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Working with finite numbers of modes to describe, generate, and detect optical fields can be both mathematically eco-
nomical and physically useful. Such a modal basis can map directly to various applications in communications, sensing,
and processing. But, we need a way to generate and analyze such fields, including measurement and control of both the
relative amplitudes and phases of the modal components. Ideally such an analysis scheme would operate directly on the
field, without needing a separate, mutually coherent reference beam. Here, we show first how to measure all those relative
amplitudes and phases automatically and simultaneously. The method repurposes a self-configuring network of 2 × 2
blocks, such as integrated Mach–Zehnder interferometers, that can automatically align itself to the optical field by a
sequence of simple one-parameter power minimizations when network elements, such as phase shifters, are adjusted.
The optical field is then directly deduced from the resulting settings of those elements. We show how the entire network
can be calibrated for such measurements, automatically and with just two light beams. Then, using the same calibration
and running the mesh backwards, we can also controllably generate an arbitrary multimode field. Explicit algorithms
and formulas are given for operating this system. © 2020 Optical Society of America under the terms of the OSA Open Access
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1. INTRODUCTION

Increasingly in optics, we exploit complex multimode light fields
[1]—for example, in communications [2], classical and quantum
linear optical information processing [3–5], and in various oppor-
tunities in adaptive systems for sensing and communications [6].
To extract complete optical information from multimode fields,
we need to analyze the relative amplitude and phase of the different
modes. Similarly, we want to be able to generate arbitrary multi-
mode field inputs for linear computation and communication or
for full control of an optical stimulus in sensing. Schemes based
on single spatial light modulators (SLMs) have shown impressive
performance in sequentially analyzing such multimode fields
(e.g., [7,8]); a single SLM can also generate an arbitrary field,
though generally with some inherent power loss. Other multiplane
schemes based on several SLMs or fixed diffractive elements can
simultaneously separate components of different specific modes
from large multimode fields (e.g., [9,10]).

Though such separations can give the relative magnitudes of
each mode, a full analysis also requires their relative phases. With
some further measurements and processing in those schemes,
full-field interferometry can analyze the full complex field [7]. To
find the relative phase of all the components of a field, either as
modes or pixels, we could interfere simultaneously with a known
(and mutually coherent) reference field at a set of different phase
shifts (see, e.g., [7]). We may not have such a mutually coherent
reference field, however, when simply observing some incoming

field. One solution in principle could use a cascade of interferom-
eters that progressively establish the relative phases between all of
the components (modes or pixels) of a field. Cascading multiple
interferometers would have been quite challenging historically.
Recently, however, complex interferometric networks have become
possible, based on integrated arrays or meshes of waveguide
Mach–Zehnder interferometers (MZIs), and, equally importantly,
algorithms have emerged to control and configure such complex
interferometric systems automatically [11–15]. Such meshes also
allow efficient and adaptive separation and manipulation of multi-
ple modes. Here, we exploit one such mesh approach, originally
proposed to allow self-configuring automatic coupling of complex
beams [13]. Because this kind of mesh gives exactly the kind of
cascade of interferometers that we need, adding novel algorithms,
we can repurpose it for automatically measuring or generating
both the relative amplitudes and phases of such multimode fields,
potentially even tracking changing inputs in real time [11,12].
Furthermore, we show how such an interferometric mesh can be
calibrated automatically for these purposes, using just two simple
light beams. Hence, we now have a simple progressive method for
measuring full amplitudes and phases of an arbitrary multimode
light field based only on that field itself.

The key idea of the measuring approach is that, once such a
mesh has self-configured to align itself to an input beam or field
[13,14], all of the information about the relative amplitudes and
phases of the input beam is contained in the resulting settings—
e.g., the phase shifts and/or coupling ratios of the interferometers.
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Essentially, in this self-configuration, we have performed all of the
relative interferometric measurements across all the input modes.
The relative amplitudes and phases of the input field can then be
deduced from those settings by simple arithmetic. Furthermore, by
running such a mesh system backwards using a single source light
beam injected “backwards” into the “output”, any such multimode
field can instead be controllably generated, emerging from the
original “inputs.”

The mesh itself operates on the field in its multiple different
input (single-mode) waveguides. Such meshes could operate
directly on a “free-space” optical input field by sampling it with
grating couplers [6,11,13–15]; alternatively, they could exploit
multiplane [9,10] or other mode separation techniques like a
photonic lantern [16] as a fixed “front-end” preprocessor that
transforms from large overlapping continuous spatial modes to
the multiple discrete waveguide mesh inputs, allowing use of the
technique with an arbitrary choice of modal basis.

Many sophisticated mesh networks of interferometers have
been demonstrated that can work efficiently with complex
multimode optical fields to provide linear operations [3–5,
11,15,17–29]. Several architectures offer self-configuration
[6,11,13–15,30–33], with the simplest being a self-aligning beam
coupler architecture [13], which is at the core of this paper; this
can take an arbitrary set of (mutually coherent) inputs in a set of
waveguides and deliver all the power to just one output waveguide.
This self-configuration is based on a progressive set of simple
one-parameter feedback loops to set the values of the various phase
shifters and/or coupling elements in the mesh based on detected
powers and without any calculations. In the automatic calibra-
tion process, we can also “calibrate out” the phase behavior of
any “front-end” optics used to interface the mesh to the external
optical world. A key point in this approach is that both the required
calibration and the self-configuration and measurement could be
completely automated using simple progressive algorithms and
control circuits followed by elementary arithmetic calculations.

Though any optical component may have some losses due
to imperfections, and any such waveguide systems are likely to
have input coupling losses, otherwise these mesh analysis and
generation schemes are perfectly efficient optically; there are no
other power losses in the system, even for arbitrary (mutually
coherent) inputs and/or outputs in the single-mode input or out-
put waveguides in the meshes. Recent analysis suggests that such
self-alignment can be accomplished in microseconds or shorter
even when working with optical input powers of only ∼10 µW
per input [12] (given sufficiently fast adjustable phase shifters
and/or couplers in the mesh). Hence, such an approach could be
convenient, optically efficient, and fast.

In this paper, we discuss the approach of using self-configuring
architectures for analyzing multimode beams in Section 2. In
Section 3, we summarize the necessary general description of an
MZI block. Section 4 shows how to deduce the input field from
the self-configured mesh settings. Section 5 shows how to use the
mesh as an arbitrary multimode generator. Calibration processes
are summarized in Section 6. We draw conclusions in Section 7.
Supporting detail is given in Supplement 1.

2. AUTOMATIC ANALYSIS OF A MULTIMODE
BEAM

A. Self-Configuring Architectures

Two basic forms of self-configuring architectures of interferom-
eters allow the self-aligning beam coupler [13]—those based
on a “diagonal line” and those using a “binary tree” (see Fig. 1).
Hybrids of these are also possible. (For completeness, the topology
of such architectures is discussed in Supplement 1 Section S1,
together with some other alternative architectures.) Each of the
“diagonal line” and “binary tree” mesh architectures as shown
here can be a “layer” of a general self-configuring architecture
(Supplement 1 Section S1). Though we work here with only one
such layer, multiple such layers can be cascaded for more complex
functions, including arbitrary linear processors [14]. Each such
layer consists of multiple “columns” of MZIs [34]. For the diagonal
line, there is only one MZI per column, though in the binary tree
there may be several in a given column.

Fig. 1. Concept and architectures of a self-configuring mesh layer with
optical inputs. (a) Example optical input, here with eight waveguides
driven by the outputs from an example square array of grating couplers
illuminated by some input light field. (b) Binary tree mesh, which we
can self-configure to give all the resulting input power in the one output
waveguide. Parameters1θ and1φ control the “split ratio” and one other
phase shift in each 2× 2 block K , respectively. Each such block can be
implemented as an MZI. Elements D are detectors at the “drop ports”
of these blocks or MZIs. (c) Alternative, diagonal line mesh architecture.
The successive “columns” of MZIs are shown for both architectures.
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For a “stand-alone” analyzer/generator, the binary tree may be
preferable because (1) it allows some parallelization of the analy-
sis process, (2) it is shorter—for N input or output waveguides,
it requires only ∼log2 N “columns” rather than the ∼N − 1
“columns” of a diagonal line, and (3) all paths from the inputs to
the output go through the same number of MZI and, hence, can
have the same background loss. (Generally, background loss does
not affect the functionality of the architectures and meshes here as
long as it is equal on all paths; then, it just results in some uniform
overall loss in the system. As a result, we will analyze our systems
here as if they are lossless, with the understanding that there may be
some such overall loss factor). The “diagonal line” approach may
be preferable if we want to cascade multiple self-configuring layers
(it can then lead to shorter architectures, without any crossing
waveguides) and has the additional feature of being essentially
symmetric from “front” to “back”.

For mutually coherent light at the inputs, these architectures
can self-configure to direct all the input power in the various input
waveguides to the one output waveguide. This self-configuration
can be achieved using a succession of single-parameter power min-
imizations at each of the “drop-port” detectors D11, D12, . . . or
D1, D2, . . .. The self-configuring algorithms can be remarkably
simple [13,14,31,33]. With the light field of interest shining on the
optical inputs, the relative phase at the input to an MZI is adjusted
first to minimize the “drop-port” power, then the “split ratio” of
the MZI is adjusted to take that power to zero, and the MZIs are set
this way in sequence starting with the MZI(s) in Column 1, pro-
ceeding through those in Column 2 and so on [13]. Multiple MZIs
in a given column (as in the binary tree) can all be configured at the
same time, in parallel (see [34] and Supplement 1 Section S1). It is
also possible to self-configure the mesh based on power maximiza-
tion just using a detector at the output (e.g., D31 or D7), though
without the simple parallelization of the process in that case [13].

B. Analysis Algorithm and Modal Basis

The basic algorithm for using such a self-configuring layer to
analyze a multimode beam is shown in Fig. 2(a). Once we have
calibrated the mesh (see Section 6), we can shine in the optical
field of interest, self-configure the mesh to route all the power to
the output, and then deduce relative amplitudes and phases of the
different parts or modes of the original beam from the resulting
settings of the mesh. (The corresponding process for generating a

Fig. 2. Algorithm outlines (a) for automatic analysis of a multimode
input field, (b) generating a desired “backwards” multimode output field.

desired output “backwards” from the inputs is shown in Fig. 2(b)
and is discussed in Section 5).

Used directly with grating couplers as in Fig. 1(a), the “native”
modes of this system corresponding to separate beams on the dif-
ferent grating couplers, each with the phase corresponding to the
phase of the phase reference beam used in the system calibration
(see Section 6) at the corresponding coupler; the modal analysis is
done first on this basis.

If instead we use some fixed front-end mode transformer such
as multiplane converters [9,10] or photonic lanterns [16] that
deliver various different external (and likely overlapping) modes
to different waveguide outputs that directly feed the inputs of the
mesh, then those external modes become the effective modal basis
on which this analysis is performed. Since the analyzer here has per-
formed all the necessary physical interferometry, it is also possible
in a simple mathematical calculation on those measured amplitude
and phase values to transform the results after measurement to
some other basis; essentially, we multiply the measured output vec-
tor of (complex) amplitudes by an appropriate unitary matrix UB

to change the modal basis for the measurement. That then means
that the effective modal basis for the measurement is made up from
specific different (and orthogonal) linear combinations (or input
“vectors”) of the input signals; indeed, the rows of the matrix UB

are then just the Hermitian adjoints (i.e., conjugate transpose) of
those orthogonal input vectors. Hence, with this additional simple
mathematical calculation (a matrix multiplication), this approach
can be used to measure on any modal basis that is supported by the
optics.

Now, we need to understand how the settings of an MZI relate
to the input amplitudes and phases. So, we formally analyze the
MZI (Section 3), and then deduce the expressions relating the
settings to these field parameters (Section 4).

3. ANALYSIS OF MACH–ZEHNDER
INTERFEROMETER

Here, we need a full form of the analysis of an MZI. We summarize
this here, with necessary notations and with supporting detail in
Supplement 1 Section S2.

Though only two phase shifters are required to give sufficient
degrees of freedom in an MZI for it to function as a universal
2× 2 block, for a general and flexible notation, we analyze it as
if it has four phase shifters, as in Fig. 3(a). In use, we only need
at least one phase shifter on at least one arm inside the MZI and
any other one of these four phase shifters. We label the four ports
of the MZI analogously to the four ports of a conceptual “cube”

Fig. 3. (a) Schematic of a general waveguide MZI with up to four
phase shifters (colored rectangles) on waveguides (gray lines), with
two 50:50 beamsplitters BS1 and BS2, shown as directional couplers.
(b) Corresponding conceptual BS showing “Top,” “Left,” “Bottom,” and
“Right” surfaces.
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beam-splitter (BS) [Fig. 3(b)], as “Top” (T), “Left” (L), “Right”
(R), and “Bottom” (B), with the notion that light can enter at the
T port and be partially reflected to the R port, as well as partially
transmitted to the B port, and similarly light incident in the L port
will be partially reflected to the B port and partly transmitted to the
R port. We also label the arms inside the interferometer as “Upper”
(P) and “Lower” (W). The 50:50 waveguide BSs, BS1 and BS2,
shown as directional couplers, couple light between the P and W
waveguides to complete the MZI.

We need to define various phase delays, as shown in Fig. 3.
We take φT to be the total phase delay from the “Top” input T,
through the upper waveguide to the left end of the “Upper” branch
phase shifter, marked with θP . Similarly, φL is the total phase
delay lower waveguide from the “Left” input L to the left end of
the “Lower” branch phase shifter marked with θW. θP and θW are
similarly the total phase delays on the upper and lower waveguides,
respectively, from the left ends of these “Upper” and “Lower” phase
shifters, respectively, to the “Right” and “Bottom” output ports,
respectively.

Note, there is necessarily an additional phase shift φBS, for light
passing “through” the BSs from one waveguide to the other. (Our
convention on phase shifts here is that a positive phase shift cor-
responds to a phase delay.) For a lossless BS (whether or not it has
a 50:50 split), this phase shift is necessarily either+π/2 or−π/2
(within arbitrary additive multiples of 2π ); this follows from
power conservation (see Supplement 1 Section S3) and, hence,
mathematical unitarity in a lossless system [14,35]. Whether
the sign is “+” or “−” depends on the specifics of the BS (see
Supplement 1 Section S4). For a directional coupler BS in a “first-
order” design (i.e., with the shortest length for a given coupling
to the “other” guide), this is a phase delay +π/2 (i.e., for a beam
starting in one guide, the beam coupled over into the “other” guide
is delayed by 90◦ compared to the beam remaining in the original
guide). For definiteness now, and because this is the most likely
form of a BS anyway, we choose φBS =+π/2. (Note, incidentally,
that for any such “shortest” directional coupler BS, even if it does
not have a 50:50 BS ratio, this phase shift is still+π/2. Only if we
lengthen the coupler so much that it moves into “second-order”
behavior—coupling “over” and partially “back” again—does this
number change to−π/2 or equivalently+3π/2.)

Though we will be physically controlling phase shifts such as
φT, φL, θP, and/or θW—for example, a common approach is to
control just the φT and θP phase shifters—the description of the
MZI factorizes most simply using other resulting phases. For the
two interferometer arms, we can usefully define the “common
mode”

θav =
θP + θW

2
(1)

and “differential”

1θ = θP − θW (2)

phase shifts. Similarly, for the input arms, we have “common
mode”

φav =
φT + φL

2
(3)

and “differential”

1φ = φT − φL (4)

phase shifts. We can also usefully define an overall phase shift from
these:

φTot = φav + θav +
π

2
(5)

(the inclusion of the additionalπ/2 makes later algebra simpler).
We can use the interference within an MZI to allow it to cal-

ibrate itself, in which case we calibrate these differential phases
1θ and1φ (see Section 6) as a function of drive. We also have to
know how we created these differential phase shifts—for example,
by driving only the φT and θP phase shifters—so we can calculate
the corresponding change in φTot from Eqs. (1), (3), and (5) that is
associated with any chosen setting of1θ and1φ.

With input (complex) amplitudes aT and aL, respectively, for
the propagating modes in the T and L input waveguides, lead-
ing to resulting propagating mode amplitudes aR and aB of the
beams exiting in the R and B output waveguides, as derived in
Supplement 1 Section S2, we can write the relation between inputs
and outputs generally as[

aR

aB

]
=M (φTot, 1θ, 1φ)

[
aT

aL

]
. (6)

Here, we are regarding the 2× 2 matrix M(φTot, 1θ, 1φ) for a
given MZI as a function ofφTot,1θ , and1φ, which are themselves
each functions of some of φT, φL, θP, and/or θW. This choice of
matrix parameters also allows us factorize M as

M(φTot, 1θ, 1φ)= exp (iφTot)Ms (1θ)Mφ (1φ) , (7)

with

Mφ(1φ)=

[
exp

(
i 1φ2

)
0

0 exp
(
−i 1φ2

) ] . (8)

For the simplest (and desired) case of 50:50 BSs, we obtain

Ms (1θ)=

[
sin
(
1θ
2

)
cos

(
1θ
2

)
cos

(
1θ
2

)
− sin

(
1θ
2

) ] . (9)

The full form of Mφ(1φ) for other BS ratios is given in Eq. (S7) in
Supplement 1 Section S2.

For use of the mesh as a generator, we need to run it “backwards”
(i.e., shining light backwards into the R and/or B ports to have
light emerge from the T and/or L ports). Then, by Eq. (S58) of
Supplement 1 Section S5, the resulting matrix B in this direction
is just the transpose of M (i.e., MT ). (We also want this backwards
matrix B when performing the calculations to analyze an input
field.) Given the specific factorization of Eq. (7) and these matrix
symmetries, then the “backwards” matrix is

B(φTot, 1θ, 1φ)=MT
(φTot, 1θ, 1φ)

= exp (iφTot)MT
φ (1φ)MT

s (1θ), (10)

where we note that the order of the matrix product in Eq. (10)
has been inverted compared to that of Eq. (7) as a consequence
of the transpose of the matrix product inverting the product
order. {Matrix Mφ [Eq. (8)] is symmetric, so it is its own trans-
pose, but we keep the transpose notation for similarity with later
Hermitian adjoint algebra. Though Ms [Eq. (9)] is also symmetric
for this ideal 50:50 BS case, in general, it is not [see Eq. (S7) in
Supplement 1 Section S2], so we retain the explicit transpose for it
also.}
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So, with amplitudes bR and bB of backwards waves entering the
R and B ports, respectively, and bT and bL emerging from the T and
L ports, respectively, we have formally[

bT

bL

]
=B(φTot, 1θ, 1φ)

[
bR

bB

]
, (11)

with B as in Eq. (10).

4. DEDUCING THE INPUT VECTOR FROM THE
MACH–ZEHNDER SETTINGS

Suppose, then, that we had shone the input vector |c 〉 =
[ c1 c2 . . . cN ]

T of complex amplitudes into the N input wave-
guides on the L in Fig. 1. (Here and below, we can use the Dirac
notation |c 〉 as a shorthand for such a column vector of complex
amplitudes). Our approach to analyzing the relative amplitudes
and phases of all these input forward amplitudes, Fig. 2(a), involves
having the mesh self-configure so that, for such an input vector, all
of the power appears in the single “Output” waveguide [at the R
output of the MZI in the last column of the self-configuring layer,
as in Figs. 1(b) or 1(c)]. Then, from the settings we now have in
the MZIs, we wish to deduce the input vector |c 〉 that led to these
settings.

One simple way to envisage this calculation of |c 〉 from the
resulting mesh settings is to imagine that, with the mesh set this
way, we now run the mesh backwards, shining (unit amplitude)
light backwards into this Output waveguide. Then, we calculate
the vector |d〉 ≡ [ d1 d2 . . . dN ]

T that would emerge “backwards”
from the input guides. Then, by the phase-conjugating property
of unitary meshes running backwards (Supplement 1 Section S5),
and noting that a backwards-propagating beam in a single-mode
guide is just the phase conjugate of a forward-propagating beam in
that guide, we deduce

|c 〉 ≡
[

c1 c2 . . . cN
]T
=

([
d1 d2 . . . dN

]T
)∗
≡ (|d〉)∗, (12)

completing the analysis of the input beam relative amplitudes
and phases. In other words, the input vector |c 〉 of amplitudes we
calculate this way must have been the input vector of amplitudes
that self-configured the mesh to these settings.

So, for each MZI, we can note that the drives that we are
applying to the phase shifters are a result of the self-configuration
process. Hence, using our presumed known calibration of the mesh
elements, we can deduce the corresponding settings 1θ and 1φ
that the self-configuration has set for this MZI. Again, knowing
how we had driven the mesh phase shifters (i.e., what specific ones
or combinations of φT, φL, θP, and/or θW we actually drove in cali-
bration and in self-configuration and what drives we had applied),
we can also now calculate the change in φTot from Eqs. (1), (3),
and (5). (We will already have compensated for any fixed phases
implicit in φTot as part of our phase calibration process, so such a
change is all we need to know—see the discussion of calibration
below in Section 6). Hence, we can calculate the corresponding
matrix M as in Eq. (7) for each MZI, or, more usefully here, the
corresponding “backwards” matrix B as in Eq. (10).

We can always construct a full N × N matrix for any mesh with
N inputs and N outputs by progressively multiplying together the
various 2× 2 matrices for each block. Doing this appropriately for
the backwards matrices B, we could calculate the corresponding

N × N backwards matrix for the mesh, and we could perform cal-
culations with that matrix. For our situation, though, we are only
interested in calculating the backwards field at the “input” ports for
hypothetical light in just one “output” port. As a consequence, we
can set up the result even more simply and directly. We can write
for each MZI

B=
[
α µ

β ν

]
, (13)

where we know all of these elements α, β, µ, and ν from the
calculation using Eq. (10) for each block. Then, we start with a
hypothetical backwards “input” vector in the block in the last
column (e.g., block K31 or K7 in Fig. 1) with bR = 1 and bB = 0,
(a vector [ 1 0 ]T ) corresponding to shining hypothetical unit field
backwards into the appropriate Output waveguide in Fig. 1. We
can then simply work progressively “backwards” to the input,
allowing us to write explicit expressions for each input waveguide
amplitude. For this discussion, we subscript the α, β, µ, and ν in
each block with the corresponding block number.

For example, for the binary tree mesh in Fig. 1(b), working
backwards from the output, the backwards output vector at the
left ports of K31 is [α31 β31 ]

T , so the backwards amplitude in the
top left port of K31 isα31. That then feeds the bottom right port of
block K21, giving a backwards “input” vector at the right of block
K21 of [ 0 α31 ]

T , so the output backwards amplitude at the top
left port of block K21 is µ21α31. Continuing similarly backwards
through block K11, the top left output amplitude is µ11µ21α31.
So, proceeding similarly for the various other backwards paths, we
have explicitly for an eight-input mesh as in Fig. 1,

|d〉 ≡



d1

d2

d3

d4

d5

d6

d7

d8


=



µ11µ21α31

ν11µ21α31

α12v21α31

β12ν21α31

µ13α22β31

ν13α22β31

α14β22β31

β14β22β31


. (14)

So, explicitly again for such an eight-input binary tree mesh,
we would conclude that the relative amplitudes and phases of
the input beams in the eight input waveguides as used for the
self-configuration must have been

|c 〉 ≡



c1
c2
c3
c4
c5
c6
c7
c8


=



(µ11µ21α31)
∗

(ν11µ21α31)
∗

(α12v21α31)
∗

(β12ν21α31)
∗

(µ13α22β31)
∗

(ν13α22β31)
∗

(α14β22β31)
∗

(β14β22β31)
∗


≡ (|d〉)∗, (15)

formally completing the analysis of the multimode input field.
This process is easily extended for larger meshes (e.g., 16× 1,
32× 1, etc.). So, from the knowledge of how each MZI has been
set in the self-configuration process with input amplitudes as in
|c 〉, we can calculate all theα, β, µ, and νmatrix elements for each
block and, hence, deduce from Eq. (15) what the original input
vector of field mode amplitudes |c 〉—the one used to self-configure
the mesh—actually was.
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Note that this approach works for any of the choices of the pair
of phase shifters (i.e., two phase shifters out of the four, of which at
least one is on an MZI internal arm). (If we use only the phase shift-
ers on the MZI internal arms, we need additional phase shifters on
at least one input to each MZI in the “input” column (Column 3 in
the example of Fig. 1), and the common-mode phase shifts in MZIs
in one column end up performing the equivalent of the functions
of theφT andφL phase shifters in the next column to the R).

For the eight-input diagonal line mesh as in Fig. 1(c), the corre-
sponding result for |c 〉 is, similarly,

|c 〉 =



(α7)
∗

(α6β7)
∗

(α5β6β7)
∗

(α4β5β6β7)
∗

(α3β4β5β6β7)
∗

(α2β3β4β5β6β7)
∗

(α1β2β3β4β5β6β7)
∗

(β1β2β3β4β5β6β7)
∗


. (16)

5. RUNNING THE MESH AS A GENERATOR

With a calibrated mesh, it is also straightforward to run the mesh
in reverse, starting with actual light power fed backwards into the
Output port as in Fig. 1 and using the mesh as a generator of any
specific vector |d〉 of complex amplitudes emerging backwards
from the “inputs” of the mesh. The algorithm is summarized
briefly in Fig. 2(b).

To understand how to set the various drives in the mesh to
generate some such “backwards” output vector, we can imagine we
are configuring the mesh to take a vector |c 〉 ≡ (|d〉)∗ being shone
into the mesh inputs in the forward direction to hypothetically put
all the power in the output waveguide. If we set the mesh as if it was
“collecting” this forward vector |c 〉, then when run in the back-
wards direction, it will generate the desired vector |d〉 of outputs
from the “input” ports. We give explicit details for the calculations
of the required mesh parameters in Supplement 1 Section S6.

Note that, if we are using the mesh as a generator when oper-
ating with some additional “front-end” optics, such as such as
multiplane converters [9,10] or photonic lanterns [16], it is impor-
tant that, in that external optics, the loss is the same for all modes;
otherwise, the whole system is not unitary within some overall loss
factor, and the phase-conjugating property of unitary networks
run backwards does not apply. Then, running the whole system
backwards as a generator would not lead to the desired backwards
output; it would not be the phase conjugate of the hypothetical
forward vector |c 〉 of modal amplitudes at the front end of the
entire optical system.

6. CALIBRATION

When working with complex meshes in applications such as these,
it is essential that the mesh and its elements are calibrated. There are
two aspects to the calibration: (i) “split ratio” (or1θ ) calibration of
the MZIs; and (ii) phase (or1φ) calibration. It is obviously useful
that such calibration is simple and automatic.

In calibrating the phase in the system, we need to choose an
external phase reference of some kind. That could be just some flat
phase front shining directly into the waveguides of the integrated
optics, but, more generally, it could be a phase reference such as
a plane wave, or light from some point source, shining into some

external front-end optics. That external optics could include
lenses, optical fibers, or mode converters such as photonic lanterns
or multiplane light converters in front of the integrated photonic
mesh.

Integrated optical systems may hold a relatively stable phase
calibration (especially if care is taken to make physical path lengths
essentially equal for all beams that must interfere). In external
optics, however, phase delays may well drift significantly with
temperature or time. Furthermore, we may want to make changes
to the front-end optics, such as changing focusing or even the
modal decomposition basis of a complex system like a multiplane
light converter. So, calibrating to that external phase reference also
means we can “calibrate out” all the static phase behavior of such
front-end optics and can recalibrate for any changes in that phase
behavior. Note, though, that, because the mesh must be configured
in specific ways to perform the calibration, the calibration cannot
be run at the same time as the system is operating to measure or
generate fields.

In operation, for each MZI, we will have some drive vθ (e.g., a
voltage) that we are using to adjust 1θ , and similarly some drive
vφ that we are using to adjust 1φ. For example, vθ might be the
voltage used to drive a θP phase shifter, and, similarly, vφ might be
the drive voltage for aφT phase shifter. Calibrating means deducing
the functions1θ(vθ) and1φ(vφ) (e.g., based on “look-up” tables
of specific calibrated values) for each MZI. We use the functions
1θ(vθ) and1φ(vφ) directly if we are running the mesh as a mul-
timode analyzer so that we can deduce the 1θ and 1φ values
for each MZI from the vθ and vφ values that have been set in the
self-configuration. For running the mesh as a multimode gener-
ator, we can then numerically invert these calibration functions
1θ(vθ) and 1φ(vφ) to get functions vθ (1θ) and vφ(1φ) for
each MZI; these tell us what drives vθ and vφ to apply to get the
desired1θ and1φ in each MZI. We start with the calibration of
the 1θ for each MZI and then move on to calibrating their 1φ
behavior. We give detailed calibration procedures and formulas in
Supplement 1 Section S7, but we can summarize the overall
approach here (Fig. 4).

The first part of the calibration is to calibrate the1θ(vθ) func-
tion for each MZI. We do this by arranging optically that there is
input power in just one of the two input ports (e.g., the T port)

Fig. 4. Outline of the calibration process.
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of a given MZI. Then, we use what we can call a “co-sinusoidal
proportional calibration” to deduce 1θ(vθ) as we vary vθ ; this is
a relatively standard approach, though specifically this version is
done using measured minimum and maximum output powers
rather than presuming a minimum power of zero.

We can arrange for such an input power at just one port of an
MZI in the mesh either in a “forwards” or “backwards”1θ calibra-
tion approach. In a “forwards” calibration of the mesh, we require
the input calibration power to be controllably in only one input
port of the mesh at a time. Detectors for the calibration can be on
the “drop ports” of the MZI, or we can use just the overall output
power in the mesh output waveguide (though then the calibration
of different MZIs cannot be “parallelized”). In a “backwards” cal-
ibration, we instead shine just one fixed backwards beam into the
“output” of the mesh, but we need to be able to monitor the power
emerging backwards from the inputs to perform the calibration. In
both schemes, we proceed through the MZIs in a corresponding
“forwards” or “backwards” sequence. (For a diagonal line self-
configuring layer, because it is essentially symmetric from front
to back, we can also run a “forwards”1θ calibration with a single
source, in a manner analogous to the “backwards” sequence here.
See also [33].)

Having calibrated 1θ(vθ) for each MZI, to calibrate the
1φ(vφ) function for each MZI, essentially we set all the MZIs to
1θ = π/4 (so the MZIs are each behaving like 50:50 BSs overall).
Then, we shine in a “phase reference” beam over all the inputs; as
discussed above, this phase reference can be one that is “in front
of” any front-end optics. Using this reference, we then calibrate
1φ(vφ) for each MZI. By using the “co-sinusoidal proportional
calibration” approach, importantly, we do not have to have equal
input powers on the two ports of a given MZI; hence, for this cali-
bration, essentially only the phase “shape” of that phase reference
beam matters, not its intensity “shape”. We work from the input
MZIs progressively “forwards” through successive columns, start-
ing from the “input” column; in each case, we set1φ = 0 in a given
MZI once we have calibrated it. Note that this1φ calibration only
works perfectly if the BSs in the MZI have quite an accurate 50:50
splitting ratio (see Supplement 1 Section S7). If attaining such
accurate splitting is not reliable in fabrication, then we could take
the “double-MZI” approach as in [31,32], which can compensate
such imperfections at the expense of some greater circuit complex-
ity. Such an approach would also allow us to readjust the effective
splitting ratios to allow us to work at different specific wavelengths.

This phase calibration approach, including setting all MZIs in
“earlier” columns to 1φ = 0 as we proceed to calibrate those in
“later” columns, also means we automatically “calibrate out” any
fixed phase delays in the system. Equivalently, it means that, for
analysis or generation, we can proceed for each MZI as if

φav = 0 if1φ = 0 and θav = 0 if1θ = 0. (17)

Of course, if we change any of φT, φL, θP, and/or θW in use, and we
certainly will as we set1θ and1φ for given MZIs, we will change
θav and φav by known amounts as a result, and we have to include
that in our overall calculations, but we can start from the simple
“baseline” as given by Eq. (17). For example, if we are using the φT

and θP phase shifters to adjust the MZI, then, starting from this
calibration and using Eqs. (1)–(5),

1θ = θP, 1φ = φT, φTot = φav + θav +
π

2
=
φT

2
+
θP

2
+
π

2
,

(18)

and we will use these relations when calculating the overall matrix
M for a given MZI from Eq. (7).

There will obviously still be an additional overall phase delay
in propagating through the system, but it will be the same for all
paths, at least within additive multiples of 2π , and hence does
not matter for the purposes of multimode generation or analysis,
where we only care about relative phases and amplitudes in the
corresponding outputs or inputs.

Incidentally, if we want to calibrate a system with multiple self-
configuring “layers” (see Supplement 1 Section S1), then we use
a similar overall calibration process as we proceed to calibrate the
“next” (and any subsequent) self-configuring layer(s). Specifically,
we will set all blocks in preceding layers to1φ = 0 when we shine
in the external phase reference. A later layer then treats all preced-
ing layers as if they are just some extended “front-end” optics as we
calibrate to that external phase reference.

One important point in both the calibration and operation of
these networks is that we are presuming that cross talk between
the settings of the elements is negligible; otherwise, we are not able
to adjust one element without unintentionally affecting another
element. In the engineering of such systems, it will be important to
minimize any such effects, such as thermal cross talk [36].

Hence, we can have a straightforward and progressive cali-
bration approach that could be completely automated. If we use
the “backwards” 1θ(vθ) calibration, the calibration of the entire
mesh can be accomplished with just two optical beams—one
“backwards” power beam in the output waveguide for the1θ(vθ)
calibration and one “forwards” phase reference beam for the
1φ(vφ) calibration.

7. CONCLUSIONS

We have shown that there is a simple, automatic method for
analyzing the full amplitude and phase of the components of a
multimode optical field and for generating any such field on a given
modal basis. Effectively, in one automatic process, we perform all
the necessary interferometry in a mesh of two-beam interferome-
ters. This process may be fast enough to measure such multimode
fields in real time, e.g., on microsecond time scales.

We also show how this system can be calibrated automatically.
Importantly, all these processes require only simple sequential
algorithms and arithmetic calculations, based physically on power
minimization or maximization in photodetectors as we adjust each
parameter one by one. As presented here, these approaches pre-
sume “perfect” components, with balanced losses and path lengths,
and neglecting other potential problems such as back-reflections,
thermal and optical cross talk, and limited resolution in setting
element properties. Though some imperfections such as imperfect
BS coupling ratios could be compensated, e.g., using “double-
MZI” techniques [32,33], the effect of imperfections merits future
investigation. Nonetheless, this approach gives a starting point
and offers a simple and fast method for full analysis and arbitrary
generation of multimode fields in optics, for potential applications
in communications, processing, and sensing of various kinds.
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J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W.
Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien,
A. Laing, and M. G. Thompson, “Multidimensional quantum entan-
glement with large-scale integrated optics,” Science 360, 285–291
(2018).

22. I. V. Dyakonov, I. A. Pogorelov, I. B. Bobrov, A. A. Kalinkin, S. S. Straupe,
S. P. Kulik, P. V. Dyakonov, and S. A. Evlashin, “Reconfigurable photonics
on a glass chip,” Phys. Rev. Appl. 10, 044048 (2018).

23. F. Shokraneh, S. Geoffroy-Gagnon, M. Sanadgol Nezami, and O.
Liboiron-Ladouceur, “A single layer neural network implemented by
a 4×4 MZI-based optical processor,” IEEE Photon. J. 11, 4501612
(2019).

24. C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R.
Grootjans, I. Visscher, D. Geskus, C. G. H. Roeloffzen, J. J. Renema,
I. A. Walmsley, P. W. H. Pinkse, and K.-J. Boller, “8×8 reconfigurable
quantum photonic processor based on silicon nitride waveguides,” Opt.
Express 27, 26842–26857 (2019).

25. L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and
A. J. Lowery, “Programmable photonic signal processor chip for
radiofrequency applications,” Optica 2, 854–859 (2015).

26. D. Perez, I. Gasulla, F. J. Fraile, L. Crudgington, D. J. Thomson, A. Z.
Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Silicon
photonics rectangular universal interferometer,” Laser Photon. Rev. 11,
1700219 (2017).

27. D. Pérez, I. Gasulla, and J. Capmany, “Field-programmable photonic
arrays,” Opt. Express 26, 27265–27278 (2018).

28. D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li,
W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon pho-
tonics signal processor core,” Nat. Commun. 8, 636 (2017).

29. D. Pérez and J. Capmany, “Scalable analysis for arbitrary photonic inte-
grated waveguide meshes,” Optica 6, 19–27 (2019).

30. D. A. B. Miller, “Reconfigurable add-drop multiplexer for spatial modes,”
Opt. Express 21, 20220–20229 (2013).

31. D. A. B. Miller, “Perfect optics with imperfect components,” Optica 2,
747–750 (2015).

32. C. M. Wilkes, X. Qiang, J. Wang, R. Santagati, S. Paesani, X. Zhou, D.
A. B. Miller, G. D. Marshall, M. G. Thompson, and J. L. O’Brien, “60 dB
high-extinction auto-configured Mach–Zehnder interferometer,” Opt.
Lett. 41, 5318–5321 (2016).

33. D. A. B. Miller, “Setting up meshes of interferometers–reversed local
light interference method,” Opt. Express 25, 29233–29248 (2017).

34. S. Pai, I. A. D. Williamson, T. W. Hughes, M. Minkov, O. Solgaard, S. Fan,
and D. A. B. Miller, “Parallel programming of an arbitrary feedforward
photonic network,” IEEE J. Sel. Topics Quantum Electron. (Early Access)
(2020), 10.1109/JSTQE.2020.2997849.

35. R. Loudon,Quantum Theory of Light, 3rd ed. (Oxford, 2000), pp. 88–91.
36. M. Milanizadeh, D. Aguiar, A. Melloni, and F. Morichetti, “Canceling

thermal cross-talk effects in photonic integrated circuits,” J. Lightwave
Technol. 37, 1325–1332 (2019).

https://doi.org/10.6084/m9.figshare.12476123
https://doi.org/10.1364/AOP.11.000679
https://doi.org/10.1364/OE.26.024190
https://doi.org/10.1364/OE.26.024190
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1364/OPTICA.5.001623
https://doi.org/10.1515/nanoph-2018-0051
https://doi.org/10.1109/JLT.2013.2278809
https://doi.org/10.1103/PhysRevLett.104.100601
https://doi.org/10.1103/PhysRevLett.104.100601
https://doi.org/10.1364/OL.41.005580
https://doi.org/10.1038/s41467-019-09840-4
https://doi.org/10.1364/OE.22.015599
https://doi.org/10.1038/lsa.2017.110
https://doi.org/10.1109/JLT.2019.2952060
https://doi.org/10.1364/OE.21.006360
https://doi.org/10.1364/PRJ.1.000001
https://doi.org/10.1364/OPTICA.3.001348
https://doi.org/10.1364/AOP.7.000107
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1038/nphoton.2017.95
https://doi.org/10.1364/OPTICA.5.001087
https://doi.org/10.1038/s41566-018-0236-y
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1103/PhysRevApplied.10.044048
https://doi.org/10.1109/JPHOT.2019.2952562
https://doi.org/10.1364/OE.27.026842
https://doi.org/10.1364/OE.27.026842
https://doi.org/10.1364/OPTICA.2.000854
https://doi.org/10.1002/lpor.201700219
https://doi.org/10.1364/OE.26.027265
https://doi.org/10.1038/s41467-017-00714-1
https://doi.org/10.1364/OPTICA.6.000019
https://doi.org/10.1364/OE.21.020220
https://doi.org/10.1364/OPTICA.2.000747
https://doi.org/10.1364/OL.41.005318
https://doi.org/10.1364/OL.41.005318
https://doi.org/10.1364/OE.25.029233
https://doi.org/10.1109/JLT.2019.2892512
https://doi.org/10.1109/JLT.2019.2892512

