# Analyzing and generating multimode optical fields using self-configuring networks: supplement 

David A. B. Miller (D)
Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA (dabm@stanford.edu)


#### Abstract

This supplement published with The Optical Society on 13 July 2020 by The Authors under the terms of the Creative Commons Attribution 4.0 License in the format provided by the authors and unedited. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.


Supplement DOI: https://doi.org/10.6084/m9.figshare. 12476123

# Analyzing and generating multimode optical fields using self-configuring networks: supplementary material 

David A. B. Miller<br>Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford CA 94305 USA<br>dabm@stanford.edu


#### Abstract

This document provides supplementary information to "Analyzing and generating multimode optical fields using self-configuring networks". Section S1 gives supporting definitions and detail on the topology of self-configuring layers. Section S2 gives a full analysis of general loss-less Mach-Zehnder interferometers (MZIs). Section S3 derives general properties of loss-less beamsplitters. Section S4 derives the necessary phase shifts in directional couplers used as beamsplitters. The transpose and phase-conjugating properties of unitary reciprocal networks are formally derived in Section S5. Section S6 gives the detailed algorithm and formulas for running a multimode generator. Explicit procedures for automatic calibration of the mesh are given in Section S7.


## S1 - Self-configuring network layers

Here we clarify and extend the topological discussion of selfconfiguring networks, including the ideas of "layers" and "columns". First, a definition, at least for ourpurposes, and as effectively defined previously [1,2]:

A self-configuring optical network is one that aligns itself to in an input optical field to perform a useful function on that field, based on simple feedback loops between a detector or detectors and controllable networks elements, such as phase shifters or possibly controllable couplers, without requiring any calculations [1,2].
Architectures and algorithms have been proposed for such selfconfiguring networks for what can be called "forward-only" or "feed-forward" networks [1-4], which are ones in which light flows only in one direction, from inputs to outputs, without topological loops or reflections [4] that would lead to light going backwards through the same network. If light can reflect or complete loops within the network, then we cannot apply simple progressive algorithms to configure them; changing an element "later" in the network can then lead to a change in the field "earlier" in the network, which means we may have to change the settings of the element "earlier" in the network again to compensate for that, thereby breaking a simple progression from "earlier" to "later" in setting up the networks.
Specifically, collections of universal 2x2 blocks, such as MZIs or controllable couplers and phase shifters [5] can form such forward-
only networks. These are capable of performing arbitrary linear operations on mutually coherent light at a given frequency in a set of input waveguides when using sufficiently sophisticated architectures [2], including in architectures that can be fully selfconfigured automatically [1,2,6-12].
The simplest such self-configuring architectures form "self-aligning beam couplers" [1], which can take all the power in a set of (mutually coherent) inputs and route itto just one output, which we can call here the "signal" output (in the main text, because we do not need this distinction, we just call this the "output"). Such networks also have additional outputs, which can be called "drop-ports"; those may be used in monitoring and feedback loops in the selfaligning beam coupler functionality itself, though are not otherwise used as outputs in that application. Overall, including such dropport outputs, there are generally equal total numbers of inputs and outputs in such a "self-aligning beam coupler" architecture. These nominally unused drop-port outputs in one such "self-aligning beam coupler" architecture can then be used as inputs for additional such units [1,2]. In that case, we can usefully think each such "self-aligning beam coupler" unit as a "self-configuring layer" in a possibly larger self-configuring system (See Fig. S1). In such a case, any optical input that is mathematically orthogonal to the "configured" input for the first such layer is passed from these dropport outputs to become the inputs of a subsequent self-configuring layer. In such a way, multiple such self-configuring layers can be cascaded to form a larger self-configuring architecture that is
capable of separating multiple orthogonal input beams to the numbered outputs in Fig. S1.


Fig. S1. Illustration of use of successive cascaded self-configuring layers (each of which can be considered to be a self-aligning beam coupler) to form a larger self-configuring network, with the drop-port outputs of one layer becoming the inputs of the next layer.
These cascaded architectures are introduced in [1,2]. These can be extended first to perform arbitrary unitary operations, and then can be extended also to implement full non-unitary matrix operations between inputs and outputs [2]. These full non-unitary matrix operations can be constructed based on the singular-value decomposition of the matrix, as introduced in [2]; that results in two unitary matrix operations, one at the input and one at the output, with a line of modulators connecting them. In the singular-value decomposition picture, we can consider the matrix being constructed using giving a set of orthogonal input "modes" (i.e., input vectors of amplitudes) that couple to a set of orthogonal output "modes" (i.e., output vectors of amplitudes).
These full non-unitary meshes may be self-configured by shining the desired input "modes" one by one into the input side of the mesh for "training" the input self-configuring layers one by one, and similarly training the output side of the mesh by shining in backwards (technically, phase-conjugated) versions of the corresponding desired output "modes". Because any optical device at a given wavelength can be described in terms of a singular value decomposition, this approach allows (and proves the possibility of) an arbitrary linear optical component at that wavelength, at least on this modal basis.
Two explicit architectures have been proposed for such selfconfiguring layers (or self-aligning beam couplers) - the "diagonal line" and the "binary tree", as shown in Fig. 1 in the main text, based on $2 x 2$ blocks that can be implemented, for example, with MZIs. For any given block in a layer, in general an input can be "external" - i.e., directly from an input to the layer, or "internal" - i.e., coming from the output of another block in the layer. Three distinct input configurations (Fig. S2) are used in the self-configuring layers discussed here: (a) a "binary tree" unit, which has two "internal" inputs; (b) a "diagonal line" unit, which has one "internal" input and one "external" input; and (c) an "input" unit, which has two "external" inputs. In the full binary tree mesh, the first column of $2 x 2$ blocks are all "input" units, and all others are "binary tree". In the diagonal line mesh, the block in the first column is an "input" unit, and all the others are "diagonal line" units.
Another configuration, Fig. S2(d), in which the two outputs of block are connected to inputs of other blocks within the same layer, does not occur within these self-configuring layers. This kind of configuration is common in architectures, such as the rectangular mesh [13], that cannot be decomposed into self-configuring layers,
and that do not support overall self-configuration in the sense described here (though they can be configured with other algorithms - see, e.g., [4,12]).


Fig. S2. Different configurations for connections to $2 \times 2$ blocks in a mesh architecture. (a), (b) and (c) in various combinations make up the selfconfiguring layers discussed here. Configuration (d) is not used in those, however; one block never connects its outputs to two other blocks in the same self-configuring layer.

Incidentally, generally these $2 x 2$ blocks can be made from MZIs using any of allowed choices of 2 phase shifters discussed in the main text (Section 3) - i.e., any choice of two phase shifters as long as one is inside the MZI, though the "input" unit case of Fig. S2(c) also requires that there is at least one phase shifter on one of the inputs (so at least one of the $\phi_{T}$ or $\phi_{L}$ phase shifters in the notation of Fig. 3 of the main text.) These blocks can also be made using other approaches, such as controllable directional couplers [5].


Fig. S3. Other example self-configuring layer architectures. (a) a "V" architecture with two diagonal lines joined with a final "binary tree" unit. (b) an architecture with a binary tree at the top and a diagonal line at the bottom. Blocks in the same column can be configured at the same time.

In addition to the simple (full) diagonal line and (full) binary tree self-configuring layers of Fig. 1 in the main text, other architectures of self-configuring layers are possible with different combinations of diagonal line units and binary tree units. Two examples are sketched in Fig. S3
In addition to never using the "two internal outputs" configuration of Fig. S2(d), there are two other interesting conditions for constructing the self-configuring layers considered here.

1) It is desirable that there is only a single path from any input to the signal output. Otherwise, there is redundancy in the network; if there are two such paths, we would just have to arbitrarily choose to fix the settings on one such path, and configure the other as needed. (Using the "two internal outputs" configuration of Fig. S2(d) can lead to exactly such redundancies.)
2) Each input must have a possible connection to the signal output. (To be universal, the output must ingeneral be a linear combination of all the inputs, hence this necessary condition.)
All the networks shown here (in Fig. 1 in the main text and Fig. S3) obey both of these criteria.
Of these various possible networks, the (full) binary tree is the shortest in terms of the number of blocks between the external inputs and the signal output. The (full) diagonal line has the characteristic that it is reversible; it can be run either with inputs on the left and outputs on the right or the other way round. In cascaded self-configuring layers, as it can lead to a shorter network overall than with binary-tree layers, and does not require crossing waveguides to extract the signal outputs from different layers.

## S2 - Analysis of a general lossless Mach-Zehnder interferometer

In analyzing the MZI of Fig. 3 in the main text, we work progressively through the MZI, considering the amplitudes and phases of the different paths and adding the results at the output ports. We take a monochromatic field of time-dependence $\exp (-i \omega t)$ in our analysis, which is consistent with a common approach of writing a "forward-propagating" wave as $\exp (i[k z-\omega t])$ in optics, and also with the common "physicist's" choice, as in Schrödinger's timedependent wave equation [14]. A phase delay of $\phi$ radians then corresponds to multiplying by a factor $\exp (i \phi)$.
With our choice above that the beam passing from one waveguide to the other in the beamsplitters is delayed by $90^{\circ}$, which will hold for all directional couplers run in "first order" (whether or not they have a $50: 50$ beamsplitter ratio), the corresponding phase delay factor is

$$
\begin{equation*}
\exp \left(i \phi_{B S}\right)=\exp \left(i \frac{\pi}{2}\right) \equiv i \tag{S1}
\end{equation*}
$$

In considering a beamsplitter itself, we choose to label its ports in the same way as we have labelled the ports of the "cube" beamsplitter in Fig. 3(b) in the main text (so "Top", "Left", "Right" and "Bottom"). As in Section S3 below, we presume field "reflectivities" $r_{T R}$ ("Top" to "Right") and $r_{L B}$ ("Left" to "Bottom") field and similarly field "transmissivities" $t_{L R}$ and $t_{T B}$. We show in SectionS3 that for a loss-less beamsplitter $\left|r_{T R}\right|^{2}=\left|r_{L B}\right|^{2} \equiv|r|^{2}$ (Eq. (S37)), and similarly $\left|t_{T B}\right|^{2}=\left|t_{L R}\right|^{2}=|t|^{2}=1-|r|^{2}$ (Eq. (S38). Now we take the beamsplitter itself to have no phase shifts other than the $90^{\circ}$ phase delay in crossing from one waveguide to the other (so, in "transmission" through the beamsplitter); all other phase shifts associated with propagation will be included instead in the phase
delays $\phi_{T}, \phi_{L}, \theta_{P}$ and $\theta_{W}$ in the rest of the MZI. With that choice, for a given beamsplitter $r$ can be taken to be real (and positive), and

$$
\begin{equation*}
t=\sqrt{1-r^{2}} \exp \left(i \frac{\pi}{2}\right)=i \sqrt{1-r^{2}} \tag{S2}
\end{equation*}
$$

Because in an MZI we have two beamsplitters which may have different field reflectivities and transmissivities, we need to label those as $r_{1}$ and $t_{1}$ for beamsplitter BS1 (on the "left" in Fig. 3(a) in the main text and $r_{2}$ and $t_{2}$ for beamsplitter BS2 (on the "right" in Fig. 3(a) in the main text).
So, we continue our formal analysis, now for the full MZI of Fig. 3 in the main text with its "Top", "Left", "Right", and "Bottom" ports and with corresponding forward (complex) propagating mode amplitudes $a_{T}, a_{L}, a_{R}$, and $a_{B}$, respectively. Working progressively through the MZI, adding the amplitudes on various different paths, we have

$$
\begin{align*}
a_{R}= & a_{T} \exp \left(i \phi_{T}\right)\left\{r_{1} r_{2} \exp \left(i \theta_{P}\right)+t_{1} t_{2} \exp \left(i \theta_{W}\right)\right\} \\
& +a_{L} \exp \left(i \phi_{L}\right)\left\{r_{1} t_{2} \exp \left(i \theta_{W}\right)+t_{1} r_{2} \exp \left(i \theta_{P}\right)\right\} \tag{S3}
\end{align*}
$$

Taking out a common factor of $\exp \left(i \theta_{a v}\right)$ with $\theta_{a v}=\left(\theta_{P}+\theta_{W}\right) / 2$ (Eq. 1 in the main text), and using $\Delta \theta=\theta_{P}-\theta_{W}$ (Eq. 2 in the main text)

$$
\begin{align*}
a_{R}= & a_{T} \exp \left[i\left(\phi_{T}+\theta_{a v}\right)\right]\left\{r_{1} r_{2} \exp \left(i \frac{\Delta \theta}{2}\right)+t_{1} t_{2} \exp \left(-i \frac{\Delta \theta}{2}\right)\right\} \\
& +a_{L} \exp \left[i\left(\phi_{L}+\theta_{a v}\right)\right]\left\{r_{1} t_{2} \exp \left(-i \frac{\Delta \theta}{2}\right)+t_{1} r_{2} \exp \left(i \frac{\Delta \theta}{2}\right)\right\} \tag{S4}
\end{align*}
$$

From Eq. 3 in the main text $\left(\phi_{a v}=\left(\phi_{T}+\phi_{L}\right) / 2\right)$, Eq. 4 in the main text $\left(\Delta \phi=\phi_{T}-\phi_{L}\right)$, and Eq. 5 in the main text ( $\left.\phi_{T o t}=\phi_{a v}+\theta_{a v}+\pi / 2\right)$ we have

$$
\begin{align*}
a_{R} & =-i \exp \left(i \phi_{\text {Tot }}\right) \\
& \times\left[\begin{array}{l}
a_{T} \exp \left(i \frac{\Delta \phi}{2}\right)\left\{r_{1} r_{2} \exp \left(i \frac{\Delta \theta}{2}\right)+t_{1} t_{2} \exp \left(-i \frac{\Delta \theta}{2}\right)\right\} \\
+a_{L} \exp \left(-i \frac{\Delta \phi}{2}\right)\left\{r_{1} t_{2} \exp \left(-i \frac{\Delta \theta}{2}\right)+t_{1} r_{2} \exp \left(i \frac{\Delta \theta}{2}\right)\right\}
\end{array}\right] \tag{S5}
\end{align*}
$$

Similarly, by the symmetry of the MZI structure, we deduce the corresponding result for the "bottom" output amplitude by swapping "top" and "left" and "upper" and "lower" and correspondingly inverting the differential phase shifts in Eq. (S5), obtaining

$$
\begin{align*}
a_{B} & =-i \exp \left(i \phi_{\text {Tot }}\right) \\
& \times\left[\begin{array}{l}
a_{T} \exp \left(i \frac{\Delta \phi}{2}\right)\left\{r_{1} t_{2} \exp \left(i \frac{\Delta \theta}{2}\right)+t_{1} r_{2} \exp \left(-i \frac{\Delta \theta}{2}\right)\right\} \\
+a_{L} \exp \left(-i \frac{\Delta \phi}{2}\right)\left\{r_{1} r_{2} \exp \left(-i \frac{\Delta \theta}{2}\right)+t_{1} t_{2} \exp \left(i \frac{\Delta \theta}{2}\right)\right\}
\end{array}\right] \tag{S6}
\end{align*}
$$

So, the most general form of the matrix $M$ relating outputs to inputs for the MZI (as in Eq. 6 in the main text) becomes (Eq. (7) in the main text)

$$
M=\exp \left(i \phi_{\text {Tot }}\right) M_{s}(\Delta \theta) M_{\phi}(\Delta \phi)
$$

Here $M_{\phi}(\Delta \phi)$, as in Eq. (8) in the main text, represents the effect of the difference between the input phase shifts on the "Top" and "Left" arms. The remaining effect of the MZI is then given by the matrix

$$
M_{s}(\Delta \theta)=-i\left[\begin{array}{ll}
\left\{r_{1} r_{2} e_{+}+t_{1} t_{2} e_{-}\right\} & \left\{r_{1} t_{2} e_{-}+t_{1} r_{2} e_{+}\right\}  \tag{S7}\\
\left\{r_{1} t_{2} e_{+}+t_{1} r_{2} e_{-}\right\} & \left\{r_{1} r_{2} e_{-}+t_{1} t_{2} e_{+}\right\}
\end{array}\right]
$$

where $e_{+}=\exp (i \Delta \theta / 2)$ and $e_{-}=\exp (-i \Delta \theta / 2)$. When we consider the detailed calibration of the mesh (Supplement 1 Section S7), we need specific results for the "top-left" (i.e., first row and first column) matrix element $M_{11}$ and the "bottom-left" (i.e., second row and first column) element $M_{21}$. Using the facts that $r_{1}$ and $r_{2}$ are real (by choice) and $t_{1}$ and $t_{2}$ (as given correspondingly by Eq. (S2)) are purely "positive" imaginary, then

$$
\begin{equation*}
\left|M_{11}\right|^{2}=a-b \cos \Delta \theta \tag{S8}
\end{equation*}
$$

where $a$ and $b$ are positive numbers

$$
\begin{array}{r}
a=1-r_{1}^{2}-r_{2}^{2}+2 r_{1}^{2} r_{2}^{2} \\
b=2 r_{1} r_{2} \sqrt{1-r_{1}^{2}} \sqrt{1-r_{2}^{2}} \tag{S10}
\end{array}
$$

Similarly,

$$
\begin{equation*}
\left|M_{21}\right|^{2}=1-a+2 \cos \Delta \theta \tag{S11}
\end{equation*}
$$

In the main text and in Section S7, we also need the $M_{\phi}(\Delta \phi)$ matrix for the special case of $50: 50$ beamsplitters, i.e.,

$$
\begin{align*}
& r_{1}=r_{2}=1 / \sqrt{2}  \tag{S12}\\
& t_{1}=t_{2}=i / \sqrt{2} \tag{S13}
\end{align*}
$$

in which case $\mathrm{M}_{s}(\Delta \theta)$ becomes

$$
M_{s}(\Delta \theta)=\left[\begin{array}{cc}
\sin \left(\frac{\Delta \theta}{2}\right) & \cos \left(\frac{\Delta \theta}{2}\right)  \tag{S14}\\
\cos \left(\frac{\Delta \theta}{2}\right) & -\sin \left(\frac{\Delta \theta}{2}\right)
\end{array}\right]
$$

## S3 - Properties of a loss-less beamsplitter

Here we derive the formal properties of a loss-less beamsplitter. This analysis is similar to that of [15], expressed here in our notation, and with some added explicit algebra steps and results that we need. Consider a beamsplitter as in Fig. 3(b) in the main text. Now we presume the beamsplitter has field reflectivities $r_{T R}$ and $r_{L B}$ as wellas field transmissivities $t_{L R}$ and $t_{T B}$. These reflectivities and transmissivities are complex numbers, and they are referred to the input and output "faces" or ports. So, for example, with some complex field amplitude $a_{T}$ in the "Top" beamsplitter port, the complex field amplitude at the "Right" beamsplitter port would be $r_{T R} a_{T}$, which would include all phase shifts between the top input face or port and the right output face or port. With similar
definitions for corresponding terms for other ports, we could write the effect of the beamsplitter as a matrix equation

$$
\left[\begin{array}{l}
a_{R}  \tag{S15}\\
a_{B}
\end{array}\right]=\left[\begin{array}{ll}
r_{T R} & t_{L R} \\
t_{T B} & r_{L B}
\end{array}\right]\left[\begin{array}{l}
a_{T} \\
a_{L}
\end{array}\right]
$$

or, explicitly,

$$
\begin{equation*}
a_{R}=r_{T R} a_{T}+t_{L R} a_{L} \tag{S16}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{B}=t_{T B} a_{T}+r_{L B} a_{L} \tag{S17}
\end{equation*}
$$

Now we consider that the power in any beam is proportional to the modulus squared of the field amplitude, so, in appropriate units, the power in the beam at the "Right" beamsplitter port is

$$
\begin{equation*}
\left|a_{R}\right|^{2}=\left|r_{T R}\right|^{2}\left|a_{T}\right|^{2}+\left|t_{L R}\right|^{2}\left|a_{L}\right|^{2}+t_{L R} r_{T R}^{*} a_{L} a_{T}^{*}+r_{T R} t_{L R}^{*} a_{T} a_{L}^{*} \tag{S18}
\end{equation*}
$$

and the power in the beam at the "Bottom" beamsplitter port is

$$
\begin{equation*}
\left|a_{B}\right|^{2}=\left|t_{T B}\right|^{2}\left|a_{T}\right|^{2}+\left|r_{L B}\right|^{2}\left|a_{L}\right|^{2}+r_{L B} t_{T B}^{*} a_{L} a_{T}^{*}+t_{T B} r_{L B}^{*} a_{T} a_{L}^{*} \tag{S19}
\end{equation*}
$$

So the total output power is

$$
\begin{align*}
\left|a_{R}\right|^{2}+\left|a_{B}\right|^{2} & =\left(\left|t_{T B}\right|^{2}+\left|r_{T R}\right|^{2}\right)\left|a_{T}\right|^{2}+\left(\left|t_{L R}\right|^{2}+\left|r_{L B}\right|^{2}\right)\left|a_{L}\right|^{2} \\
& +\left(t_{L R} r_{T R}^{*}+r_{L B} t_{T B}^{*}\right) a_{L} a_{T}^{*}+\left(t_{T B} r_{L B}^{*}+r_{T R} t_{L R}^{*}\right) a_{T} a_{L}^{*} \tag{S20}
\end{align*}
$$

Now we note that the last two terms in Eq. (S20) are complex conjugates of one another, so Eq. (S19) becomes

$$
\begin{align*}
\left|a_{R}\right|^{2}+\left|a_{B}\right|^{2}= & \left(\left|t_{T B}\right|^{2}+\left|r_{T R}\right|^{2}\right)\left|a_{T}\right|^{2}+\left(\left|t_{L R}\right|^{2}+\left|r_{L B}\right|^{2}\right)\left|a_{L}\right|^{2} \\
& +2 \operatorname{Re}\left[\left(t_{L R} r_{T R}^{*}+r_{L B} t_{T B}^{*}\right) a_{L} a_{T}^{*}\right] \tag{S21}
\end{align*}
$$

Now suppose that we vary the relative phase of the two input beam amplitudes $a_{L}$ and $a_{T}$ while keeping their magnitudes constant. As a result, the phase of the term $\left(t_{L R} r_{T R}^{*}+r_{L B} t_{T B}^{*}\right) a_{L} a_{T}^{*}$ will change, which means the real part of this term will change. But none of the other terms in Eq. (S21) change, and, in particular, the left side of the equation will not change. Hence, since this equation must hold for arbitrary relative phases of the inputs, we can conclude that, in this presumed lossless beamsplitter, for conservation of power

$$
\begin{equation*}
t_{L R} r_{T R}^{*}+r_{L B} t_{T B}^{*}=0 \tag{S22}
\end{equation*}
$$

Hence

$$
\begin{equation*}
t_{L R} r_{T R}^{*}=-r_{L B} t_{T B}^{*} \tag{S23}
\end{equation*}
$$

Writing

$$
\begin{align*}
& t_{L R}=\left|t_{L R}\right| \exp \left(i \phi_{L R}\right), t_{T B}=\left|t_{T B}\right| \exp \left(i \phi_{T B}\right) \\
& r_{T R}=\left|r_{T R}\right| \exp \left(i \phi_{T R}\right), r_{L B}=\left|r_{L B}\right| \exp \left(i \phi_{L B}\right) \tag{S24}
\end{align*}
$$

so the various $\phi_{T R}, \phi_{L B}, \phi_{T B}$, and $\phi_{L R}$ correspond to phase delays in propagating through the system between their respective
beamsplitter ports (presuming an $\exp (-i \omega t)$ time dependence in our analysis, as discussed in Section S2). Then, from Eq. (S23)

$$
\left|t_{L R}\right|\left|r_{T R}\right| \exp \left(i\left[\phi_{L R}-\phi_{T R}\right]\right)=-\left|r_{L B}\right|\left|t_{T B}\right| \exp \left(i\left[\phi_{L B}-\phi_{T B}\right]\right)
$$

(S25)
Taking the modulus of both sides of Eq. (S25) gives

$$
\begin{equation*}
\left|t_{L R}\right|\left|r_{T R}\right|=\left|r_{L B}\right|\left|t_{T B}\right| \tag{S26}
\end{equation*}
$$

So, Eq. (S25) gives

$$
\begin{equation*}
\exp \left(i\left[\phi_{L R}-\phi_{T R}\right]\right)=-\exp \left(i\left[\phi_{L B}-\phi_{T B}\right]\right) \tag{S27}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\exp (i[ \pm \pi])=-1 \tag{S28}
\end{equation*}
$$

Eq. (S27) gives

$$
\begin{equation*}
\exp \left(i\left[\phi_{L R}+\phi_{T B}-\phi_{T R}-\phi_{L B}\right]\right)=\exp (i[ \pm \pi]) \tag{S29}
\end{equation*}
$$

So we conclude that

$$
\begin{equation*}
\phi_{L R}+\phi_{T B}-\phi_{T R}-\phi_{L B}= \pm \pi+2 n \pi \tag{S30}
\end{equation*}
$$

for some integer $n$. (This is often stated with the additional $2 n \pi$ presumed. For most practical beamsplitter designs, it may well be that $n=0$, but we certainly could design beamsplitters in which it is not - for example, some very long directional coupler beamsplitter.)
Further obvious relations are obeyed by such a lossless beamsplitter. From Eq. (S21) we directly conclude that

$$
\begin{equation*}
\left|a_{R}\right|^{2}+\left|a_{B}\right|^{2}=\left(\left|t_{T B}\right|^{2}+\left|r_{T R}\right|^{2}\right)\left|a_{T}\right|^{2}+\left(\left|t_{L R}\right|^{2}+\left|r_{L B}\right|^{2}\right)\left|a_{L}\right|^{2} \tag{S31}
\end{equation*}
$$

Choosing $a_{L}=0$ and requiring power conservation in Eq. (S31) gives

$$
\begin{equation*}
\left|t_{T B}\right|^{2}+\left|r_{T R}\right|^{2}=1 \tag{S32}
\end{equation*}
$$

Similarly, choosing $a_{T}=0$ gives

$$
\begin{equation*}
\left|t_{L R}\right|^{2}+\left|r_{L B}\right|^{2}=1 \tag{S33}
\end{equation*}
$$

Eq. (S26) leads to a simple conclusion that

$$
\begin{equation*}
\frac{\left|r_{T R}\right|}{\left|t_{T B}\right|}=\frac{\left|r_{L B}\right|}{\left|t_{L R}\right|} \tag{S34}
\end{equation*}
$$

so the "split ratio" of this loss-less beamsplitter is the same whether we start from the "top" input port or the "bottom" input port.
Also, squaring both sides of Eq. (S26), and substituting using Eqs. (S32) and (S33) gives

$$
\begin{equation*}
\left(1-\left|r_{L B}\right|^{2}\right)\left|r_{T R}\right|^{2}=\left|r_{L B}\right|^{2}\left(1-\left|r_{T R}\right|^{2}\right) \tag{S35}
\end{equation*}
$$

So

$$
\begin{equation*}
\left|r_{T R}\right|^{2}-\left|r_{L B}\right|^{2}\left|r_{T R}\right|^{2}=\left|r_{L B}\right|^{2}-\left|r_{L B}\right|^{2}\left|r_{T R}\right|^{2} \tag{S36}
\end{equation*}
$$

So, adding $\left|r_{L B}\right|^{2}\left|r_{T R}\right|^{2}$ to both sides

$$
\begin{equation*}
\left|r_{T R}\right|^{2}=\left|r_{L B}\right|^{2} \equiv|r|^{2} \tag{S37}
\end{equation*}
$$

Hence, the losslessness of the beamsplitter allows us to conclude that there is just one "power" reflectivity, which we can call $|r|^{2}$, for the beamsplitter, and similarly just one "power" transmissivity

$$
\begin{equation*}
\left|t_{T B}\right|^{2}=\left|t_{L R}\right|^{2}=|t|^{2}=1-|r|^{2} \tag{S38}
\end{equation*}
$$

regardless of which input port we start with.

## S4 - Phase on "crossing over" in a directional coupler beamsplitter

Conservation of power in any lossless beamsplitter, as discussed in Section S3, leads to a general relation between the phase shifts between the various input and output ports [2,15]. If we use the notation of Section S3 (defining the total phase delays between the various beamsplitter ports T, L, B, and R, in the notation of Fig. 3(b) in the main text as $\phi_{T R}, \phi_{L B}, \phi_{T B}$, and $\phi_{L R}$ ), then conservation of power in a lossless beamsplitter requires $[2,15]$ $\phi_{L R}+\phi_{T B}-\phi_{T R}-\phi_{L B}= \pm \pi+2 n \pi$ (Eq. (S30) of Section S3) for some integer $n$.
Suppose now that the beamsplitter is perfectly symmetric - so we could not tell any difference if we simultaneously exchanged the top and bottom and left and right ports. For the case of a cube beamsplitter, symmetry would also require that we had a perfect cube with the partially reflecting surface on the diagonal. For a directional coupler splitter, left-right physical reflection symmetry (i.e., reflecting in a plane perpendicular to the guides and half way along the length of the directional coupler) together with topbottom reflection symmetry (i.e., reflecting along a line in the middle between the waveguides) would give such equivalent symmetry. Such symmetry requires

$$
\begin{equation*}
\phi_{T R}=\phi_{L B} \tag{S39}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{T B}=\phi_{L R} \tag{S40}
\end{equation*}
$$

So, from Eq. (S30) we deduce that

$$
\begin{equation*}
\phi_{T R}-\phi_{T B}= \pm \frac{\pi}{2} \tag{S41}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{L B}-\phi_{L R}= \pm \frac{\pi}{2} \tag{S42}
\end{equation*}
$$

(within any additive integer multiple of $\pi$ on the right of each of Eqs. (S41) and (S42)). So, for any such symmetric beamsplitter, if we shine into only one input port, there is necessarily a $\pi / 2\left(90^{\circ}\right)$ degree phase difference (which could be a lead or a lag) between the two output ports.
(Note, incidentally, that an MZI run as a beamsplitter is not symmetric in this way. If an MZI has equal phase delays in both arms, it is in the "cross" state, which is equivalent to no "reflectivity", e.g., from the "top" to the "right" or from the "left" to the "bottom". To create any such "reflectivity", we need to unbalance the phase shifts in the two arms, which then means the actual MZI is not symmetric any more. Hence, an MZI operated as a beamsplitter does not have to obey Eqs. (S41) and (S42), and in fact it does not, which can be verified from the form of the matrix in Eq. (S7) of Section S2, for example. It does, however, still obey the more general condition on the relations between phases in a beamsplitter as in Eq. (S30) [2,15].)

The most common waveguide beamsplitter design for such mesh networks is a $50: 50$ directional coupler structure with coupling between two adjacent, identical waveguides. As discussed, for example, in [16] (Eqs. 3.21 and 3.22), the antisymmetric "second" coupled mode of two identical coupled waveguides propagates with a faster phase velocity than the symmetric "first" coupled mode. If we start out with the wave in one guide - say, the left guide - then the wave corresponds to an equal superposition of these first and second modes, adding in the left guide and cancelling in the rightguide.
Now we can construct a physical argument, here for the case of a 50:50 beamsplitter, that resolves the sign of the phase change correctly. Now let these coupled modes propagate. There is then a point along the guides at which antisymmetric mode has advanced by $90^{\circ}$ compared to the symmetric mode. At this point, as a result of this summation of two equal waves (the symmetric and antisymmetric mode components) that are now $90^{\circ}$ out of phase, the phase of the net field in the left guide will therefore be $45^{\circ}$ ahead of the symmetric mode phase, and the power in the left guide will be reduced by a factor of two; there will be an equal power in the right guide, thereby performing the 50:50 split of power. The antisymmetric mode component in the right guide started out in antiphase compared to symmetric mode component in the right guide, which could view as being 180 degrees "behind" the symmetric component. By this $50: 50$ split length, the antisymmetric mode component will only be $90^{\circ}$ behind the symmetric mode component, and the phase of the net component in the right guide will be $45^{\circ}$ behind the symmetric mode component. Therefore, the light in the right guide at this 50:50 split length will be $45^{\circ}$ behind the phase of the symmetric mode component, and so will overall be $90^{\circ}$ behind the light in the left guide. We can consider this to be a "first order" directional coupler 50:50 splitter since it has the shortest length at which we achieve such a 50:50 split. So the phase change in such a "first-order" directional coupler 50:50 splitter in "going from" the left guide to the right guide is an apparent $90^{\circ}$, and it is a delay. (It is, of course, possible to construct this argument algebraically, but we wanted to present an argument that was not reliant on sign conventions.)
Note also that the effective phase velocity in each guide will be half way between the phase velocities of the even and odd coupled modes. For weak coupling, these two phase velocities are approximately equally split round about the "single guide" phase velocity, so the net phase velocity in each guide will be the "single guide" phase velocity. Hence the light in each guide tend to propagate at the "single guide" phase velocity, with this effective $90^{\circ}$ phase shift between the "straight through" and "crossing" paths in the coupler.
Note that, though we have constructed this argument for a 50:50 beamsplitter, in fact it applies for any beamsplitting ratio; note Eqs. (S41) and (S42) are derived independent of that ratio. In an actual directional coupler, this $90^{\circ}$ phase delay continues as we increase the coupler length up to the point of total coupling from one guide to the other (which would then be a " $0: 100$ " beamsplitter). After that point, increasing the coupler length further causes the coupling to reduce, and the phase delay also changes sign, becoming now a phase lead of $90^{\circ}$ (or a delay of $270^{\circ}$ ) until we reach the next length at which no net power couples over (so a "100:0" beamsplitter), and so on.
To complement this discussion, we can construct an algebraic argument. We presume two identical waveguides, 1 (e.g., the "left" one) and 2 (e.g., the "right" one), running parallel to one another in the $z$ direction, and that are weakly coupled. The "uncoupled" mode in each guide would have some spatial mode field amplitude for an
appropriate polarization direction (e.g., transverse electric or transverse magnetic) that we could write, respectively as

$$
\begin{equation*}
E_{1 u}=f\left(x_{1}, y_{1}\right) \text { and } E_{2 u}=f\left(x_{2}, y_{2}\right) \tag{S43}
\end{equation*}
$$

for $x$ and $y$ coordinates centered correspondingly in each guide. Now we consider the modes of the coupled system, in a typical "weak coupling" approach as in coupled mode theory [16], that considers just the $E_{1 u}$ and $E_{2 u}$ as being a sufficient basis for describing solutions to the coupled problem. (This is similar to other "coupled well" problems, e.g., as in a tight-binding approach in quantum mechanics [14].) In such weak-coupling models, the coupled eigenmodes of the system become symmetric ( $S$ ) and antisymmetric ( $A$ ) combinations that, for waves of angular frequency $\omega$, propagate in the $z$ direction with $k$-vector magnitudes $k_{S}$ and $k_{A}$. Based on our knowledge of such systems [16], $k_{A}<k_{S}$, corresponding to a faster phase velocity for the antisymmetric mode. So, we can write these modes, including their propagation in the $z$ direction, as

$$
\begin{align*}
& E_{S}=\left(E_{1 u}+E_{2 u}\right) \cos \left(k_{S} z-\omega t\right) \\
& E_{A}=\left(E_{1 u}-E_{2 u}\right) \cos \left(k_{A} z-\omega t\right) \tag{S44}
\end{align*}
$$

With this choice, a wave that starts out effectively as the "uncoupled" mode of guide 1 at $z=0$ with no field in guide 2 , can be written as

$$
\begin{align*}
E & =E_{S}+E_{A}=\left(E_{1 u}+E_{2 u}\right) \cos \left(k_{S} z-\omega t\right) \\
& +\left(E_{1 u}-E_{2 u}\right) \cos \left(k_{A} z-\omega t\right) \\
& =E_{1 u}\left[\cos \left(k_{S} z-\omega t\right)+\cos \left(k_{A} z-\omega t\right)\right] \\
& +E_{2 u}\left[\cos \left(k_{S} z-\omega t\right)-\cos \left(k_{A} z-\omega t\right)\right]  \tag{S45}\\
& =2 E_{1 u} \cos \left(k_{a v} z-\omega t\right) \cos (\Delta k z) \\
& -2 E_{2 u} \sin \left(k_{a v} z-\omega t\right) \sin (\Delta k z)
\end{align*}
$$

where

$$
\begin{equation*}
k_{a v}=\frac{k_{S}+k_{A}}{2} \text { and } \Delta k=\frac{k_{S}-k_{A}}{2} \tag{S46}
\end{equation*}
$$

Since $E_{1 u}$ and $E_{2 u}$ are the "uncoupled" mode forms in guides 1 and 2 respectively, then we can write, for the overall amplitude of the "mode" in guide 1

$$
\begin{equation*}
M_{1} \propto \cos \left(k_{a v} z-\omega t\right) \cos (\Delta k z) \tag{S47}
\end{equation*}
$$

and, noting that $-\sin (\theta)=\cos (\theta+\pi / 2)$, for the overall amplitude of the "mode" in guide 2

$$
\begin{equation*}
M_{2} \propto \cos \left(k_{a v} z+\frac{\pi}{2}-\omega t\right) \sin (\Delta k z) \tag{S48}
\end{equation*}
$$

So, for $0<\Delta k z<\pi / 2$, in which range both $\cos (\Delta k z)$ and $\sin (\Delta k z)$ are positive, the amplitude $M_{2}$ in guide 2 is delayed in phase by $\pi / 2$ compared to the amplitude $M_{1}$ in guide 1 . This range $0<z<\pi / 2 \Delta k$ encompasses the first complete range over which power couples progressively from starting entirely in guide 1 to ending entirely in guide 2 , so over that whole range the wave in guide 2 is delayed by $\pi / 2$. If we continue to larger $z$, so, for example in the range $\pi / 2 \Delta k<z<\pi / 2 \Delta k$, then $\cos (\Delta k z)$ becomes negative (though $\sin (\Delta k z)$ remains positive). The
expression for $M_{2}$ can conveniently remain the same, but we can rewrite

$$
\begin{align*}
M_{1} & \propto-\cos \left(k_{a v} z-\omega t\right)|\cos (\Delta k z)| \\
& =\cos \left(k_{a v} z+\pi-\omega t\right)|\cos (\Delta k z)| \tag{S49}
\end{align*}
$$

So now the "mode" in guide 1 can be viewed as being delayed by $\pi / 2$ compared to that in guide 2 , inverting the situation compared to that for $0<z<\pi / 2 \Delta k$. So, once the power starts to couple "back" from guide 2 to guide 1 , the phase of the field in guide 1 can be viewed as being delayed by $\pi / 2$ compared to that in guide 2 . This situation reverses back and forward for successive such ranges as we go to successive "higher orders" in the directional coupler behavior.

## S5 - Transpose and phase-conjugating properties of unitary reciprocal networks

The properties we prove here are generally known and the proofs are straightforward, so much so that it may be difficult to find them stated explicitly in the literature. We give them because we need to use these results in different situations here, with a good understanding of where these results come from and just what the necessary assumptions are.
Suppose that we have an input vector of $N$ waveguide mode complex amplitudes

$$
|\alpha\rangle \equiv\left[\begin{array}{c}
\alpha_{1}  \tag{S50}\\
\alpha_{2} \\
\vdots \\
\alpha_{N}
\end{array}\right]
$$

and we have a linear reciprocal network represented by an $N \times N$ unitary matrix $U$. Then the corresponding output vector of waveguide mode complex amplitudes is

$$
|\beta\rangle \equiv\left[\begin{array}{c}
\beta_{1}  \tag{S51}\\
\beta_{2} \\
\vdots \\
\beta_{N}
\end{array}\right]
$$

with

$$
\begin{equation*}
U|\alpha\rangle=|\beta\rangle \tag{S52}
\end{equation*}
$$

Specifically, then, looking at the relation between two elements of these vectors, we would have

$$
\begin{equation*}
\beta_{m}=u_{m n} \alpha_{n} \tag{S53}
\end{equation*}
$$

where $u_{m n}$ is the " $m n$ "th element ( $m$ th row, $n$th column) of the matrix $U$. Now suppose that, instead of shining light in the "inputs" of the network, we instead shine a vector of amplitudes

$$
|\gamma\rangle \equiv\left[\begin{array}{c}
\gamma_{1}  \tag{S54}\\
\gamma_{2} \\
\vdots \\
\gamma_{N}
\end{array}\right]
$$

backwards into the "outputs" of the network, generating a vector of "backwards" amplitudes

$$
|\eta\rangle \equiv\left[\begin{array}{c}
\eta_{1}  \tag{S55}\\
\eta_{2} \\
\vdots \\
\eta_{N}
\end{array}\right]
$$

emerging from the "inputs" of the network. In this backwards direction, we write the matrix that relates these new "backwards" amplitudes to one another as $V$, so by this definition we have

$$
\begin{equation*}
|\eta\rangle=\mathrm{V}|\gamma\rangle \tag{S56}
\end{equation*}
$$

Now, by presumption, this network is reciprocal. Specifically, the coupling constant between specific input and output ports is the same in both directions, both in amplitude and in phase delay. So, specifically

$$
\begin{equation*}
\eta_{n}=u_{m n} \gamma_{m} \tag{S57}
\end{equation*}
$$

This means that

$$
\begin{equation*}
V=U^{T} \tag{S58}
\end{equation*}
$$

(the transpose of the original matrix $U$ ). This result itself is useful and general: If we run a unitary network backwards, the corresponding matrix is the transpose of the "forward" one. We could call this the "transpose" property of unitary networks run in reverse.
Suppose, now, that the vector of backwards amplitudes shone into the "outputs" is the phase conjugate of $|\beta\rangle$, i.e., the vector

$$
|\gamma\rangle=|\beta\rangle^{*} \equiv\left[\begin{array}{c}
\beta_{1}^{*}  \tag{S59}\\
\beta_{2}^{*} \\
\vdots \\
\beta_{N}^{*}
\end{array}\right]
$$

[Note that, if a phase of a given output is "lagging" (retarded), then in the phase conjugate, the corresponding backwards phaseconjugate input will have a phase that is "leading" (advanced). In ordinary optics, then, if a beam is diverging as it propagates to the "right", then the phase conjugate beam will be converging as it propagates to the "left".] Then, using the definition of the conjugate transpose (i.e., Hermitian adjoint)

$$
\begin{equation*}
U^{\dagger} \equiv\left(U^{T}\right)^{*} \tag{S60}
\end{equation*}
$$

together with the definition of unitarity

$$
\begin{equation*}
U^{\dagger} U=1 \tag{S61}
\end{equation*}
$$

(where I is the $N \times N$ identity matrix), and Eqs. (S52), (S56), and (S58), we have

$$
\begin{equation*}
\mathrm{U}^{T}|\beta\rangle^{*}=\left(\mathrm{U}^{\dagger}|\beta\rangle\right)^{*}=\left(\mathrm{U}^{\dagger} \mathrm{U}|\alpha\rangle\right)^{*}=|\alpha\rangle^{*} \tag{S62}
\end{equation*}
$$

So, if in the forward direction we have $\mathrm{U}|\alpha\rangle=|\beta\rangle$ (Eq. (S52)), then, if we shine the phase conjugate vector of amplitudes $|\beta\rangle^{*}$ backwards into the "outputs", the vector of backwards amplitude emerging from the "inputs" is $|\alpha\rangle^{*}$. We could call this the "phaseconjugating" property of reciprocal unitary networks.

## S6 - Settings for generating a desired backward beam

## Settings for a specific MZI block

We consider first how an MZI block must be configured if it takes all the power in some (forward) inputvector $\left[\begin{array}{ll}a_{T} & a_{L}\end{array}\right]^{T}$ and routes it to one (forward) output. Quite generally, because the matrix $M$ describing a MZI block is unitary (so $M^{\dagger} M=I$, the identity matrix), then Eq. (6) in the main text leads to

$$
\mathrm{M}^{\dagger}\left[\begin{array}{l}
a_{R}  \tag{S63}\\
a_{B}
\end{array}\right]=\mathrm{M}^{\dagger} \mathrm{M}\left[\begin{array}{l}
a_{T} \\
a_{L}
\end{array}\right]=\left[\begin{array}{l}
a_{T} \\
a_{L}
\end{array}\right]
$$

where $\mathrm{M}^{\dagger}$ is the Hermitian adjoint (i.e., complex conjugate of the transpose) of M.Then from Eq. (7) in the main text

$$
\begin{equation*}
\mathrm{M}^{\dagger}\left(\phi_{\text {Tot }}, \Delta \theta, \Delta \phi\right)=\exp \left(-i \phi_{\text {Tot }}\right) \mathrm{M}_{\phi}^{\dagger}(\Delta \phi) \mathrm{M}_{s}^{\dagger}(\Delta \theta) \tag{S64}
\end{equation*}
$$

(Note that, as usual, we have inverted the order of the matrix multiplications in taking the Hermitian adjoint of a matrix product. Note also that for 50:50 beamsplitters, $M_{s}$ is actually Hermitian so equal to its own Hermitian adjoint - though that is not generally the case for other beamsplitter ratios.) Explicitly, using Eq. (8) in the main text for $M_{\phi}$, and presuming 50:50 beamsplitters, so using Eq. (9) in the main text for $M_{s}$, we have

$$
\begin{align*}
& \mathrm{M}^{\dagger}\left(\phi_{\text {Tot }}, \Delta \theta, \Delta \phi\right)=\exp \left(-i \phi_{\text {Tot }}\right) \\
& \times\left[\begin{array}{cc}
\exp \left(-i \frac{\Delta \phi}{2}\right) & 0 \\
0 & \exp \left(i \frac{\Delta \phi}{2}\right)
\end{array}\right]\left[\begin{array}{cc}
\sin \left(\frac{\Delta \theta}{2}\right) & \cos \left(\frac{\Delta \theta}{2}\right) \\
\cos \left(\frac{\Delta \theta}{2}\right) & -\sin \left(\frac{\Delta \theta}{2}\right)
\end{array}\right] \tag{S65}
\end{align*}
$$

So, for routing all this input power to the "Right" MZI optical output, we have

$$
\left[\begin{array}{l}
a_{T}  \tag{S66}\\
a_{L}
\end{array}\right]=\mathrm{M}^{\dagger}\left[\begin{array}{c}
a_{R} \\
0
\end{array}\right]
$$

which gives

$$
\left[\begin{array}{l}
a_{T}  \tag{S67}\\
a_{L}
\end{array}\right]=a_{R} \exp \left(-i \phi_{\text {Tot }}\right)\left[\begin{array}{l}
\exp \left(-i \frac{\Delta \phi}{2}\right) \sin \left(\frac{\Delta \theta}{2}\right) \\
\exp \left(i \frac{\Delta \phi}{2}\right) \cos \left(\frac{\Delta \theta}{2}\right)
\end{array}\right]
$$

(Note, incidentally, that we are still physically imagining that we are running the system forwards; if $a_{R}$ is the output we get at the "Right" MZI output and we are getting zero output at the "Bottom" MZI output, then this is what the input amplitudes $a_{T}$ and $a_{L}$ must have been.)
Writing

$$
\left[\begin{array}{l}
a_{T}  \tag{S68}\\
a_{L}
\end{array}\right] \equiv\left[\begin{array}{l}
\left|a_{T}\right| \exp \left(i \psi_{T}\right) \\
\left|a_{L}\right| \exp \left(i \psi_{L}\right)
\end{array}\right]
$$

where $\psi_{T}$ and $\psi_{L}$ are real (and $\psi_{T}$ and $\psi_{L}$ correspond to whatever are the phase delays on these respective inputs), then, using Eq. (S67)

$$
\begin{equation*}
\frac{a_{T}}{a_{L}}=\frac{\left|a_{T}\right|}{\left|a_{L}\right|} \exp \left(i\left[\psi_{T}-\psi_{L}\right]\right)=\exp (-i \Delta \phi) \tan \left(\frac{\Delta \theta}{2}\right) \tag{S69}
\end{equation*}
$$

So we should set

$$
\begin{align*}
& \Delta \phi=\psi_{L}-\psi_{T}  \tag{S70}\\
& \Delta \theta=2 \arctan \left(\frac{\left|a_{T}\right|}{\left|a_{L}\right|}\right) \tag{S71}
\end{align*}
$$

Note that, since $\left|a_{T}\right|$ and $\left|a_{L}\right|$ are necessarily positive, Eq. (S71) will return an answer for $\Delta \theta$ that lies in the range 0 to $\pi$. In this approach, then, we will always be choosing $\theta_{P}$ in the range $\theta_{L}$ to $\theta_{L}+\pi$, so the phase delay in the upper guide will always be chosen equal to or larger than that in the lower guide.
If instead we consider an MZI block in which we are routing all the power to the "bottom" optical output, so

$$
\left[\begin{array}{l}
a_{T}  \tag{S72}\\
a_{L}
\end{array}\right]=\mathrm{M}^{\dagger}\left[\begin{array}{c}
0 \\
a_{B}
\end{array}\right]
$$

then

$$
\left[\begin{array}{l}
a_{T}  \tag{S73}\\
a_{L}
\end{array}\right]=a_{B} \exp \left(-i \phi_{\text {Tot }}\right)\left[\begin{array}{l}
\exp \left(-i \frac{\Delta \phi}{2}\right) \cos \left(\frac{\Delta \theta}{2}\right) \\
-\exp \left(i \frac{\Delta \phi}{2}\right) \sin \left(\frac{\Delta \theta}{2}\right)
\end{array}\right]
$$

So, now

$$
\begin{align*}
\frac{a_{T}}{a_{L}} & =\frac{\left|a_{T}\right|}{\left|a_{L}\right|} \exp \left(i\left[\psi_{T}-\psi_{L}\right]\right)=-\exp (-i \Delta \phi) \cot \left(\frac{\Delta \theta}{2}\right)  \tag{S74}\\
& =\exp (-i[\Delta \phi \pm \pi]) \cot \left(\frac{\Delta \theta}{2}\right)
\end{align*}
$$

So we should set

$$
\begin{align*}
& \Delta \phi=\psi_{L}-\psi_{T} \pm \pi  \tag{S75}\\
& \Delta \theta=2 \operatorname{arccot}\left(\frac{\left|a_{T}\right|}{\left|a_{L}\right|}\right) \tag{S76}
\end{align*}
$$

Note here that we will choose the + or $-\operatorname{sign}$ in Eq. (S75) as needed in practice to keep $\Delta \phi$ within whatever $2 \pi$ range of phase delays we choose for it (e.g., 0 to $2 \pi$ or possibly $-\pi$ to $\pi$ ). In this approach, again because $\left|a_{T}\right|$ and $\left|a_{L}\right|$ are necessarily positive, Eq. (S76) will result in $\Delta \theta$ in the range 0 to $\pi$, and so the phase delay in the upper guide will always be chosen equal to or larger than that in the lower guide. An alternative approach for this case of routing all the power to the "Bottom" output is to make a mirror image, reflecting in a horizontal plane, of the MZI configuration used for the "Right" output case. Then we end up putting the larger phase delay in the lower MZI arm (so $\Delta \theta$ is in the range 0 to $-\pi$ ) and we avoid the additional $\pm \pi$ of Eq. (S75).

## Settings for the entire mesh

Now that we have deduced how a given MZI must have been set so that it would have routed any particular pair of (forward) input complex amplitudes to one or other output, we can proceed to calculate the settings for the entire mesh to allow us to generate an arbitrary vector of (backward) amplitudes.

We start, then, by choosing the desired vector $|d\rangle$ to be generated as backward amplitudes from the "input" waveguides, and we calculate the vector $|c\rangle=(|d\rangle)^{*}$. We presume there are $Q$ columns in the mesh, numbered from the left-most column as column 1 as in Fig. 1 in the main text. Each column will have a corresponding vector $\left|c^{(q)}\right\rangle$ of (mathematical) "forwards" amplitudes. So now the algorithm is as follows.

Use $|c\rangle$ as the column input vector $\left|c^{(1)}\right\rangle \equiv|c\rangle$ for the first (i.e., left-most) column

For each column $q$ (from 1 to $Q$ )
For each block in the column
Using the appropriate elements of $\left|c^{(q)}\right\rangle$ to give the "top"
( $a_{T}$ ) and "left" ( $a_{L}$ ) amplitudes for each block in the column
calculate the settings $\Delta \phi$ and $\Delta \theta$, from Eqs. (S70) and (S71) if the block optical output is the "right" port, or from Eqs. (S75) and (S76) if the block optical output is the "bottom" port, and physically apply those settings to the block.
Using the resulting matrix $M$ for the block and the block's known hypothetical "forward" input amplitudes $a_{T}$ and $a_{L}$
calculate the (complex) amplitude ( $a_{R}$ or $a_{B}$ as appropriate) in the optical output port using Eq. (6) in the main text.
Use these amplitudes to construct the corresponding vector $\left|c^{(q+1)}\right\rangle$ of optical output amplitudes from the column. (For a binary tree mesh, the vector $\left|c^{(q+1)}\right\rangle$ will have half as many elements as the vector $\left|c^{(q)}\right\rangle$, and for the diagonal line mesh it will have one fewer element.)
Next block

## Next column

Once we have run this algorithm and applied all the resulting calculated settings to the mesh elements, the mesh is set so that shining light backwards into the "output" port of the mesh will lead to vector $|d\rangle$ of complex (relative) amplitudes and phases emerging backwards from the mesh "input" ports.

## S7-Calibration

Here we give detailed expressions and algorithms for performing the $\Delta \theta$ and $\Delta \phi$ calibrations for the MZIs in the mesh, supporting the summary discussion in Section 6 of the main text. The $\Delta \phi$ calibration also takes care of "calibrating out" any differing fixed phase delays on the different paths inside the mesh as well as the fixed overall phase behavior of any "front-end" optics.

## $\Delta \theta$ calibration

## Forwards and backwards approaches

$\Delta \theta$ is the parameter that controls the "split ratio" of the MZI. For this calibration, we need an overall approach that allows us to arrange for power input in only one port of the MZI during its individual $\Delta \theta$ calibration. There are at least two ways that we can arrange that - "forward" calibration or "backward" calibration.

In forward calibration, we could arrange to illuminate only one input waveguide in the mesh at a time. That obviously allows us to put input power into only one port of each MZI in the input column in the binary tree mesh, and into each separate MZI in entire mesh for the diagonal line mesh. For successive columns of the binary tree, it will automatically be the case that, with only one such input power in the input column, any given MZI in a subsequent column can only have power in at most one input; so, with an appropriately chosen input in the first column, it is straightforward to arrange for power in only one input for an MZI in any other column.
In backwards calibration, for example of the binary tree mesh, we shine power backwards into the output port, so we only need one simple optical input power for this part of the calibration. We then calibrate the MZIs backwards. In this case, we need to be able to monitor the output power emerging backwards from the input ports. That could be arranged with "sampling" detectors for measuring "backwards" power in those "input" ports, or by observing the backwards output power from each such "input" port on a camera. Having calibrated the single MZI in the rightmost column based on detected power backwards at the "inputs", we can set that MZI to route power to a specific input of the MZI in a preceding column, and proceed accordingly backwards through the whole mesh. We can proceed similarly for the diagonal line with power backwards into the output. For the diagonal line mesh, because it is essentially symmetric "front" to "back", we can also run a scheme similar to the "backwards" calibration approach but in a forwards direction using instead a single beam in the "lowest" input (e.g., waveguide 8 in Fig. 1 in the main text). (This kind of calibration process for a diagonal line mesh is also discussed in [12], where the architecture is described as an "optical setup machine" and is used to provide input vectors for configuring some other mesh.) Incidentally, using this "forwards" calibration approach in a diagonal line mesh with several successive such self-configuring "diagonal" layers allows the $\Delta \theta$ calibration for the whole mesh to be performed using this one "lowest" input beam. For other meshes with multiple self-configuring layers, in general we will need different backwards beams to calibrate different layers.
Whether backwards or forwards calibration is better depends on whether it is practically easier to control input power separate to each mesh input or to monitor backwards power at each mesh input.

## Calibrating $\Delta \theta$ for a specific MZI

For an MZI as in Fig. 3 in the main text, we presume, then, that we send an optical power input into just one input port (so, "Top" or "Left"), and that we can monitor the power in one output port (so, "Right" or "Bottom"). We have two different situations in a binary tree mesh as in Fig. 1 in the main text. In some MZIs there, such as K11, K13, and K21, the detector is on the "Right" output of the MZI (in the notation of Fig. 3 in the main text), and in others, such as K12, K14, K22, and K31, the detector is on the "Bottom" output. In the way we have chosen to draw the diagonal line architecture, with the diagonal line running from bottom-left to top-right, for all the blocks K1 to K7, the detector is on the "Bottom" output; we could also choose to draw the diagonal line architecture as going from top-left to bottom right, in which case all the detectors would be on the "Right" outputs of the blocks.
We also presume we know the sign of the phase delay induced by the drive. For example, in a silicon waveguide in which phase delay is introduced by heating, the phase delay increases with increasing voltage, current or power drive because the thermo-optic coefficient (rate of change of refractive index with temperature) is
positive when operating at infrared wavelengths where silicon is nominally transparent.
For the sake of definiteness for the moment, we presume we use the "Top" port for the input and we analyze first the case where the output power monitoring detector is on the "Right" port.
In such a case, then, for input power $P_{T}$ in the "Top" input, taking the power as the modulus squared of the amplitude (in appropriate units), the power at the "Right" output is, from Eq. (6) in the main text

$$
\begin{equation*}
P_{R}=P_{T}\left|M_{11}\right|^{2} \tag{S77}
\end{equation*}
$$

where $M_{11}$ is the top-left (i.e., first row, first column) element of the matrix $M$.
For 50:50 beamsplitters, from Eq. (9) in the main text

$$
\begin{equation*}
\left|M_{11}\right|^{2}=\sin ^{2}\left(\frac{\Delta \theta}{2}\right)=\frac{1}{2}[1-\cos \Delta \theta] \tag{S78}
\end{equation*}
$$

More generally, even if the beamsplitters do not have a $50: 50$ split ratio, $\left|M_{11}\right|^{2}$ still has the general form (Eq. (S8), Section S2)

$$
\left|M_{11}\right|^{2}=\frac{P_{R}}{P_{T}}=a-b \cos \Delta \theta
$$

where the positive numbers $a$ and $b$ are given in Section S2 in Eqs. (S9) and (S10), respectively. The expression $a-b \cos (\Delta \theta)$ always lies between 0 and 1, and Eq. (S8) shows too that even for arbitrary beamsplitter ratios (i.e., ones that are not necessarily " $50: 50$ "), this quantity is minimum at $\Delta \theta=0$ and maximum at $\Delta \theta=\pi$.
In practice beamsplitters will never be perfectly 50:50, which can mean the output power may well never get exactly to zero, no matter what phase shifter settings are chosen. As a result, it is better to use Eq. (S8) than Eq. (S78) as the basis for calibrating $\Delta \theta$ because Eq. (S8) will give a much better calibration especially near to whatever is the actual minimum output power.
So, using Eqs. (S77) and (S8)

$$
\begin{equation*}
\cos \Delta \theta=\frac{1}{b}\left(a-\frac{P_{R}}{P_{T}}\right) \tag{S79}
\end{equation*}
$$

Now, from Eq. (S8), the maximum and minimum possible values of $P_{R}$ for a given input power $P_{T}$ are, respectively

$$
\begin{align*}
& P_{R \max }=(a+b) P_{T}  \tag{S80}\\
& \quad P_{R \min }=(a-b) P_{T} \tag{S81}
\end{align*}
$$

Using Eqs. (S80) and (S81) to construct substitutes for $a$ and $b$ in Eq. (S79) leads to

$$
\begin{equation*}
\cos \Delta \theta=\frac{P_{R \max }+P_{R \min }-2 P_{R}}{P_{R \max }-P_{R \min }} \tag{S82}
\end{equation*}
$$

So to calibrate the relative phase shift $\Delta \theta$, with a given fixed input power $P_{T}$ only in the "Top" input, we should adjust the corresponding phase shift drive value $v_{\theta}$ over a full range to find and measure the maximum and minimum output powers $P_{\text {Rmax }}$ and $P_{\text {Rmin }}$. Then, for each of a desired set of drive values $v_{\theta}$, we would measure the output power $P_{R}\left(v_{\theta}\right)$ and deduce the corresponding $\Delta \theta\left(v_{\theta}\right)$ for each such value using

$$
\begin{equation*}
\Delta \theta\left(v_{\theta}\right)=\arccos \left(\frac{P_{R \max }+P_{R \min }-2 P_{R}\left(v_{\theta}\right)}{P_{R \max }-P_{R \min }}\right) \tag{S83}
\end{equation*}
$$

thereby establishing a "look-up table" of pairs of drive and result values. (Above, we have called this kind of calibration approach "cosinusoidal proportional calibration".) Possibly we would establish $\Delta \theta\left(v_{\theta}\right)$ as a smooth continuous function by an appropriate interpolation formula on this look-up table. We could then establish the inverse function $v_{\theta}(\Delta \theta)$ mathematically from $\Delta \theta\left(v_{\theta}\right)$, possibly also using interpolation to establish a corresponding smooth inverse function.
Note that the standard defined range of the inverse cosine (i.e., arccos), as used in Eq. (S83), is 0 to $\pi$, which is a suitable defined range for our purposes, and is sufficient to move from a "cross" state at $\Delta \theta=0$ to a "bar" state at $\Delta \theta=\pi$.
Incidentally, because such a calibration approach uses only ratios of measured powers, it does not require that we calibrate the absolute power sensitivity of the detector; we only require that the detector gives an output that is linearly proportional to the input power and that it gives a "zero" output signal for zero input power (or that we subtract off any apparent output signal for zero actual input power). For the case with the detector on the "Bottom" output, we have, analogously to Eq. (S77), for the "Bottom" power $P_{B}$

$$
\begin{equation*}
P_{B}=P_{T}\left|M_{21}\right|^{2} \tag{S84}
\end{equation*}
$$

with the general form (Eq. (S11), Section S2)

$$
\left|M_{21}\right|^{2}=1-a+2 \cos \Delta \theta
$$

and then, analogously to Eq. (S82)

$$
\begin{equation*}
\cos \Delta \theta=\frac{2 P_{B}-P_{B \min }-P_{B \max }}{P_{B \max }-P_{B \min }} \tag{S85}
\end{equation*}
$$

We can then proceed analogously to the "Right" output case to calibrate $\Delta \theta\left(v_{\theta}\right)$.
The $\Delta \theta$ gives the same results if we perform the calibration backwards, with input powers on the right side of the MZI and outputs on the left. Then we just interchange "Top" for "Right" and "Bottom" for "Left" (and vice versa) in the above discussion.

## $\Delta \phi$ calibration

## Overall algorithm

The $\Delta \phi$ calibration should be done after the $\Delta \theta$ calibration because, when calibrating $\Delta \phi$ in the scheme proposed here, we need to set a given MZI in the $\Delta \theta=\pi / 4$ state (which means the entire MZI is effectively behaving as a $50: 50$ splitter). This $\Delta \phi$ calibration is also only correct if the MZI beamsplitters are themselves quite accurately 50:50 splitters; otherwise there will generally be a phase error in the estimate of the condition for $\Delta \phi=0$.
As discussed in Section 6 of the main text, in calibrating phase we need to choose a phase reference, and that has to be optically defined by us. There is no intrinsic meaning to saying that light at two different points in space (such as at the "entrance" to two different waveguides) is "in phase"; we have to choose what we mean by that. So, we shine in some phase reference beam over all the inputs. That beam could be just a plane wave over the waveguide inputs or, more generally, could be some plane wave or
distant point source illuminating whatever is the "front-end" optics of the entire system, or even some other phase front, such as a spherically expanding or focusing beam.
No matter what we use as our phase reference, as a result of shining in this phase reference beam, some power arrives at all the input waveguides, and we use that input field to calibrate $\Delta \phi$ for all the MZIs. Importantly, in the scheme we describe here, the incident powers do not have to be the same on the different waveguides.
This $\Delta \phi$ calibration is done in the "forward" direction. It is simplest if we have drop port detectors on each MZI, but if not, we should set all subsequent MZIs to route the power from the output port of the MZI of interest to an output detector for this calibration.
The phase calibration process is as follows, all with the phase reference shining into all inputs. We start with the MZI(s) in the first, "left-most" column. Such an MZI has direct input of the phase reference, without passing through any other MZIs. (Incidentally, this "column by column" process works for both the binary tree and diagonal line meshes.)
(i) We set the MZIs in this column to have $\Delta \theta=\pi / 2$
(ii) Then we calibrate each MZI in this column using a "co-sinusoidal proportional calibration", similar to that used for the $\Delta \theta$ calibration above. (Explicit algebra is given below.) In this case, calibrating between the measured minimum and maximum output powers (instead of presuming the minimum power is zero) allows us to have unequal input powers and still perform the calibration. A simple such co-sinusoidal proportional calibration will first give us a calibration of $\Delta \phi$ over a range from 0 to $\pi$. We then need to extend that to a calibration over 0 to $2 \pi$ (or alternatively $-\pi$ to $+\pi$ if we are driving a phase shifter pair differentially), by running the calibration over a second co-sinusoidal "cycle". In this way, we will establish appropriate calibration functions $\Delta \phi\left(v_{\phi}\right)$ and $v_{\phi}(\Delta \phi)$ (similarly to the $\Delta \theta\left(v_{\theta}\right)$ and $v_{\theta}(\Delta \theta)$ calibration functions) for each MZI.
(iii) We repeat this for all MZIs in a column
(iv) We then set all of these MZIs in the column to $\Delta \phi=0$ (still retaining the $\Delta \theta=\pi / 4$ setting).
We then repeat this process for the next column of MZIs, and so on for successive columns.
In this way, we calibrate $\Delta \phi$ for every MZI in the mesh, and all relative to our defined incident phase reference beam.
Now we can formally derive the algebra for the $\Delta \phi$ calibration of a given MZI.

## Calibrating $\Delta \phi$ for an MZI

We presume that, with the phase reference beam shining over all the mesh inputs, we are calibrating an MZI using field amplitudes, $a_{T}$ for the mode in the "Top" single-mode guide input, and $a_{L}$
correspondingly in the "Left" input guide, and we take both of these to be real and positive, consistent with them having the same phase by definition.
An important practical point (as already mentioned) is that, for this calibration, $a_{T}$ and $a_{L}$ do not have to have the same magnitude, so the phase reference beam need not be of uniform intensity over the mesh inputs.
For this calibration, we presume we have already calibrated $\Delta \theta$ for the MZI, and we now specifically set $\Delta \theta=\pi / 2$. Also, to get the calibration correct, we do need to presume that indeed the beamsplitters inside the MZI have an accurate 50:50 split ratio. In general, it would be possible to calibrate $\Delta \phi$ if we had other split
ratios, but to get the $\Delta \phi=0$ point correct, we would need to know the exact split ratios; different split ratios in general "shift" the interference minima and/or maxima away from the true $\Delta \phi=0$ point, as can be verified by a detailed analysis based on the full form of $M$, as given in Section S2. (If we have some doubt about the fabricated split ratios, we could take the approach of [3,11], which allows us to construct effective 50:50 split ratios for beamsplitters in an MZI even with fabricated split ratios that are not $50: 50$.)
Presuming, then, $\Delta \theta=\pi / 2$ and 50:50 beamsplitters, fromEq.(9) in the main text

$$
M_{s}(\Delta \theta)=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2}  \tag{S86}\\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

(which, incidentally, means the MZI is set to function as if it were overall a $50: 50$ beamsplitter). So, with Eqs. (6) - (9) in the main text, for the amplitudes $a_{R}$ and $a_{B}$ in the "Right" and "Bottom" outputs, respectively,

$$
\begin{aligned}
{\left[\begin{array}{l}
a_{R} \\
a_{B}
\end{array}\right] } & =\exp \left(i \phi_{\text {Tot }}\right)\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{c}
\exp \left(i \frac{\Delta \phi}{2}\right) a_{T} \\
\exp \left(-i \frac{\Delta \phi}{2}\right) a_{L}
\end{array}\right] \\
& =\frac{1}{\sqrt{2}} \exp \left(i \phi_{\text {Tot }}\right)\left[\begin{array}{l}
\exp \left(i \frac{\Delta \phi}{2}\right) a_{T}+\exp \left(-i \frac{\Delta \phi}{2}\right) a_{L} \\
\exp \left(i \frac{\Delta \phi}{2}\right) a_{T}-\exp \left(-i \frac{\Delta \phi}{2}\right) a_{L}
\end{array}\right]
\end{aligned}
$$

(S87)
Using the fact that $a_{T}$ and $a_{L}$ are both real, the incident powers are $P_{T} \equiv\left|a_{T}\right|^{2}=a_{T}^{2}$ and $P_{L} \equiv\left|a_{L}\right|^{2}=a_{L}^{2}$ at the "Top" and "Left" ports, respectively. So, for the powers $P_{R} \equiv\left|a_{R}\right|^{2}$ and $P_{B} \equiv\left|a_{B}\right|^{2}$ at the "Right" and "Bottom" ports respectively, using the fact that $a_{T}$ and $a_{L}$ are both also positive, we have

$$
\begin{align*}
P_{R} & =\frac{1}{2}\left[P_{T}+P_{L}+\frac{\sqrt{P_{T} P_{L}}}{2}(\exp (i \Delta \phi)+\exp (-i \Delta \phi))\right]  \tag{S88}\\
& =\frac{P_{T}+P_{L}}{2}+\sqrt{P_{T} P_{L}} \cos (\Delta \phi)
\end{align*}
$$

and similarly

$$
\begin{align*}
P_{B} & =\frac{1}{2}\left[P_{T}+P_{L}+\frac{\sqrt{P_{T} P_{L}}}{2}(-\exp (i \Delta \phi)-\exp (-i \Delta \phi))\right]  \tag{S89}\\
& =\frac{P_{T}+P_{L}}{2}-\sqrt{P_{T} P_{L}} \cos (\Delta \phi)
\end{align*}
$$

Now we can take a "co-sinusoidal proportional calibration" approach, similar to that used for calibrating $\Delta \theta$ above, in which we start out by scanning $\Delta \phi$ over a full range to establish and measure minimum and maximum powers first. Then, with some set of drives (e.g., voltages) $v_{\phi}$ for the $\Delta \phi$ phase shift, we calibrate the corresponding values $\Delta \phi\left(v_{\phi}\right)$ from the resulting cosinusoidal variation of the output power in one or other output port, establishing a "look-up table" of calibrated values.

Explicitly, rewriting expressions Eq. (S88) and (S89) in terms of the corresponding measured minimum and maximum powers $P_{\text {Rmin }}$,
$P_{\text {Bmin }}, P_{\text {Rmax }}$, and $P_{\text {Bmax }}$, with

$$
\begin{align*}
& P_{R \min }=P_{B \min }=\frac{P_{T}+P_{L}}{2}-\sqrt{P_{T} P_{L}}  \tag{S90}\\
& P_{R \max }=P_{B \max }=\frac{P_{T}+P_{L}}{2}+\sqrt{P_{T} P_{L}} \tag{S91}
\end{align*}
$$

we can rearrange Eqs. (S88) and (S89) respectively to give, based on measuring $P_{R}$ (so, with a detector in the "Right" port), we deduce the corresponding value of $\Delta \phi$ from

$$
\begin{equation*}
\Delta \phi=\arccos \left(\frac{2 P_{R}-P_{R \max }-P_{R \min }}{P_{R \max }-P_{R \text { min }}}\right) \tag{S92}
\end{equation*}
$$

or, based on measuring $P_{B}$ (so with a detector in the "Bottom" port),

$$
\begin{equation*}
\Delta \phi=\arccos \left(\frac{P_{B \max }+P_{B \min }-2 P_{B}}{P_{B \max }-P_{B \min }}\right) \tag{S93}
\end{equation*}
$$

These expressions Eqs. (S92) and (S93) will always return results in the range from 0 to $\pi$. We can use them directly, therefore, to calibrate $\Delta \phi\left(v_{\phi}\right)$ in this range. One subtlety, however, is that we will want a total range of $2 \pi$ for $\Delta \phi$ to make the MZI universal for our purposes. If we have phase shifters on both input arms, i.e., $\phi_{T}$ and $\phi_{L}$, and we drive them differentially, we might want this range to go overall from $-\pi$ to $+\pi$. In that case, we would calibrate with Eqs. (S92) and (S93) for "positive" differential drive, and with -1 times these expressions for "negative" differential drive. If we are running only with one phase shifter, and presuming that any phase shifters only give increasing phase delays with increasing drive, then for a phase shifter on only the "Top" arm (so $\phi_{T}$ ), we would use these expressions for the range 0 to $\pi$, and $2 \pi$ minus these expressions as we continued up to a total of $2 \pi$ of phase shift. If we only had a phase shifter on the "Left" arm (so $\phi_{L}$ ), then we would take the same approach, but all the phase shifts would be negative, so the negative of the approach for the " $\phi_{T}$-only" case, and we would run over a range of $-2 \pi$ to zero for $\Delta \phi$.
So, we can summarize this $\Delta \phi$ calibration process:

1) Having already calibrated the "split ratio" for an MZI, we now set it for $50: 50$ split ratio (i.e., we set $\Delta \theta=\pi / 2$ ).
2) We shine a phase reference beam into the two ("top" and "left") inputs, which defines what we mean by $\Delta \phi=0$
3) Using the monitor detector on the "right" R (or "bottom" B) port as appropriate to the MZI, we scan $\Delta \phi$ over at least a range of $\pi$ to find maximum and minimum powers $P_{\text {Rmax }}$ and $P_{\text {Rmin }}$ (or $P_{B \max }$ and $P_{\text {Bmin }}$ ).
4) Now as a function of drive $v_{\phi}$, for some set of suitably closely spaced values of $v_{\phi}$, we measure $P_{R}$ (or $P_{B}$ ), allowing us to calculate $\rho_{R \phi}\left(v_{\phi}\right)$ (or $\rho_{B \phi}\left(v_{\phi}\right)$ ), and hence deduce $\Delta \phi\left(v_{\phi}\right)$ using Eq. (S92) (or Eq. (S93)), and extending over a range as discussed above.
5) By interpolation on the resulting "look-up table", we therefore can establish a suitable smooth function, and also invert it to establish a corresponding smooth function.

## References

1. D. A. B. Miller, "Self-aligning universal beam coupler," Opt. Express 21, 6360-6370 (2013). doi: 10.1364/OE.21.006360
2. D. A. B. Miller, "Self-configuring universal linear optical component," Photon. Res. 1, 1-15 (2013). doi: 10.1364/PRJ.1.000001
3. D. A. B. Miller, "Perfect optics with imperfect components," Optica 2, 747-750 (2015). doi: 10.1364/OPTICA.2.000747
4. S. Pai, I. A. D. Williamson, T. W. Hughes, M. Minkov, O. Solgaard, S. Fan, and D. A. B. Miller, "Parallel programming of an arbitrary feedforward photonic network," in IEEE Journal of Selected Topics in Quantum Electronics, doi: 10.1109/JSTQE.2020.2997849
5. D. A. B. Miller, "Phase shifting by mechanical movement," D. A. B. Miller, US Patent \#10,338,319, (July 2, 2019)
6. D. A. B. Miller, "Establishing optimal wave communication channels automatically," J. Lightwave Technol. 31, 3987 - 3994 (2013). doi: 10.1109/JLT. 2013.2278809
7. A. Annoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A. B. Miller, A. Melloni, and F. Morichetti, "Unscrambling light automatically undoing strong mixing between modes," Light Science \& Applications 6, e17110 (2017). doi: 10.1038/Isa.2017.110
8. A. Ribeiro, A. Ruocco, L. Vanacker, and W. Bogaerts, "Demonstration of a $4 \times 4$-port universal linear circuit," Optica 3, 1348-1357 (2016). doi: 10.1364/OPTICA.3.001348
9. D. A. B. Miller, "Reconfigurable add-drop multiplexer for spatial modes," Opt. Express 21, 20220-20229 (2013). doi: 10.1364/OE.21.020220
10. D. A. B. Miller, "Perfect optics with imperfect components," Optica 2, 747-750 (2015). doi: 10.1364/OPTICA.2.000747
11. C. M. Wilkes, X. Qiang, J. Wang, R. Santagati, S. Paesani, X. Zhou, D. A. B. Miller, G. D. Marshall, M. G. Thompson, and J. L. O'Brien, " 60 dB high-extinction auto-configured Mach-Zehnder interferometer," Opt. Lett. 41, 5318-5321 (2016). doi: 10.1364/OL.41.005318
12. D. A. B. Miller, "Setting up meshes of interferometers - reversed local light interference method," Opt. Express 25, 29233-29248 (2017). doi: 10.1364/OE.25.029233
13. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walsmley, "Optimal design for universal multiport interferometers," Optica 3, 1460-1465 (2016). doi: 10.1364/OPTICA.3.001460
14. D. A. B. Miller Quantum Mechanics for Scientists and Engineers (Cambridge, 2008)
15. R. Loudon "Quantum Theory of Light" Third Edition (Oxford, 2000) pp. 88-91
16. W.-P. Huang, "Coupled-mode theory for optical waveguides: an overview," J. Opt. Soc. Am. A 11, 963-983 (1994). doi: 10.1364/JOSAA.11.000963
