
 

− ∂ ∂ 
 ∂ ∂
 

U   (310) 

Then, with  

 1 1 2 2 3 3ˆ ˆ ˆM M M ME E E≡ + +E x x x   (311) 

 1 1 2 2 3 3ˆ ˆ ˆM M M MB B B≡ + +B x x x   (312) 

we have 
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 ( )
( )
( )

1

2

1 3

2
1

3

2

3

1
1 /2

1 /

1 /

M

M

M M

M M
M

M

M

M

E

E
A E
A B
A

B

B

ε

ε

ε

µ

µ

µ

 
 
 
 

   
     = ≡    
    

 
 
 
 

AU U   (313) 

Here we use a notation M 
 AU  with the square brackets to indicate that this entity should be 

thought of as mathematical 6-element column vector. Now, we can construct a transformed inner 
product with respect to this operator U , as discussed in section 6.6.2. For two non-zero vector 
potential fields, ( ),trµ  and ( ),trη , this inner product is written 

 ( ) ( ), ,T ≡U U Uµ η µ η   (314) 

and this defines an energy inner product for electromagnetic fields. For two (non-zero) 
electromagnetic fields, the inner product will be zero if and only if the two fields are orthogonal with 
respect to this energy inner product. See the discussion given above (around Eqs. (180) to (182)) 
explicitly for the monochromatic case above for how to complete the construction of this inner 
product as in integral over space. The only differences in the full time-dependent case are that the 
inner product ( ), T Uµ η  is formally completed at some time t, and that we use  rather than the 

monochromatic version ωU .  

When formed between a vector potential field MA  and itself, we obtain the total energy U at some 
time t of the electromagnetic field (neglecting static fields) in this volume V 

 ( ) ( ), ,M M M MTU = ≡A A A AU U U   (315) 

Expressed as a transformed inner product [181], as in (314), we have our desired energy inner product 
for the electromagnetic field in a volume V at a time t.  

F.4.2.2. Monochromatic form 
For monochromatic fields at angular frequency ω (so with implicit time-dependence of the form 
exp( )i tω−  in ), / t iω∂ ∂ → − . We also need to work with the energy density as in Eq. (303), which 
leads to the elimination of the factor of ½ compared to the full time-dependent version, so the 
monochromatic version of the operator becomes as in Eq. (179) above.  

Appendix G Divergence of the vector potential in the 
M-gauge 

Generally, a choice of gauge formally results from a choice of the divergence of the vector potential, 
and we establish this here for M∇ ⋅ A . Formally, we establish the gauge function CMΨ  that 
transforms from the Coulomb gauge to the M-gauge. In the Coulomb gauge, by choice (Eq. (252)) 

0C∇ ⋅ =A . Now the wave equation (242) becomes the Poisson equation 

 2
C

ρ
ε

∇ Φ = −   (316) 

U
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That is, the potential CΦ  is simply the (“instantaneous”) electrostatic potential associated with the 
charge density ρ (hence the name “Coulomb” gauge). Presuming we know ρ and its behavior in 
space and time, then we can solve Eq. (316) to obtain   

 ( ) ( ) 3
,1,

4C
t

t d
ρ

πε
′

′Φ = ∫ ′−
r

r r
r r

  (317) 

where the integral is over all the volume containing any charge density. We can check this solution 
Eq. (317) by taking 2∇  of both sides (noting that this is with respect to the non-primed position 
variables, such as r.) 
Now, we formally define the difference ( ),tρ∆ r  between the actual (free) charge density at any 
given place and time, ( ),tρ r  (which can change after time ot ), and the original, (fixed) charge 
density, ( )oρ r   
 oρ ρ ρ∆ = −   (318) 

 Explicitly, then, using the form as in Eq. (250), we can write 

 CM
M C t

∂Ψ
Φ = Φ −

∂
   (319) 

and using Eqs. (255), (316), and (317),  we can therefore write 

( ) ( ) ( )3 3 3
, ,1 1 1

4 4 4
oCM

C M
t t

d d d
t

ρ ρ ρ
πε πε πε

′ ′ ′∆∂Ψ ′ ′ ′= Φ − Φ = − =∫ ∫ ∫′ ′ ′∂ − − −
r r r

r r r
r r r r r r

  (320) 

The charge density ( ),tρ∆ r  results entirely from the currents ( ),tJ r  that flow after time ot , and so 
the charge conservation equation (234) becomes 

 
t
ρ∂∆

∇ ⋅ = −
∂

J   (321) 

So, from Eq. (320) we can write 

 ( ) ( )2
3 3

2

, / ,1 1
4 4

CM t t t
d d

t
ρ

πε πε
′ ′ ′∂∆ ∂ ∇ ⋅∂ Ψ ′ ′= = −∫ ∫′ ′∂ − −

r J r
r r

r r r r
  (322) 

Integrating once with respect to time therefore gives us 

 ( ) ( ) 3
, ,1

4 o

tCM

t t V

t t
d dt

t πε

′

′′=

 ′ ′ ′ ′′∂Ψ ∇ ⋅
′ ′′= − ∫ ∫ ′∂ −  

r J r
r

r r
  (323) 

where for clarity now we are also explicitly showing the spatial integral is over the volume V 
containing currents. Integrating a second time with respect to time gives us 

 ( ) ( ) 3
,1,

4 o o

t t

CM
t t t t V

t
t d dt dt

πε

′

′ ′′= =

 ′ ′ ′′∇ ⋅
′ ′′ ′Ψ = − ∫ ∫ ∫ ′−  

J r
r r

r r
  (324) 

which is therefore the gauge function that transforms from the Coulomb gauge to the M-gauge. Now 
Eq. (248) becomes 

 M C CM= + ∇ΨA A   (325) 

Since 0C∇ ⋅ =A   (Eq. (252)), we therefore have 

 2
M CM∇ ⋅ = ∇ ΨA   (326) 

Hence, from Eq. (324), and using the identity 
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 ( ) 21 1
4

δ
π

′− ≡ − ∇
′−

r r
r r

 (327) 

we obtain 

 

( ) ( )

( )

( ) ( ) ( )

2 3

2 3

3

,1,
4

1 1,
4

1 1, ,

o o

o o

o o o

t t

M
t t t t V

t t

t t t t V

t t t

t t t t V t t

t
t d dt dt

t d dt dt

t d dt dt t d

πε

πε

δ
ε ε

′

′ ′′= =

′

′ ′′= =

′ ′

′ ′′ ′′= = =

 ′ ′ ′′∇ ⋅
′ ′′ ′∇ ⋅ = − ∇ ∫ ∫ ∫ ′−  

 
′ ′ ′′ ′ ′′ ′= − ∇ ⋅ ∇∫ ∫ ∫ ′−  

 ′ ′ ′′ ′ ′ ′′ ′ ′′= ∇ ⋅ − = ∇ ⋅∫ ∫ ∫ ∫  

J r
A r r

r r

J r r
r r

J r r r r J r
o

t

t t
t dt

′=
′′ ′∫

  (328) 

which is the result quoted above (Eq. (262)). 

Appendix H Dyadic notation and useful identities for 
Green’s functions 

A dyad is pair of vectors, written as ab , with no symbol between the vectors a and b. a is a vector 
that is “waiting to operate on (or be operated on by)” a vector from the left, and similarly b is a vector 
that is “waiting to operate on” a vector on the right. So, for example, with two vectors c and d, and 
with s⋅ =c a  and w⋅ =b d , where s and w are scalars, then  

 ( ) ( )( ) sw⋅ ⋅ = ⋅ ⋅ =c ab d c a b d    (329) 

Now we see why there is no symbol inserted between a and b in the dyadic; once these dot product 
operations have been performed to the left and the right, we have a simple scalar multiplication in 
the middle. For a vector operation to the left, such as a cross product, then we are left with a dyad 
fg  in this case, i.e., with = ×f c a  and = ×g b d , 

 ( ) ( )( )× × = × × =c ab d c a b d fg    (330) 

A dyadic is an extension to sums of dyads, such as the sum of three dyads, typically written using 
the unit vectors in the coordinate system. So with three orthogonal coordinate directions with 
corresponding unit vectors 1x̂ , 2x̂ , and 2x̂  then we could write three vectors (or vector functions), 
one in each coordinate direction.  

 
3

1
ˆj ij i

i
f

=
= ∑F x   (331) 

So, with 1,2,3j = , we could write one dyadic 

 
3 3 3

1 1 1
ˆ ˆ ˆj j ij i j

j i j
F f

= = =
= =∑ ∑ ∑F x x x   (332) 

where conventionally the dyadic is notated with a double line above it. Formally, we can define 
appropriate products for dyadics. For some vector a, we can define the following:   

anterior scalar product ( )
3 3 3

1 1 1
ˆ ˆj j i ij j

j i j
F a f

= = =
⋅ = ⋅ =∑ ∑ ∑a a F x x   (333) 

posterior scalar product ( )
3 3 3

1 1 1
ˆ ˆj j j ij i

j i j
F a f

= = =
⋅ = ⋅ =∑ ∑ ∑a F x a x   (334) 

anterior vector product ( )
3

1
ˆj j

j
F

=
× = ×∑a a F x   (335) 
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posterior vector product ( )
3

1
ˆj j

j
F

=
× = ×∑a F x a   (336) 

The result of the scalar products is a vector in both cases, and the result of the vector product is a 
dyadic in both cases. 

The unit dyadic or idem factor I leaves a vector unchanged in either scalar product, i.e.,  

 I I⋅ = ⋅ =a a a   (337) 
so we can think of it as the dyadic “identity” operator. We could also write 

 
3

1 1 2 2 3 3
1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆj j

j
I

=
= ≡ + +∑ x x x x x x x x  (338) 

which is therefore the sum of the three dyads 1 1ˆ ˆx x , 2 2ˆ ˆx x , and 3 3ˆ ˆx x .  

H.1. Vector calculus extended to dyadics 
To extend vector calculus to dyadics, we build on the anterior scalar and vector products. 
Specifically, the divergence of a dyadic function can be defined, using Eq. (333), by 

 ( )
3 3 3

1 1 1
ˆ ˆij

j j j
j i j i

f
F

x= = =

∂
∇ ⋅ = ∇ ⋅ =∑ ∑ ∑

∂
F x x   (339) 

and the curl can be defined, following from Eq. (335) 

 ( ) ( )
3 3 3

1 1 1
ˆ ˆ ˆj j ij i j

j i j
F f

= = =
∇ × = ∇ × = ∇ ×∑ ∑ ∑F x x x  (340) 

where we have used the vector calculus identity (for a fixed vector x̂ ) 

 ( )( ) ( )ˆ ˆf f∇ × = ∇ ×r x r x   (341) 

We can also usefully define the gradient of a vector function. Specifically, for some vector function 
( )F r  with components ( )jf r , i.e.,   

 ( ) ( )
3

1
ˆj j

j
f

=
= ∑F r r x   (342) 

we can choose to write the dyadic 

 ( ) ( )( ) ( )3 3 3

1 1 1
ˆ ˆ ˆj

j j i j
j i j i

f
f

x= = =

∂
∇ = ∇ =∑ ∑ ∑

∂
r

F r r x x x    (343) 

Note that, just as the divergence of a vector function gives a scalar function, the divergence of a 
dyadic gives a vector. Similarly, just as the curl of a vector function gives a vector function, then the 
curl of a dyadic gives a dyadic, and just as the gradient of a scalar function gives a vector function, 
the gradient of a vector function gives a dyadic. 
We can also introduce here two other relations we need. First, for a dyadic of the form 

 ( )F f I= r   (344) 

then 

 ( )( ) ( )( ) ( )3 3

1 1
ˆ ˆ ˆj j j

j j j

f
F f I f f

x= =

∂
∇ ⋅ = ∇ ⋅ = ∇ ⋅ = = ∇∑ ∑

∂
r

r r x x x   (345)  

Second, for this same form of dyadic, Eq. (344), we can consider F∇∇ ⋅ . From Eq. (345) 
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( ) ( ) ( )

23 3

1 1
ˆ ˆ ˆj i j

j jj i j

f f
F f

x x x= =

 ∂ ∂
∇∇ ⋅ = ∇ = = ∇∇∑ ∑ 

∂ ∂ ∂ 

r r
x x x r   (346) 

which is effectively introducing and defining a new operator, “ ∇∇ ”. Viewed as an operator in its 
own right (so, without the “dot” in “ ∇∇ ⋅”), ∇∇  is an operator that takes a scalar function, here 

( )f r , and creates a dyadic. Note that we must not notate it as 2∇ , which is the Laplacian (equivalent 
to ∇ ⋅∇ ). 

H.2. Useful derivatives for dyadics and Green’s functions 
Several derivatives are useful in working with dyadics. First, with  
 ′= −R r r   (347) 
then  

 R ′= −r r   (348) 

and we can write R in terms of Cartesian coordinates as 

 1 1 2 2 3 3ˆ ˆ ˆx x x= + +R x x x   (349) 

(Note that we are now using 1x , 2x , and 3x  as the components of R, not of r.) 
The gradient of R, which also obviously depends only on R (and not on spherical coordinates θ and 
φ), is simply (by definition) R̂  - the unit vector in the ′−r r  radial direction of interest, and we can 
write this formally as 

 ˆR
R

′−
∇ = ≡ ≡

′−
r r RR
r r

  (350) 

Then from Eq. (343) and the definition Eq. (338) 

 
3 3 3

1 1 1
ˆ ˆ ˆ ˆj

i j j j
i j ji

x
I

x= = =

∂
∇ = = =∑ ∑ ∑

∂
R x x x x   (351) 

(which we see, incidentally, gives us another expression for I ). We also have 

 
2 2

ˆ1 1 R
R R R

 ∇ = − ∇ = − 
 

R   (352) 

So, 

 ( )2

1 1ˆ ˆ ˆI I
R R R R R R

∇   ∇ = ∇ = + ∇ = − ∇ = −   
   

R R RR R R RR   (353) 

Note carefully that Eq. (351) is for the vector R, whereas Eq. (353) is for the unit vector R̂ . 
Expressions (351) and (353) are particularly useful in working with dyadic Green’s functions. We 
also need three other related derivatives. First, 

 ( ) ( )2 2 2

ˆ ˆ1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ2I I
R R R R R R

   ∇ = ∇ + ∇ = − − = −       

R RR R RR R RR   (354) 

and noting, second, that 

 
2 3 3

ˆ1 2 2R
R R R

 ∇ = − ∇ = − 
 

R   (355) 

we have our third required derivative  
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 ( ) ( )2 2 2 3 3 3

ˆ ˆ1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 3I I
R R R R R R

   ∇ = ∇ + ∇ = − − = −       

R RR R RR R RR   (356) 

Appendix I Quantization of the electromagnetic field 
in the M-gauge 

The algebraic steps in the quantization of the field in the M-gauge are similar to those in the common 
“transverse” Coulomb gauge approaches (see, e.g., [139, 140]), but we avoid fictitious resonators or 
boxes, the formal problems of the Coulomb gauge [142, 143], and any separation into “longitudinal” 
and “transverse” fields. Our approach can proceed for arbitrary volumes and can include all near-
field terms if we wish.  
Our basis functions or “modes” are any (energy) orthogonal set of monochromatic vector potential 
fields ( )Mj RωA r  in the volume RV , and we can expand a monochromatic field in them, as in Eq. 
(188), with expansion coefficients ( )ja t  that explicitly include the time-dependent factor ( )exp i tω−
(and that is their only time dependence), and we can write a classical Hamiltonian Eq. (189) for the 
field. Still in a classical view, for one such “mode”, we formally propose a pair of “canonical” 
variables – a generalized “position”, jq  and a generalized “momentum” jp  given by  

 ( ) ( ) ( )/ 2j j jq t a t a tω ∗=  +  
 and ( ) ( ) ( )/ 2j j jp t i a t a tω ∗= −  −  

 (357) 

We note in passing that these expressions are readily inverted to give  

 1 / 2j j ja q ipω ω= +  
 and 1 / 2j j ja q ipω ω∗ = −  

 (358) 

Because of the ( )exp i tω− time-dependence of ( )ja t , we have 

 ( ) ( )/j jq t t p t∂ ∂ =  and ( ) ( )2/j jp t t q tω∂ ∂ = −  (359) 

We can formally rewrite the Hamiltonian Eq. (189) as 

 ( ) ( ) ( )2 221 / 2 j jjH p t q tω=  + ∑     (360) 

These variables then satisfy Hamilton’s equations 

 j

j

qH
p t

∂∂
=

∂ ∂
 and j

j

pH
q t

∂∂
= −

∂ ∂
 (361) 

So, we can take a typical approach in quantum mechanics and quantize the “oscillator” by postulating 
we can replace the variables p and q with operators p̂  and q̂  that will in turn lead to appropriate 
commutation relations, which we postulate to be 

 [ ]ˆ ˆ ˆ ˆ ˆ ˆ,m n m n n m mnq p q p p q i δ≡ − =    (362) 

 [ ]ˆ ˆ, 0m nq q =  and [ ]ˆ ˆ, 0m np p =  (363) 

 (Note, incidentally, that we will use a “hat”, as in q̂  and p̂ , to indicate a quantum mechanical 
operator as distinct from its corresponding classical quantity.) These commutation relations are 
consistent with a typical presumption of replacing jp  with ˆ /j jp i q= − ∂ ∂ and using jq  as its own 
operator ˆ jq , as is appropriate in a “position” representation of quantum mechanics, for some 
(generalized) position jq . The corresponding proposed Hamiltonian becomes, from Eq. (360), the 
operator 

 ( ) ( ) ( )2 22ˆ ˆ ˆ1 / 2 j jjH p t q tω=  + ∑     (364)   
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We can define, the annihilation operator ˆ ja  and the corresponding creation operator †ˆ ja   

 ˆ ˆ ˆ1 / 2j j ja q ipω ω= +  
 and †ˆ ˆ ˆ1 / 2 j jja q ipω ω= −  

 (365) 

for “mode” j, where these two operators are Hermitian adjoints of one another, as the notation 
suggests. Note that these expressions in Eqs. (365) are operator analogs of those in Eqs. (358). 
Correspondingly, then, we can directly write the inversions of these as 

 †ˆ ˆ ˆ/ 2j j jq a aω  = +   and †ˆ ˆ ˆ/ 2j jjp i a aω  = −   (366) 

and the commutation relations for the annihilation and creation operators then become 

 † † †ˆ ˆ ˆ ˆ ˆ ˆ,m n m n n m mna a a a a a δ  ≡ − =    (367) 

 [ ]ˆ ˆ, 0m na a =  and  † †ˆ ˆ, 0m na a  =   (368) 

Rewriting Eq. (364) using this notation gives ( ) † †ˆ ˆ ˆ ˆ ˆ/ 2 j jj jjH a a a aω  = +∑   , which we can write 
using the commutation relation Eq. (367) in the more familiar form [182] as 

 ( )( )†ˆ ˆ ˆ 1 / 2jjjH a aω= +∑    (369) 

Note that, though we have proceeded here based on the M-gauge description of electromagnetism, 
and without the usual assumptions of the Coulomb gauge approach (i.e., “transverse” sources, fields 
and potentials, and “pretend” resonators) we have come to a familiar result. We can now develop the 
consequences of this approach further. 

Because of the analogy between ja  and ˆ ja  and between ja∗  and †ˆ ja , we merely need to substitute 

the operator ˆ ja  for ja  and the operator †ˆ ja  for ja∗  in Eq. (188) to obtain the corresponding vector 
potential field operator  

 ( ) ( ) ( ) ( )ˆ ˆ, 0 exp . .M R j Mj R
j

t a i t h cω ωω ω=  − + ∑  A r A r  (370) 

where we have written ( ) ( ) ( )ˆ ˆ 0 expj ja t a i tω= −  and we use the terminology “h. c.” to stand for 
“Hermitian conjugate” (which is the same as Hermitian adjoint), and we note that the Hermitian 
adjoint of a scalar function is just the complex conjugate of that scalar function. Using Eq. (164) (

/M M t= −∂ ∂E A ) and Eq. (165)  ( M M= ∇ ×B A ), we can write the analogous electric and magnetic 
field operators as, respectively,  

 ( ) ( ) ( ) ( )ˆ ˆ, 0 exp . .M R j Mj Rjt i a i t h cω ωω ω ω=  − − ∑  E r A r
  (371) 

(note the “-” sign before the “h.c.”) and  

 ( ) ( ) ( ) ( )ˆ ˆ, 0 exp . .M R j Mj Rjt a i t h cω ωω ω = ∇ ×  − +∑   B r A r   (372) 

Obviously, from Eq. (369), we can divide the Hamiltonian into a sum of Hamiltonians, one, ˆ jH , for 

each “mode” or basis function ( )Mj RωA r . Specifically ( )( )†ˆ ˆ ˆ 1 / 2j jjH a aω= +  (Eq. (191) and we 
have the usual properties of the annihilation and creation operators for the mode (see, e.g., [9]). 
Specifically, the eigenstates of these individual mode Hamiltonians are the number states or Fock 
states jn , where conventionally jn  is interpreted as the number of photons in the mode, and the 
energy eigen equation is 

 ( )( )ˆ 1 / 2j j jH n n nω= +
  (373) 

where we can also if we wish define a number operator  
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 †ˆ ˆ ˆj jjN a a=  with ˆ j j j jN n n n=  (374) 

The commutation relation Eq. (367) gives the standard “raising” and “lowering” properties 

 †ˆ 1 1j j jja n n n= + +  and ˆ 1j j j ja n n n= −  (375) 

with ˆ 0 0ja = . 

Appendix J Modal “A and B” Coefficient Argument 
We presume we have a quantum mechanical system that has a probability 1P  of being in a lower 
state, and a probability 2P  of being in an upper state. We presume this system (or an ensemble of 
identical systems) is sitting in some optical environment that is otherwise lossless, such as some 
resonator, waveguide, or other dielectric environment.  
In thermal equilibrium with a heat reservoir with which the system can exchange energy, as usual 
the ratio of these probabilities 2P  and 1P  is given by the Boltzmann factor 

 2 21

1
exp

B

P E
P k T

 = − 
 

  (376) 

where 21E  is the (positive) energy separation of the states, T is the temperature and Bk  is 
Boltzmann’s constant. 
Now we consider a specific one jψ  of the mode-converter input modes [6, 7] for this optical 

system, which will have a corresponding mode-converter output mode jφ . We presume the photon 

energy in this mode is approximately 21Eω  . 

We presume that the probability per unit time that a photon in this mode-converter input mode jψ
is absorbed by the quantum system can be written as 

 12 12 1j jR M P=   (377) 

where 12 jM  is some constant that is characteristic of the quantum system and its interaction with 
light in jψ  (and therefore at frequency ω); specifically, we presume this constant does not itself 
depend on temperature.  
Using the Planck distribution, the number of photons in this mode in thermal equilibrium at some 
temperature T is 

 
( )21

1
exp / 1j

B
n

E k T
=

−
  (378) 

So the total absorption rate of photons from this mode in thermal equilibrium is 

 12 12 12 1j j j j jW n R n M P= =   (379) 

For emission into the mode-converter output mode j, we presume a rate 

 21 21 2 21 2j j j jW L P n M P= +   (380) 

Here we are proposing what will be a spontaneous emission term ( 21 2jL P ), which is independent of 
the number of photons in the mode, and what will be a stimulated emission term ( 21 2j jn M P ) that is 
proportional to the number of photons in the mode. Again, we presume that 21 jL  and 21 jM  are 
constants that are characteristic of the quantum system and its interaction with light in this input 
mode j and that do not themselves depend on temperature.  
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This argument is closely analogous to Einstein’s A and B coefficient argument (see, e.g., [139]). The 
12M  and 21M  coefficients are close analogs to the 12B  and 21B  coefficients in Einstein’s argument. 

Because we have avoided having to define densities of modes in free space, we do not have a direct 
analog to the A coefficient in Einstein’s argument (which assumed free space modes), but the 
coefficient 21L   is taking on the analogous role in the argument for the mode of interest.  
Now, as noted above ((194)), any power not absorbed from jψ  is scattered into the corresponding 

mode-converter output mode jφ .  So, if the arrival rate of photons in the mode-converter input 

mode jψ  in thermal equilibrium is jQ , then the scattering rate into the mode-converter output 

mode jφ  is 

 12j j jS Q W= −   (381) 

So, the total number of photons per unit time emitted and scattered into the mode-converter output 
mode jφ  is  

 21 12 21TOTj j j j j jW S W Q W W= + = − +   (382) 

Now, as discussed above in section 11.1 in the derivation of Law 1 in [7], in thermal equilibrium, the 
total number of photons arriving at the system in mode-converter input mode jψ  must equal the 
total number emerging (so, the sum of emitted and scattered photons) from the system into mode-
converter output mode jφ . This is because we can construct an optical machine that couples these, 
and only these, as the output and input light for a single-mode black body, with which we much be 
able to come to thermal equilibrium. Notably, in this approach, no light in any other orthogonal input 
modes is coupled by scattering into the mode-converter output mode jφ  (see (193)), so we have 
accounted for all possible output light here. Therefore, in thermal equilibrium, 

 TOTj jW Q=   (383) 

So, from Eq. (382), 

 12 21j jW W=   (384) 

So, from Eqs. (379) and (380) 

 12 1 21 2 21 2j j j j jn M P L P n M P= +   (385) 

Then, using Eq. (378) 

 2121 2 2
12 21 21 21

1 1
exp 1j

j j j j
j B

EL P PM M L M
n P k T P

    = + = − +          
  (386) 

Now using Eq. (376) 

 ( ) 21
12 21 21 21 expj j j j

B

EM L M L
k T
− = + −  

 
 (387) 

Now, by assumption, all of 12 jM , 21 jL , and 12 jM  are independent of temperature. Hence, the only 
way the expression on the right hand side can be independent of temperature is if 

 21 21j jM L=   (388) 

in which case, from Eq. (387) we are left with 

 12 21j jM L=   (389) 

Finally, we can summarize the overall result, which is that 
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 12 21 21j j jM M L M= = ≡   (390) 

In other words, these coefficients for absorption, stimulated emission and spontaneous emission are 
identical for any mode-converter pair of input and output functions. We can therefore use one 
coefficient for all three processes. We can restate this as above ((196)). 

Appendix K History and literature review of 
communications modes and related 
concepts 

K.1. Early history of degrees of freedom in optics and waves 
By the 1950’s, the idea of quantifying communication and information was developing rapidly [183], 
including the idea of the sampling theorem, as discussed, e.g., by Shannon [183 - 185]. Following 
on from the sampling theorem, the idea that there should be some bound on degrees of freedom in 
optics was proposed by both Gabor [74, 186] and Toraldo di Francia [187]. Gabor, based on a Fourier 
optics view, gives a heuristic approach based on the number of approximately non-overlapping 
Gaussian spots one could form on a second surface from source or waves on a first surface. Toraldo 
di Francia [187] works directly from the sampling theorem. Both these approaches lead to results 
essentially equivalent to our paraxial heuristic numbers (Eqs. (59) and (64)). Sampling theorem 
approaches have continued in the literature, with other useful results (e.g., for spherical surfaces and 
bounding volumes [158, 188]). 
Use of the sampling theorem in optics and in waves generally is based first on some physical 
argument on a maximum “transverse” component to the wavevector that would be encountered or 
supported in some configuration of source and receiver spaces (in our notation); this therefore gives 
a a maximum transverse spatial frequency, which becomes the analog of bandwidth. Second, these 
approaches presume some maximum physical extent of an aperture or apertures (which becomes the 
analog of the time window).  
Such sampling theory approaches are useful in paraxial situations with regular apertures (usually 
one-dimensional or rectangular) and where Fourier optics [114] is already a good approximation, 
and in some other far-field situations (e.g., spherical [158]). They are not going to work well in 
situations with irregular shaped surfaces and with most volumes – there is then no simple way to 
choose the “aperture”. With small surfaces or volumes, there is no obvious clear “cut-off” spatial 
frequency; for sources in particular, a small source needs to be described by continuous functions, 
with continuous spatial-frequency spectra. Such problems are well known mathematically [184] and 
in the context of optics [33, 189].  

K.2. Eigenfunctions for wave problems with regular apertures 
Getting past these problems of the sampling theorem requires a change in the mathematics. A key 
step was the mathematical realization that an obscure but known set of functions – the prolate 
spheroidals – had remarkable “eigenfunction” properties relevant to these problems with finite 
“windows” [190], with specific consequences for optics [33, 120, 189]. The first optical realization 
here was that these were the correct description of the modes of confocal laser resonators [120] (in 
the paper that proposed those resonators); they correctly give the beam shapes on the mirrors. Later 
laser resonator work (see, e.g., [111]) would replace those with Hermite-Gaussian and Laguerre-
Gaussian approximations, which are much easier to work with mathematically. For lasers, this 
approximation is generally valid because only the modes with vanishingly small amplitudes at the 
edges of the mirrors are going to have low enough loss to oscillate, and in those cases there is little 
or no difference compared to the (correct) prolate spheroidal functions. Another property of these 
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Hermite-Gaussian and Laguerre-Gaussian beams is that their shape does not change as they 
propagate, other than for changes in size; that can unfortunately lead to the false inference that modes 
are generally beams with this “constant shape” property, which we have seen is not the case in the 
actual communications modes in, e.g., section 5.  
A key mathematical property of the prolate spheroidals is that they are eigenfunctions of the finite 
Fourier transform for the “linear” prolate spheroidals (which is relevant for linear and rectangular 
apertures) and of the finite Hankel transform for the “circular” prolate spheroidals (for circular 
apertures) (see, e.g., [33]). So, in a Fourier-optics paraxial approximation, they are the input 
wavefunctions or sources in a finite rectangular or circular aperture that will produce waves of the 
same shape in a corresponding aperture in the Fourier domain; extending to a second (or inverse) 
Fourier transform (and such a pair of transforms is essentially one way of looking at imaging), the 
same shape will be reproduced (inverted) at the image plane also. They are therefore also 
eigenfunctions of imaging viewed in this way. So, even allowing for the effects of finite apertures, 
these are functions that will be imaged perfectly through a paraxial system. See also [84] for 
continued discussion of such imaging. 
Though this early work does not use the terminology of SVD, these prolate spheroidal functions can 
also be viewed as SVD functions in the sense we discuss in this paper, and the “coupling strength” 
eigenvalue associated with these eigenfunctions is then a singular value. These prolate spheroidals 
are a special case of SVD in two senses: (1) as communications modes, the source function and the 
received wave are identical (which is not generally the case for communications modes); (2) these 
solutions only work for source and receive surfaces of the same specific type of shape (rectangular 
or circular). 
A key result, though, of this move to an eigenfunction problem, even if only for some special cases, 
is that, essentially for the first time, it removes the mathematical problems mentioned above of a 
sampling theorem approach. There are indeed now infinite sets of functions, both for sources and 
received waves, not finite ones, but the effective number of degrees of freedom comes from the 
behavior of the eigenvalues: up to some effective number, they are all essentially the same (which is 
our “paraxial degeneracy”), and then they drop off so rapidly that, below some practical threshold, 
they can be neglected. As we have also illustrated more generally, this effective number, at least in 
these simple cases of large, regular apertures in a paraxial approximation, agrees with the heuristic 
results of the sampling theory approach. 
It was likely known to these early authors that they were dealing with Hilbert-Schmidt operators, 
which in turn are compact and therefore have “good” eigenfunction properties, Surprisingly, 
however, the idea that these singular values were also obeying a sum rule (which is in the end the 
Hilbert-Schmidt norm) does not seem to have been used or exploited until the much later, and more 
general, work on eigenfunction and SVD approaches [5, 191, 192] as communications modes. 

K.3. Emergence of communications modes 
The idea of communications modes, as presented here, as the general answers to the orthogonal 
“best” channels, including continuous sources and with volumes as well as surfaces, is introduced 
first in 1998 in [191] and extended in 2000, first in the scalar wave case [5], and then for 
electromagnetic waves in [192]. The electromagnetic analysis in the present work formally 
supersedes [192] by reducing the problem to one only requiring the magnetic vector potential, and 
hence removing any remaining ambiguity about how many independent fields are required for 
communications problems.  

K.3.1. Wireless communications 
Ideas of SVD, especially for finite matrices, have been routine as mathematical techniques for many 
decades, at least back to the 1960’s, with fundamental work from the late 19th century. The use of 
SVD is common in signal processing and statistics. In wireless, as MIMO emerged in the 1990’s, the 
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channel matrix H between different spatial sources and receivers becomes one on which SVD could 
be performed to evaluate the best channels. There are certainly references to the corresponding 
operator †HH and its eigenvalues by 1998 [193]. Normally, though, the full channel matrix may not 
be known to both the transmitter and the receiver, and the use here is to calculate the channel capacity 
[197, 198], not the optimum transmit and receive modes. In wireless systems, the matrix is usually a 
finite one, based on finite numbers of transmit and receive antennas.  
Following [5, 191, 192], a body of work emerges in the wireless literature either explicitly using 
communications mode concepts or related results on degrees of freedom in spatial channels and/or 
spatial multiplexing (see, e.g., [13, 134, 194 - 206] ). The text [13] refers to what we call the 
communications modes as “eigenmodes of the channel” or “eigenchannels”. Beam forming for 
MIMO can use SVD of the channel matrix to form the modes, which would then formally be 
communications modes in our notation. Optical techniques based on optical modes could also be 
used to set MIMO modes in beam forming [207]. 

K.3.2. Electromagnetic scattering and imaging 
The ideas of communications modes have been used extensively in scattering of radiation, including 
[208 - 218]. The kinds of behaviors of singular values illustrated in section 5 are also seen extensively 
in much of this work. Recent work analyzes imaging with electromagnetic beams with SVD [219], 
and such techniques have also been proposed for near-field scanning [220]. 

K.3.3. Optics 
Communications modes have been applied directly to the analysis of many optical systems [117, 
118, 221 - 227]. [228] re-establishes communications modes based on an optimization approach. 
[229] analyzes x-ray waveguides using them. The optical case is also extended into noise-limited 
systems in a modern analysis using communications modes [40]. [18] compares communications 
modes and other beam forms for free-space communications. The concept of communications modes 
can be extended to partially coherent fields [226]. 
A body of work usefully analyzing optical systems of various kinds uses the terminology of “optical 
eigenmodes” [133, 230 - 233]. These seem to correspond to the communications modes in the present 
paper, or, for more complex optical systems, the mode-converter basis sets. For example, the “optical 
eigenmode” input and output functions in [133] are orthogonal sets in the input and output spaces, 
coupled with “intensity” strengths associated with an eigenvalue that appears to be the modulus 
squared of the communications mode or mode-converter singular values in our notation. Since such 
sets are unique (within geometric degeneracies), these are the same sets as those in our terminology. 
This work goes on to count the number of degrees of freedom by counting these sets (e.g., in [133]), 
though the authors do not appear to link their work to the communications mode formalism or to the 
earlier work on degrees of freedom discussed above. The general statement of these optical 
eigenmodes includes the explicit extension to what we describe as weighted or operator-weighted 
inner products (see [230] Eqs. (1) and (2)).  

K.4. Complex optics, matrix representations, and mode-converter 
basis sets 

There has been growing interest in being able to characterize and/or controllably propagate through 
complex optical systems. These include strongly scattering media [233 - 248], and multiple-mode 
optical fibers for communications [249, 250] and imaging [251 - 256]. Such work typically employs 
spatial light modulators (SLMs) to characterize the matrix that relates input modes to output modes, 
or at least to establish one or more strong channels through the scatterer. The matrix in such work is 
often called a “transmission” matrix or, sometimes, a “transfer matrix” [250]. In the terminology of 
the present paper, we would call this a “device” matrix or, generally a “scattering” matrix. All such 
systems in which the matrix is fully characterized can be analyzed using the SVD approach (our 
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“mode-converter basis sets”) to establish the best channels. [257] similarly uses the SVD approach 
to analyze arbitrary polarization components. 
If we want to be able to use more than one such channel at a time without incurring simple 
beamsplitting losses, we need to go beyond simple single SLMs to “multiple layered” approaches to 
generate and/or separate overlapping but orthogonal modes of the system. There are two known 
controllable approaches, one using multiple planes of SMLs or diffractive optics elements [258 - 
260], and the other using meshes of integrated Mach-Zehnder modulators [12, 24 – 29, 57 – 65, 261, 
262]. Such meshes can also be used to synthesize any linear optical component or matrix up to the 
dimensionality of the mesh; the general scheme to accomplish that relies on the SVD architecture, 
so the device is directly emulating the SVD of the desired matrix [25].  

Appendix L Novel results in this work 
Though our primary goal here is a tutorial introduction and review, to give a complete picture, we 
have included some apparently novel work. It would be unethical to pass off either existing work as 
novel or new work as established fact. To avoid both errors, we list here what may be novel. 
Electromagnetism in particular is a subject that has been investigated for many years by many 
researchers, and we ask the reader’s forgiveness if we have missed priority by others.  

L.1. Minor extensions of prior work and introduction of new 
terminology 

The mathematics in section 3 is standard for the algebra of finite matrices. The emphasis on the sum 
rule, Eq. (36), is less common in that algebra, but the concept is implicit. The discussion on the 
constraint on the choice of coupling strengths in section 3.9 is mathematically obvious, but may not 
be generally understood yet in waves and optics.  
All the explicit numerical examples in sections 4, 5, and 8 were performed for this paper. The 
mathematical technique used there for point sources and receivers of establishing the optimum 
(communications mode) channels by performing the SVD of the resulting finite coupling matrix is 
likely obvious to many working in radio frequency wireless theory, though may not be obvious in 
optics or acoustics. Working out the actual communications modes and their behavior and the 
resulting beams (other than for the special case of prolate spheroidal wavefunctions in paraxial 
examples) is less common, though we have discussed this before [5, 23, 192]. The explicit behaviors 
of the weakly coupled modes, as shown, for example, in Fig. 10 and Fig. 12, do not appear to have 
been presented before.  
That the singular values are essentially constant up to a specific number is well known for the specific 
case of the prolate spheroidal solutions for rectangular or circular apertures, but the clarification that 
this is a general property of paraxial problems for surfaces or volumes of uniform thickness is a new 
generalization that also justifies our introduction of the term “paraxial degeneracy” to describe this.   
Heuristic arguments based on an approximate cut-off positions or angles (by which interference from 
extreme points in a source area or volume transitions from originally constructive interference to 
being destructive) are not new in themselves – we have used them before [5], for example. The 
specific versions of these for terms we have introduced here – the paraxial heuristic number(s) (Eqs. 
(59) and (64) in section 5.3.4), the longitudinal heuristic angle (Eq. (71) in section 5.4.1), and the 
spherical heuristic number (Eq. (74) in section 5.4.2) – are new for this work.  
The discussion, in general terms of communications modes, of the difficulty of passing the diffraction 
limit is somewhat novel, though the core idea is well known to some, at least in the special case of 
prolate spheroidal functions (e.g., [90]). 
The mathematics of functions, operators and vectors in section 6, is all technically standard in 
functional analysis. The explicit notion that we would have different “underlying inner products” (a 
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term we have introduced here) in different Hilbert spaces in the problem (in our case, source and 
receiving spaces) is not common, even though nothing has to be added to the functional analysis 
mathematics to support this idea (other than some notation to distinguish these inner products). As a 
result, the explicit discussion of making what we call an “algebraic shift” to Dirac notation using 
these underlying inner products may be novel, though again it is all implicit in the underlying 
mathematics. 
The discussion of inner products involving operators in section 6.6 involves no actual new 
mathematics, but the explicit discussion is not common, and we have introduced the terms “operator-
weighted inner product” and “transformed inner product” to clarify specific classes here. 
The issue that “orbital” angular momentum beams do not generally introduce new degrees of 
freedom for communications is further clarified here (section 7.2). 
The term “M-gauge” is also introduced in this work, though the concept and its consequence may be 
more substantial than a minor extension, so we discuss this further below. 

L.2. Novel observations 
It is well known that many of the Green’s functions used with waves are Hilbert-Schmidt operators 
(see, e.g., [110])). The general statements (157) and (158) may go beyond such discussions, however.  
The clarification of the size scales for the transition in directionality from being from longitudinal 
extent to being from transverse extent (Eq. (73) and section 5.4.1)  – a transition from a longitudinal 
“antenna” view to an “optics” view – may be novel. 
The observations for spherical shell source and receiver spaces (section 5.4.2) that the “well-coupled” 
communications mode singular values asymptote to a straight line, and that line intersects the axis at 
the spherical heuristic number, are both new, and await an analytic explanation. 
It is known for the specific case of prolate spheroidal functions (which are necessarily in a paraxial 
approximation) that the singular values past the paraxial heuristic number drop off essentially 
exponentially (see [80 - 82], and section 5.3.4.2). The generality of this exponential behavior, 
however, as seen in paraxial and non-paraxial cases, and for many different shapes of source and 
receiver volumes, is a new observation that also awaits a clear explanation. The observation that, in 
the far field, the corresponding waves are not evanescent but propagating (section 5.3.4.2) may also 
be novel.  
That transverse-polarized electromagnetic waves show simple diffraction behavior similar to that of 
scalar waves is, of course, well known. The observation (section 8.4.3) that such diffraction behavior 
also holds for longitudinally polarized (and hence “non-propagating”) electromagnetic waves may 
be surprising and novel. 

L.3. Substantial new concepts and results 

L.3.1. Introduction of the M-gauge for electromagnetism 
The M-gauge (section 8 and Appendix F) and its consequences are significant new concepts 
introduced here. First, this resolves that there are only 3 independent vector components for the 
electromagnetic field for all problems involving changes in the field (as in communications), which 
can then be completely represented by the magnetic vector potential A in this gauge. The resulting 
vector wave equation is then solved with a Green’s function that is a mathematical analog of the 
conventional dyadic Green’s function of the electric field E, but applied here, apparently in a novel 
manner, to A. (This approach avoids the conventional separation into so-called “longitudinal” and 
“transverse” field components that have various formal problems.) This use of A then allows a novel 
energy inner product for the electromagnetic field (section 8.4.4 and Appendix F.4), which then 
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allows the full power of functional analysis to be exploited, including the construction of orthogonal 
sets of waves without any restriction to specific volumes (like cuboidal boxes).  

L.3.2. Novel quantization of the electromagnetic field 
The possibility of constructing “energy orthogonal” sets of electromagnetic fields for any volume in 
turn allows a novel quantization of the electromagnetic field (section 9 and Appendix I), now on a 
rigorous basis of functions in any volume of interest, avoiding the “longitudinal/transverse” field 
separation and any restriction to “plane-wave” modes.   

L.3.3. Novel “M-coefficient” modal alternate to Einstein’s “A&B” 
coefficient argument 

With the use of the mode-converter basis functions, the novel “M-coefficient” argument (section 
11.2 and Appendix J) can replace Einstein’s “A&B” coefficient argument with a simple result that 
applies mode-by-mode and for a quantum system in any otherwise loss-less dielectric environment, 
not just in free space. 
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the two different lines of sources. The resulting amplitudes and phases result entirely from the solution 
of the eigenvalues and eigenfunctions of the relevant matrix ( †

SR SRG G  or †
SRSRG G ). In establishing the 

best possible source amplitudes, the numerical solution has “found” an approach that can be called a 
“spatiotemporal dipole” [68]. An ideal such spatiotemporal dipole would have equal and opposite 
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lag on the “left” source that corresponds to the time taken for the wave to travel between the two sources 
in the pair. That leads to at least partially constructive addition on the “right”, but destructive interference 
on the left. In this case, we see numerically that the amplitudes of the left and right sources in each pair 
are indeed approximately equal in magnitude, and the left source does indeed lag the right by 
approximately the right phase (90° (π /2) for sources separated by a quarter wave). Note again that the 
solution of this problem “found” this desirable behavior automatically; we did not “tell” the mathematics 
to find such spatiotemporal dipole solutions. Such spatiotemporal dipoles are also a particularly elegant 
way to restate Huygens’ principle [68], giving much better numerical results than the simple point sources 
of Huygens’ original proposal and eliminating unphysical backward waves. 
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have doubled the number of source points to 18SN = , we can keep the number of receiving points at

9RN = . In such a case the matrix SRG  is a 9 18×  matrix rather than a square one. In this case, the matrix 
†

SRSRG G  is an 18 18×  matrix, whereas the matrix †
SR SRG G  is 9 9× , which might seem to give a 

contradiction. Solving the †
SRSRG G  eigen problem would give 18 eigenfunctions, whereas solving the 

†
SR SRG G  eigen problem would give only 9. The resolution of this paradox is that the eigenvalues (and 

the singular values) for the additional 9 eigenfunctions in the †
SRSRG G  case are mathematically 

identically zero [49]. The corresponding source functions have mathematically absolutely no coupling 
strength to the receivers. In our numerical calculations, the power coupling strengths of these additional 
modes are approximately 10-17 times as small rather than being exactly zero, with this finite but small 
value presumably reflecting rounding errors and limitations in the numerical calculations. 
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percentages of the corresponding sum rule S for each of these three modes for the source and receiver 
arrangement of  Fig. 7 are ~28.04%, ~28.51%, and ~26.24%, for the “one”, “two”, and “three” “bumped” 
modes respectively. 

[73]  Note, incidentally, that these power coupling strengths 2
js  are not formal power coupling efficiencies 

between sources and receivers, nor are they necessarily even proportional to the power coupling 
efficiencies. We are not formally evaluating the total power emitted by the sources. These 2

js are the 
relative powers in each beam when starting with source functions of unit amplitude, but those unit 
amplitudes do not necessarily all correspond to unit emitted power. 
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then the “knee” in the curves here moves closer to HyN  - that is, the factor that here is 0.985 moves closer 
to 1. The form of the curve, explicitly including the exponential decay rate, does not change, however, 
with the singular values falling off exponentially with the same exponent. 
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“horizontal” and “vertical” mode forms, like those seen with “line” sources and receivers. Up to Hn N , 
both the horizontal and vertical forms are for modes below the corresponding HxN  and HyN  limits. 
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“vertical” mode past the limit, and similarly a set of HyN  modes that correspond to the first “horizontal” 
mode past the limit. So we expect to see a “step” with Hx HyN N≈ +  modes with approximately equal 
singular values. A similar argument for successive weaker modes in one or other direction leads to a 
subsequent step, and so on. Because there is a number of such modes on each step that is therefore 
proportional (in this square case) to Hx Hy HN N N= = , we divide by HN  in the exponential. Of 
course, this is not quite a complete counting of all the possible weakly coupled modes, because there will 
also be modes in which both the “horizontal” and “vertical” modes are both “weak”, so this 
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and the HN  factor in the denominator in the approximate exponential. 

[80]  The general behavior of singular values for prolate spheroidal functions is well known, and [81] expands 
this discussion for the weakly coupled values in a general “Fourier transform” approach, showing that 
the number of “degrees of freedom” increases only logarithmically as the minimum acceptable singular 
value is decreased ([81], Eq. (2)), which is consistent with an exponentialy decaying strength of the 
singular values. [82] extends this to more dimensions. Insofar as these Fourier transform approaches are 
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