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Modes generally provide an economical description of waves, reducing complicated
wave functions to finite numbers of mode amplitudes, as in propagating fiber modes
and ideal laser beams. But finding a corresponding mode description for counting
the best orthogonal channels for communicating between surfaces or volumes, or for
optimally describing the inputs and outputs of a complicated optical system or wave
scatterer, requires a different approach. The singular-value decomposition approach
we describe here gives the necessary optimal source and receiver ‘“‘communication
modes” pairs and device or scatterer input and output “mode-converter basis function”
pairs. These define the best communication or input/output channels, allowing precise
counting and straightforward calculations. Here we introduce all the mathematics and
physics of this approach, which works for acoustic, radio-frequency, and optical waves,
including full vector electromagnetic behavior, and is valid from nanophotonic scales to
large systems. We show several general behaviors of communications modes, including
various heuristic results. We also establish a new “M-gauge” for electromagnetism that
clarifies the number of vector wave channels and allows a simple and general quantiza-
tion. This approach also gives a new modal “M-coefficient” version of Einstein’s A&B
coefficient argument and revised versions of Kirchhoff’s radiation laws. The article is
written in a tutorial style to introduce the approach and its consequences. © 2019
Optical Society of America
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Waves, modes, communications,
and optics: a tutorial

Davipo A. B. MIiLLER

1. INTRODUCTION

The idea of modes is common in the world of waves, especially in optics. Modes are
very useful in simplifying many problems. But, there is much confusion about them.
Are modes “resonances”? Are they “beams”? Do they have to stay the same “shape”?
Are they “communication channels”? How do we “count” modes? Are they properties
of space or of objects such as scatterers? Just what is the definition of a mode? The
purpose of this paper is to sort out the answers to questions like these, and to clarify
and extend the idea of “modes.” In particular, we want to use them for describing
waves in communications and in describing sophisticated optical devices. Such ap-
plications are increasingly important: communications may require mode- or space-
division multiplexing to increase capacity, and we are able to fabricate progressively
more complex optical devices with modern micro- and nano-fabrication.

1.1. Modes and Waves

At their simplest, modes can be different shapes of waves. Some such modes arise
naturally in waveguides and resonators; these modes are well understood and are
taught in standard texts (see, e.g., [1-4]). A key benefit of modes is that, when
we choose the right ones, problems simplify; instead of describing waves directly
as their values at each of a large number of points, we can just use the amplitudes
of some relatively small number of modes. But when we want to use modes to under-
stand communications with waves more generally, or when we want to describe some
linear optical device or object economically using modes, we need to move beyond the
ideas of just resonator or waveguide modes. Specifically, we can introduce the ideas of
communications modes in communicating with waves [5] and mode-converter basis
sets [6,7] in describing devices. These modes are not yet part of standard texts, nor is
there even any broad and deep introduction to them. Further, many of their details and
applications are not yet discussed in the literature.

The reason for writing this paper is to provide exactly such an introduction. As well as
sorting out the ideas of modes generally, we explain the physics of these additional
forms of modes, which brings clearer answers to our opening questions above.
We show how these ideas are supported by powerful and ultimately straightforward
mathematics. We introduce novel, useful, and fundamental results that follow. This
approach resolves many confusions. It reveals powerful concepts and methods, gen-
eral limits, new physical laws, and some simple and even surprising results. It works
over a broad range of waves, from acoustics, through classical microwave electromag-
netism, to quantum-mechanical descriptions of light.

1.2. Idea of Modes
One subtle point about modes is that it can be difficult to find a definition or even a
clear statement of what they are. We should clarify this now.

Modes are particularly common in describing oscillations of physical objects and sys-
tems. Simple examples include a mass on a spring, or waves on a string, especially one
with fixed ends. In these cases, an informal definition of an oscillating mode is that it
is a way of oscillating in which everything that is oscillating is oscillating at the same
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frequency. This is a sense in which a “mode” is a “way” or “manner” of oscillation.
Musical instruments offer many other examples of such modes, as in standing waves
in a pipe, or resonances in the vibrations of plates or hollow bodies. Such a mode will
have a specific frequency of oscillation, and the amplitude of the vibration will take a
specific physical form—it can be a function of position along the string or pipe or on
the surface of some plate or body.

The underlying mathematical idea of modes is associated with eigenfunctions or
eigenvectors in linear physical systems; in oscillating systems or resonators, the func-
tion that gives the amplitude of oscillation at each position is the eigenfunction, and
the frequency (or often the square of the frequency) is the eigenvalue. Indeed, we can
state a useful, general definition of a mode [8-10]:

A mode is an eigenfunction of an eigenproblem describing a physical system. (1)

Conventional resonator and waveguide modes are each the eigenfunctions of a single
eigenproblem. The fixed “shape” of this oscillation amplitude inside the resonator is
often thought of as the “mode” or eigenfunction in this sense. Waveguide modes
use the same mathematics, but the concept here is that the transverse shape of the mode
does not change as it propagates. An analogous informal definition of a propagating
mode is that everything that propagates is propagating with the same wave vector, which
also implies that the (transverse) shape does not change as it propagates. That transverse
shape is the eigenfunction. Though such waveguide modes may well be modes of a
specific frequency that we have chosen, the eigenvalue is typically a propagation con-
stant or wavevector magnitude (or, again, often the square of this quantity).

Before going any further, to support these ideas of modes, we need good notations;
they should be general enough to handle everything we need, but they should suppress
unnecessary detail. Wherever possible, we use a Dirac “bra-ket” notation, which op-
erates at just such a useful level of abstraction. We introduce this notation progres-
sively (see also [9]). In this notation a function can be represented by a “ket” or “ket
vector,” written as |y g) or |¢g), for example. Linear operators, such as Green’s func-
tions or scattering operators, are represented by a letter, and here we will mostly use
“sans serif” capital letters such as G and D. Most simply, we can think of kets as
column vectors of numbers and the linear operators as matrices. Dirac notation imple-
ments a convenient version of linear algebra equivalent to matrix-vector operations
with complex numbers, and indeed such a matrix-vector view can be the simplest way
to think about Dirac notation.

1.3. Modes as Pairs of Functions

To handle communications and complex optical devices, we need to go beyond just
resonator or waveguide modes; fortunately, though, we can use much of the same
mathematics. The key mathematical difference between resonator and waveguide
modes on the one hand and our new modes on the other is that

communications modes and mode-converter basis sets each result from solving a
singular-value decomposition (SVD) problem, which corresponds to solving two
eigenproblems.

The physical reason for having two such eigenproblems is because

we are defining optimum mappings between two different spaces.

For example, in communications, we may have sources or transmitters in one “source”
volume and resulting waves communicated into another ‘“receiving” volume
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[Fig. 1(a)]. The solutions to our problem are then the set of optimum source functions
in the source or input volume that couple, one by one, to the resulting optimal waves in
the receiving or output volume; SVD solves for both of those sets of functions, and it
is these fwo sets of functions that are the communications modes. So, a given com-
munications mode is not one function but two.

We can also view a communications mode as defining a communications ‘“channel.”
A simple view of a “channel” is that, when we put an input in one end, the corre-
sponding output comes of the other end, without “leaking” into any other such
“channel,” as in the literal meaning of a channel as carrying a stream of water,
separately from other such streams or channels. In the case of the communications
modes, modulating the “source” function leads to an amplitude in the corre-
sponding receiving wave; the “separateness” here is defined by some mathematical
“orthogonality” of all the source functions and all the receiving functions, and we
clarify this idea below. We will be able to have separate channels for information flow
even if the actual waves are mixed in the space between the source and receiver. When
we use the term “channels” we mean such independent “ways” for sending informa-
tion from source to receiver. In this sense, a communications mode describes the
physical carrier for such an information “channel.”

In practice we may only need to solve one of these two SVD eigenproblems, and we
can then deduce the solutions to the other. But because we can view this through two
eigenproblems, each of these sets of functions, one in the source space and one in the
receiving space, therefore has all the useful mathematical properties of eigenfunctions,
including this idea of “orthogonality”; such properties have profound consequences
for the physical interpretation and the mathematics that follows.

1.3a. Communications Modes
Note immediately that, in this view,

the communications mode is not the propagating wave (or what we will call the
beam) between the source volume and receiver volume.

(a) Source orinput Receiving or output
volume or space volume or space
Vs Ve
v, )
v | o | e
Hy Hy
(b) Source orinput Receiving or output
volume or space ) volume or space
Device
Vs Vr
“//5> — D — ‘¢R>
Hy Hy

Conceptual view for (a) communications modes and (b) mode-converter basis sets. In
both cases a source function |y¢) in a source or input volume ¥ g, or more generally in a
mathematical (Hilbert) space H g, results in a wave function |¢) in a receiving or output
volume V5, or more generally in a mathematical (Hilbert) space Hp. In the commu-
nications mode case (a) the coupling is through a Green’s function operator Ggp as
appropriate for the intervening medium between the spaces. In the mode-converter
case (b), the coupling is through the action of a device (or scattering) operator D.
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Indeed, in general the beam will change shape as it propagates, and it is not itself the
“eigenfunction” of the mathematical problem (though it is easily deduced from the ac-
tual eigenfunctions in simple communication problems). In this SVD way of looking at
communications, the jth communications mode is a pair of functions—]|yg;) in the
source or input space, and |¢g;) in the receiving or output space. Explicitly, therefore,

communications modes are pairs of functions—one in the source space and one in
the receiving space.

They are a set of communications mode pairs of functions—a pair |y ;) and |pg,), a
pair |wg,) and |¢r,), and so on. To find these functions, we perform the SVD of the
coupling operator Ggz between the volumes or spaces. For the communications prob-
lems we consider first, this Gy is effectively the free-space Green’s function for our
wave equation.

1.3b. Mode-Converter Basis Sets

When we change from thinking just about waves in free space to trying to describe a
linear optical device, we can consider how it scatters input waves to output waves
[Fig. 1(b)]. By analyzing this also as an SVD problem, in this case of a device
(or scattering) operator D, we can similarly deduce a set [11] of input source functions
{lws;)} that couple one by one to a set of output wave functions {|¢pg;) }; these two sets
of functions are the mode-converter basis sets.

In this second case, we want to describe the device as one that converts from a specific
input mode |yg;) to the corresponding output mode |¢hg;), and so on, for all such mode
pairs; again, as in the case of communications modes, we think in terms of pairs of
functions here, one in the source or input space, and one in the receiving or output
space. We can consider these as mode-converter pairs—a pair |yg;) and |¢g;), a pair
lyso) and |¢g,), and so on, just as in the communications modes. In this way of look-
ing at a linear optical device [6],

any linear optical device can be viewed as a mode converter, converting from
specific sets of functions in the input space one by one to specific corresponding
functions in the output space, giving the mode-converter pairs of functions.

The device converts input mode |yg;) to output mode |¢pp,), input mode |wg,) to
output mode |¢g,), and so on. In this case, though the mathematics is similar to
the communications modes, this is more a way of describing the device, whereas
the communications modes are a way of describing the communications channels
from sources to receivers. For the device case, we may not have anything like a simple
beam between the sources and receivers, but we do have these well-defined functions
or “modes” inside the source space or volume and inside the receiving space or vol-
ume. We could also view the mode-converter basis sets as describing the communi-
cations modes “through” the device.

In an actual physical problem for a device, there are ways in principle in which we
could deduce the mode-converter pairs of functions by experiment [7,12] without ever
knowing exactly what the wave field is inside the device. Then we could know the
mode-converter pairs as eigenfunctions without knowing the “beam”; this point em-
phasizes that it can be more useful and meaningful to use the pairs of functions in the
source and receiving spaces as the modes of the system rather than attempting to use
the beam through the whole system as the way to describe it.

1.4. Usefulness of This Approach
There are several practical and fundamental reasons why these pairs of functions are
useful.
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1.4a. Using Communications Modes

In communications, we continually want larger amounts of useful bandwidth. This
need is strong for wireless radio-frequency transmission [13], for optical signals in
fibers [14—17] or free space [17-20], and even for acoustic information transmission
[21-23]. Recent progress in novel optical ways to separate different [16] and even
arbitrary modes [24-29], including automatic methods [24-29], gives additional mo-
tivation to consider the use of different modes (or “spatial degrees of freedom”) in
communications.

Increasingly, therefore, we need to understand the spatial degrees of freedom in such
communications and the limits in their use; a natural way to describe and quantify
those is in terms of communications modes. Specifically,

we can understand how to count the number of useful available spatial channels.

Essentially, this can also be viewed as a generalization of the ideas of diffraction lim-
its, and we will develop these ideas below. A key novel result is that

this SVD approach gives a sum rule that bounds the number and strength of those
channels.

As we solve the problem this way, we can also unambiguously establish just exactly
what the best channels are; we do not need to presume any particular form of these
modes to start with. So, specifically, we do not need to analyze in terms of plane-wave
“modes,” Hermite—Gaussian or Laguerre—~Gaussian beams, optical “orbital” angular
momentum (OAM) [19,20,30-32] “modes,” prolate spheroidals [33], arrays of spots,
or any other specific family of functions; specifically,

the SVD solution will tell us the best answers for the transmitting and receiving
functions—the communications modes—and those will in general be none of the
standard mathematical families of functions or beams.

1.4b. Using Mode-Converter Basis Sets
In analyzing linear optical devices or scatterers,

if we establish the mode-converter basis sets by solving the SVD problem, we
will have the most economical and complete description of a device or scatterer.

Essentially, we establish the “best” functions to use here, starting with the most im-
portant and progressing to those of decreasing importance. An incidental and univer-
sal consequence of this approach is that we realize that

there is a set of independent channels through any linear scatterer

(which are the mode-converter basis sets), and that we can describe the device com-
pletely using those. The implications of the mode-converter basis sets go beyond sim-
ple mathematical economy:

Mode-converter basis functions have basic physical meaning and implications,
giving fundamental results that can be economically and uniquely expressed
using them.

They allow us, for example, to write new versions and extensions of Kirchhoft’s radi-
ation laws [7], including ones that apply specifically and only to the mode-converter
pairs, and to derive a novel modal version of Einstein’s “A&B” coefficient argument on
spontaneous and stimulated emission (Subsection 11.2). Such results suggest that this
mode-converter basis set approach is deeply meaningful as a way to describe optical
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systems. These mode-converter basis functions can also be identified in principle for a
given linear object through physical experiments [7], independent of the mathematics.

1.4c. Areas of Research and Application

This approach to waves, though not yet very widely known, has a history that goes back
some decades, and already has many applications. The earliest, and very successful,
application of eigenfunction approaches in waves is for laser resonators [34-36] with
some related work in imaging [33]. Such applications are special cases of the present
approach in which the “source” and “receiver’”’ functions are essentially mathematically
the same. Following the introduction of the full SVD approach [5,37,38], there has been
a broadening range of applications in wireless communications [13,39-51], where
space-division multiplexing is increasingly an important option, r.f. imaging [52,53],
electromagnetic scattering [54—64], optical systems [65-81], acoustic wave communi-
cations [23], finding strong channels though strong scatterers [82-98] (which is related
to earlier work on electron transport though disordered media [97]), multiple-mode op-
tical fibers for communications [81,99] and imaging [100-105], and free-space com-
munications [18]. This approach can also resolve paradoxes and confusions in counting
available communications channels generally, such as whether OAM leads to more
channels (and we discuss this below). The growing availability of optical systems that
can generate complex and controllable devices [12,24-29,106—119] also means this
SVD approach is practically accessible for more applications because we can generate
sets of sources and can separate sets of waves, and SVD is also a good way to describe
and even design those devices themselves [25]. We give an extended discussion of this
history and the wider literature in Appendix A.

Aspects of this field have developed somewhat independently, and different authors
therefore refer to similar concepts with different terminology. Our “device operator”
or Green’s function coupling operator between spaces is similar to the channel matrix
in wireless communications [13], and the communications modes there are referred to
[13] as “eigenmodes of the channel” or “eigenchannels.” In optics, the “optical ei-
genmodes” of [76—80] are similar to our communications modes, or, for more com-
plex optical systems, the mode-converter basis sets. In work in channels through
strong scatterers [81-92,96-98], the coupling operator (the “device” or “scattering”
operator in our notation) is often called a “transmission” matrix (see, e.g., [97]) (with
our mode-converter basis sets or communications modes through a scatterer known in
that work as “optical eigenchannels” or “transmission eigenchannels” [97]) or, some-
times, a “transfer matrix” [81]. For consistency in this paper, we will use our notation,
but the link to this other independent work and terminology is important to clarify.

1.5. Approach of This Paper

Because the ideas here go beyond conventional textbook discussions, and because we
are combining concepts and techniques that cross several different fields, the approach
of this article is quite tutorial. Most algebra steps are written explicitly, and many “toy”
examples illustrate the key steps and points. [ have tried to write the main text so that it is
readable, and with a progressive flow of ideas. I introduce core mathematical ideas in the
main text, but relegate most other derivations and mathematics to appendices.

This article has been written to be accessible to readers with a good basic undergraduate
knowledge of mathematics and some physical science, such as would be acquired in a
subject such as electrical engineering or physics or a discipline such as optics (for specific
presumed background, see [120]), but I explicitly introduce all other required advanced
mathematics and electromagnetism. Wherever possible, 1 take a direct approach in der-
ivations, working from fundamental results, such as Maxwell’s equations or core math-
ematical definitions and principles, without invoking intermediate results or methods.
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2. ORGANIZATION OF THIS PAPER

The mathematics of SVD is relatively straightforward for finite matrices; such matrices
arise, for example, if we have a finite number of small sources communicating to a finite
number of small receivers. The mathematics is particularly simple if we also initially
consider just scalar waves, such as acoustic waves in air. Such scalar waves allow a
good tutorial introduction to communications modes and more generally to the ideas
of this SVD approach. We start with the mathematics of such sources, receivers, and
waves in Section 3. In Section 4, we go through a simple “toy”” example explicitly, show-
ing both the mathematical results and physical systems that would implement them.

Many quite general physical and mathematical behaviors emerge as we look at wave
systems this way, only some of which are currently well known. Though these behav-
iors are relatively simple and even intuitive, only some have simple analytic solutions.
On the other hand, numerical “experiments” and examples are straightforward, at least
for finite numbers of “point” sources and receivers. Then the main calculation is just
finding eigenvalues and eigenvectors of finite matrices. So, we introduce these behav-
iors informally through a sequence of further numerical examples in Section 5 (sup-
ported by additional heuristic arguments in Appendices B, C, and D). Pretending we
can approximate any set of “smooth” source and receiver functions with sufficiently
many such point sources and receivers, we can reveal much of the behavior of the
more general case and many of the results.

To be general enough for real problems in optics and electromagnetism, we need two
major sophistications. First, we need to expand the mathematics to handle sources and
received waves that are continuous functions of space, and to consider possibly infinite
sets of source and or wave functions. A key point is that we will be able to show that

even with continuous source and wave functions, and with possibly infinite sets
of them, we end up with finite numbers of useful communications channels or
mode-converter basis functions for describing devices.

Furthermore, this gives a general statement of diffraction limits for any volumes and
any form of waves.

The mathematics has to go beyond that of finite matrices, and cannot be deduced from
it [121]. Fortunately, that mathematics—functional analysis—exists. Unfortunately,
this field is often impenetrable to the casual reader; necessarily it has to introduce
ideas of convergence of functions, and that involves an additional set of concepts,
mathematical tools, and terminology. The important results can, however, be stated
relatively simply; in Section 6, I summarize key mathematical results, deferring some
detail to Appendices E and F. I have also written a separate (and hopefully accessible)
introduction [122] to this functional analysis mathematics, including all required
proofs. With the results from functional analysis, continuous sources and waves
for the simple scalar case can then be understood quite simply. In Section 7, we relate
these mathematical results to known families of functions in the “paraxial” case often
encountered in optics.

The second major sophistication we require is the extension to electromagnetic waves,
and we summarize the key results in Section 8. Scalar waves are often a good first
model in optics, and much of their behavior carries over into the full electromagnetic
case; dealing with electromagnetic waves properly is, however, more complicated.
Not only are electromagnetic waves vectors rather than scalars, but, on the face of it,
we have two kinds of fields to deal with—electric and magnetic. Maxwell’s
equations relate these two kinds of fields, of course. Existing sophisticated approaches
to electromagnetism, such as the use of scalar and vector potentials, are helpful here in
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understanding just how many independent field components or “degrees of freedom”
there really are, but standard approaches are not quite sufficient for clarifying this
number. This difficulty can be resolved by proposing a new “gauge” (the “M-gauge”)
for the electromagnetic field. We provide a full explanation and derivation of the nec-
essary electromagnetism in Appendix G, supported with a derivation in Appendix H
and additional notation and identities in Appendix I.

This new M-gauge, together with the results of the functional analysis and the SVD
approach, allows a revised quantization of the electromagnetic field, summarized in
Section 9 and in more detail in Appendix J. This resolves several difficulties. In par-
ticular, we can avoid artificial “boxes” and “running waves” in quantizing radiation
fields, and they can be quantized for any shape of volume. This quantization means
that our results here are generally valid and meaningful for both classical and
quantum-mechanical radiation fields.

In Section 10, we describe how to apply this same mathematics and physics in con-
sidering mode-converter basis sets for devices or scatterers. Section 11 includes dis-
cussion of the fundamental aspects of such mode-converter basis sets, including new
radiation laws and a revised and simplified “Einstein’s A&B” coefficient argument
(with a full derivation in Appendix K) in modal form. Finally, in Section 12, I draw
some conclusions.

Length constraints here mean some relevant topics are omitted. First, in discussing
waves, mostly I consider just the monochromatic case, but the underlying mathemat-
ics and electromagnetism support general time-dependent fields [123] (and I give
those results explicitly for electromagnetic fields) and hence “temporal modes”
[25,124,125]. Second, though the communication channels are well-suited for adding
information theory to calculate capacities (e.g., [18,75]), I have to omit that discussion
here. Third, though we could certainly extend the approach to, say, two-dimensional
systems such as waves in slab waveguides, for simplicity all of our explicit examples
and calculations will be for three-dimensional systems and waves, even if graphically
we may show waves just in particular planes.

To improve the narrative flow of the paper, I have avoided extensive historical and
research review in the main body of the text, but I have included these important
discussions in Appendix A. The subject is easier to explain without the constraint
of the historical order and way in which the concepts arose, and the history and other
research and connections are easier to explain once we understand the concepts.

Though some aspects of this material are well known in the literature, and our treat-
ment of those aspects is therefore purely a tutorial, for some other aspects, we have to
present some original material. To clarify this, and to allow the reader to make their
own judgements of the approaches and validity of any new results, I have listed what I
believe to be novel results in Appendix L.

This work is quite long overall, and that length might be daunting. I suggest that the
reader starts with Sections 3, 4, and 5—which will convey much of this new way of
thinking about waves—followed by Section 10 to understand how this approach de-
scribes optical devices and scatterers. Sections 6, 7, and 8 add depth and rigor to the
wave discussion, and Sections 9 and 11 add discussion of fundamental physical results
from this approach.

3. INTRODUCTION TO SVD AND WAVES —SETS OF POINT SOURCES AND
RECEIVERS

We start here by introducing the main ideas of this SVD approach with the simple
example of scalar waves with point sources and detectors.
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3.1. Scalar Wave Equation and Green’s Functions

Suppose we have some uniform (and isotropic) medium, such as air, with a wave
propagation velocity v. For simplicity, we presume we are interested in waves of only
one (angular) frequency w. Then we could propose a simple Helmholtz wave equa-
tion; this would be appropriate, for example, for acoustic pressure waves in air [126],
with v being the velocity of sound in air. Then, for a spatial source function y,,s(r) and
a resulting wave ¢, r(r), this Helmholtz wave equation would be

V2¢mR(r) + k2¢mR(r) = l//mS(r)’ (2)
with
K = o? V2. 3)

Now, for such an equation, the Green’s function (i.e., the wave that results from a “unit
amplitude” point source §(r —r’) at position r') is

Lexp(ik|r —r)

G, (r;r) =—
o(1:1) 4 r—r

(4)

As usual with Green’s functions (see, e.g., [127] for an introduction), for an actual
continuous source function y,¢(r), the resulting wave would be

Bon(®) = /V G (s )y s ()Y (5)

Such a superposition of Green’s functions (through the integral here) works because
the medium (e.g., air) is presumed to be linear so that superpositions of solutions to the
wave equation are also solutions to this (linear) wave equation (2).

3.2. Matrix-Vector Description of the Coupling of Point Sources and Receivers

We presume a set of Ng point sources (Fig. 2) at positions rg; (j = 1, ..., Ng) in the
source volume, and with (complex [128]) amplitudes /;. These might be the (complex)
amplitude of the drives to each of a set of Ny small loudspeakers, for example, that we
pretend we can approximate as point sources. Then the resulting wave at a point rg; in
the receiving volume would be

1 &, exp(ik|rg; — rg)) Ns
¢a)R(rRz) ar j§:1 |rRi —_ rSj| i ;:1 glj i ( )

where

o 1 exp(ik|rg; —rgl)
v 4r |rp —rgj

()

Suppose, then, that we had a set of Ny small microphones at a set of positions r; in
the receiving volume (Fig. 2); we presume these are omnidirectional (so their response
has no angular dependence). Then the received signal at one such microphone or point
would be the sum of the waves from all the point sources, added up at the point r;
[as in Eq. (6)]

Ng
L= gh. (8)
j=1
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Equivalently, if we define the vectors |yg) and |¢z) and the matrix Ggi for such a
problem as

hy fi g1 812 o 81Ny
hy S 821 82 8oy

lws) = - |pr) = < s and Ggg = . . . . )
th fNR ENpl 8Ng2 ttt 8NgNg

)

then we can write the set of relations Eq. (8) for all i compactly as the matrix-vector
expression

|pr) = Gsrlws). (10)

3.3. Hermitian Adjoints and Dirac Bra-Ket Notation

At this point, we can usefully introduce the final part of the Dirac notation, which
involves the Hermitian adjoint (or Hermitian conjugate or conjugate transpose)
[129]. Generally, this is notated with a superscript “dagger,” written as “f”.
The Hermitian adjoint of a matrix is formed by reflecting around the “top-left” to
“bottom-right” diagonal of the matrix and taking the complex conjugate of the ele-
ments. For some matrix G, with matrix elements g;; in the ith row and jth column, the
corresponding “row-i, column-;”” matrix element of the matrix G' is the number gji-
The Hermitian adjoint of a column vector is, similarly, a row vector whose elements
are the complex conjugates of the corresponding elements of the column vector. In
Dirac notation, such a row vector is notated using the “bra” notation (¢|. So, explicitly,
for our matrices and vectors here,

By 7
h
(wshT=| . | =[hF B - K] = (sl (11)

hy

and similarly for |¢y), and the Hermitian adjoint of the operator Ggy is

+
g1 g2 o &ing g & gztle
§ 821 82 8o gh & g]tfRz
Gh=|". . . = T 7 (12)
8Nyl BNz2 8NNy gine &g T 8N

Source volume Receiving volume
e Coupling P
operator S Trie
r )y
52 R2
. GSR )

~~~~~~~~~~

Set of point sources at positions rg; in a source volume, and a set of point receivers at
positions rg; in a receiving volume, coupled through the coupling operator Ggp.
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Note too that the Hermitian adjoint of a product is the “flipped round” product of the
Hermitian adjoints, i.e., for two operators G and H,

(GH)* = H'G! (13)

(which is easily proved by writing such a product out explicitly using the elements of
the matrices and summing them appropriately) and for matrix-vector products

(Gly)" = (w|G'. (14)
The Hermitian adjoint of a Hermitian adjoint just brings us back to where we started, i.e.,
GH" =G (15)

and for some vector

[T = [(#1]" = ), (16)

both of which results are obvious from the process of reflecting and complex conjugating
matrices and vectors.

For a simple scalar wave, for an amplitude f; at a given receiving point (or micro-
phone), the corresponding received power (in appropriate units) would typically be

P, =ff, (17)

So the sum of all the detected powers would be

N
P = Zf;kfi = (¢rlor) = ((WS|G§R)(GSR|V/S>) = (WS|G§RGSR|V/S>s (18)
i=1

where we have substituted from Eq. (10) and used the “bra-ket” shorthand notation for
the “row-vector column-vector” product

{alp) = (al|p). (19)

3.4. Orthogonality and Inner Products

In general, a “bra-ket” expression such as (a|f) is an example of an inner product, and
one formed in this way, as the matrix product of a row vector on the left and a column
vector on the right, is an example of a Cartesian inner product. Inner products are very
important in our mathematics, and we will be expanding on this concept substantially.
(One of the simplest common examples of an inner product is the usual “dot” product
of two geometrical vectors; this Cartesian inner product can be thought of as a
generalization of this idea to vectors of arbitrary dimensionality and with complex
amplitudes.)

A key point about inner products is that they can define the concept of orthogonality
of functions. Specifically, for two non-zero vectors |a) and |f), if and only if their
inner product is zero, then the functions are said to be orthogonal. (This is also a
generalization of the concept of two (non-zero) geometrical vectors being at right
angles or “orthogonal” if and only if their dot product is zero.)

An immediate consequence of the idea of orthogonality from the inner product is that,
for a wave that is the sum of multiple different orthogonal components, a power as
in Eq. (18) is simply the sum of the powers of the individual components; all the
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“cross-terms” disappear. Explicitly, for a wave |¢) that is a sum of a set of (non-zero)

waves {|¢,)},

= l#y), (20)
q
where those waves are all orthogonal, which we can write as
(¢pldg) = 0 if and only if p # g, (21)
then
= (¢plg) = (Zw) (Zw) = (le,) = Z Dyldy) = ZPq, (22)
p q Y
where

Pq = <¢q|¢q> (23)

is the power in the wave |¢,).

Later, as we generalize the mathematics, we may formally define inner products that
explicitly give the power or energy for electromagnetic waves; these will not just be
the simple Cartesian products of wave functions, though they will still satisfy the more
basic mathematical properties required of inner products.

A second important property is that the inner product of a (non-zero) vector with itself
is always positive; this is easy to see for the Cartesian inner product of a vector such as
|¢r) as in Eq. (9); explicitly,

;; Ng Ng

(prlpr) = /T 5 - SR | =D206=0 162 >0,  (24)
: Jj=1 Jj=1
I,

|2, at least one of

because it is a sum of positive (or at least non-negative) quantities | f;
which must be greater than zero for a non-zero vector.

3.5. Orthonormal Functions and Vectors

Now, returning to Eq. (18), we presume we want to find the choices of source func-
tions or vectors {|yg;)} that give the largest total powers in the set of receivers (or
microphones). To make comparisons easier, we will presume that we normalize
all the source functions of interest to us. Normalization means that we adjust the func-
tion or vector by some multiplicative (normalizing) factor so that the inner product of
the function or vector with itself is unity, i.e.,

<V/Sj|WSj) =1 (25)

A particularly convenient set of functions is one that is normalized and in which all the
different elements are orthogonal; this is called an orthonormal set of functions, and
its elements would therefore satisfy

(WSp |ll/Sq) = 5pq7 (26)

where the Kronecker delta is
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0

1 iftp=g
pq:[ (27)

0 ifp#q-

3.6. Vector Spaces, Operators, and Hilbert Spaces

The mathematics here gives some very powerful tools and concepts. We are not going
to prove these properties now for two reasons: first, for finite matrices, these properties
are discussed in standard matrix algebra texts [130,131]. Second, we will give these
results for the more general (and difficult) cases of continuous functions and infinite
matrices in Section 6 (and with proofs in [122]); finite matrices are then a simple
special case.

An operator’s properties can only be completely described if we are specific about the
mathematical “space” (often called a vecfor space) in which it operates. For example, the
ordinary (geometrical) vector dot product is an operator that operates in the mathematical
space based on ordinary three-dimensional geometric space. This mathematical space
contains all vectors that can exist in a geometrical space that is three-dimensional, with
the algebraic property of having a vector dot product—the “inner product” for this space.

The operators of interest to us act on vectors or functions in a Hilbert space (formally
defined in Subsection 6.4). Any given Hilbert space will have a specific dimension-
ality, which may be finite or infinite, and it must have an inner product. We can think
of this mathematical Hilbert space as being analogous to the mathematical space of
ordinary geometrical vectors, but allowing arbitrary dimensionality and complex
coefficients (geometrical vectors can only be associated with real amplitudes or
coefficients).

The possible source functions exist in one Hilbert space Hg, associated with
the source volume V. In our example here, this space Hg contains all possible
N s-dimensional mathematical vectors with finite complex elements that are the am-
plitudes of specific point sources. The possible wave functions exist in another Hilbert
space Hp, associated with the receiving volume V. This space Hy also contains all
possible N p-dimensional mathematical vectors with finite complex elements that are
the possible amplitudes of specific waves at the point “microphones” (or the corre-
sponding signals from those microphones). Each of these spaces Hg and Hy has a
Cartesian inner product, though later we may use different “underlying” inner prod-
ucts in different spaces.

3.7. Eigenproblems and Singular-Value Decomposition

Now we see that the operator Gy is something that maps between these two spaces.
Specifically, as in Eq. (10), it operates on the vector |y), which is in space Hg, to
generate the vector |¢), which is in space Hy. Now, we want to find some “best”
choices of such source vectors |y ) that will give us the “best” resulting waves |¢y).

For such best choices, our instinct might be to try to find eigenvectors of some oper-
ator. However, we cannot just find eigenvectors of Ggp; we might be able mathemati-
cally to find eigenvectors of the matrix Ggg, but these may have dubious physical
meaning in our problem, because Ggy is an operator mapping between one space
and another, not an operator within a space. So, Ggz cannot map a function back onto
a multiple of itself in the same space.

We could, of course, define a Green’s function operating within a space, and we might
do so for a resonator problem; we could even base that on the exactly the same kind of
mathematical expression as in Eq. (4) for G, (r;x’), with r and 1’ being positions
within the same volume. Here, however, we are effectively basing our operator
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Gz on the mathematical operator (or kernel in the language of integral equations)
G, (rg;rg), where ry and rg are definitely in different volumes.

The key to constructing the right eigenproblems here is to look at those associated
with the operator G, Gz and with the complementary operator GgzGi,. As we said,
the operator Ggz maps a vector in Hg to a vector in H. The operator G;R, however,
maps a vector in Hy to a vector in Hg. So, overall, G;RG gz Maps a vector in Hg to a
vector in Hg. Similarly, the operator G SRG;ER maps a vector in H to a vector in Hp.
Hence, it is physically meaningful to consider eigenproblems for each of these oper-
ators GERG s and G SRGER. It is the mathematics of such eigenproblems that is at the
core of SVD.

Here we can usefully introduce several more definitions and results (mostly without
proofs for the moment). First, we note that the operators G;RGSR and G SRGgR are
Hermitian—that is, each is its own Hermitian adjoint. Explicitly,

(G;RG'SR)Jf = GER(G§R)T = G;RGSR’ (28)

where we have used Eqgs. (13) and (15), and similarly for GSRG§R.

An operator such as G; zGisr is also a positive operator, which means that an expres-
sion such as (yg|Gg,Gsrlws) is always greater than or equal to zero. (Similarly, the
operator G SRGER is also Hermitian and positive.)

Now, so-called “compact” [132] Hermitian operators (defined formally in Section 6)
have several properties (and all finite Hermitian matrices are compact Hermitian
operators):

(1) Their eigenvalues are real.

(2) Their eigenfunctions are orthogonal (or, at least formally, the ones corresponding
to different eigenvalues are orthogonal, and different ones corresponding to the
same eigenvalue can always be chosen to be orthogonal).

(3) Their eigenfunctions form complete sets for the Hilbert spaces in which they op-
erate [ 133]—in other words, we can write any function in the space as some linear
combination of these eigenfunctions,

and if those operators are positive
(4) Their eigenvalues are greater than or equal to zero.

(5) Their eigenfunctions and their corresponding eigenvalues satisfy maximization
properties—specifically, if we set out to find the normalized “input” vector or
function that led to the largest “output” vector (in terms of its inner product),
then that is the eigenfunction with the largest eigenvalue, and we could find
the eigenfunction with the second largest eigenvalue and corresponding eigen-
vector by repeating the maximization process to find a function orthogonal to
the first one, and so on.

The formal proofs of all of these properties are given in [122] for finite and infinite-
dimensional spaces, and we also discuss these topics further in Section 6.

Furthermore, any operator that can be approximated to any sufficient degree by a finite
matrix is also effectively compact; indeed, this idea is beginning to get close to the
idea of what a compact operator really is. So, certainly our finite matrix problem with
positive operators G} ,Ggz or GgrGly, here has all of the properties (1) to (5) above,
and it will retain these properties no matter how large we make the (finite) matrix.
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Now, for specific choices of the numbers and positions of the point sources and receiv-
ers, we can simply write down the Ny x Ny matrix Ggy as in Eq. (9), using the for-
mula Eq. (7) to work out the necessary matrix elements. So, we are ready to turn any
such specific problem into a simple numerical problem to find the eigenvectors and
eigenvalues. So, therefore, for any such problem, we can solve for the (orthonormal)
eigenvectors |yg;) of the Ny x Ng matrix G§RG sr- The eigenvalues are necessarily
positive (because GzGgy is a positive operator), and so we can write them in the
form |s;|%. That is, explicitly,

GixGisrlws;) = Is;*lws))- (29)

Similarly, we can solve for the (orthonormal) eigenvectors |¢g;) of the N x Ny ma-
trix GSRG sg- It is not too surprising that these have the same [134] eigenvalues |s; 2.
That is,

GSRG R|¢R/> | | |¢R]) (30)

In fact, we can show (Appendix E) that
GSRlWSj) = Sj|¢Rj) (31)

and

Glrlor) = stlws))- (32)

Hence by solving two eigenvalue problems, one for G; xGisr and a second for G SRG; R
we have established two sets of eigenfunctions, one, {|wg;)}, for the source vectors or
functions in Hy, and a second set {|¢g;)} for the wave vectors or functions in Hg.
Note, too, that these vectors or functions are paired: a source vector or function
lws;) in Hg leads to the corresponding wave vector or function [¢g;) in Hp,
with an amplitude s;. The numbers s; are called the singular values of the operator
or matrix Ggp.

Note that, in practice, we only actually have to solve one eigenvalue problem—that is,
either Eq. (29) or Eq. (30). If we know the eigenfunctions {|yg;)} from solving
Eq. (29), then we can deduce the eigenfunctions {|¢,)} from Eq. (31), and similarly
if we know the eigenfunctions {|¢g;)} from Eq. (30), we can deduce the {|yg;)} from
Eq. (32), at least for all the cases in which the singular value is not zero [134]. In
practice, one of these eigenproblems may be simpler or effectively “smaller” than
the other, and we can conveniently choose that one if we prefer.

The fact that these two sets of functions {|yg;) } and {|¢z;)} are each eigenfunctions of
a Hermitian operator guarantees that each of these sets is orthogonal and complete
[135] for its Hilbert space (Hg or Hp, respectively).

From Egs. (31) and (32), we can see that we can rewrite Ggy as

Gsr = Z sildr) (Wil (33)

where N, is the smaller of Ng and N [134]. This expression Eq. (33) is called the
singular-value decomposition of the operator Ggz. We can also similarly write



698 Vol. 11, No. 3 / September 2019 / Advances in Optics and Photonics Tutorial

N”"
GE‘R = ZSJﬂWSj)(ff’Rﬂ- (34)

J=1

Incidentally, a product of the form |¢g;) (w;|, which has a column vector on the left
and a row vector on the right, is sometimes called an oufer product. Standard matrix
manipulations show that an outer product of two N-element vectors is an N x N ma-
trix. So,

this process of singular-value decomposition, performed by solving the two re-
lated eigenproblems, one for the matrix or operator G;RG sr and the second for
the matrix or operator Ggp GgR, leads to our desired two sets of orthogonal vectors
or functions.

These are source vectors or functions in Hg and wave vectors or functions in Hp, and
these are “paired up,” with each source eigenvector in H g giving rise to its correspond-
ing wave eigenvector in Hp (with amplitude given by the corresponding singu-
lar value).

Furthermore, because these are eigenvectors or eigenfunctions of a positive Hermitian
operator, by property (5) above, they are the “best” possible choices. Specifically, if
we choose to order the eigenvectors by decreasing size of |sj|2, then [neglecting degen-
eracy of eigenvalues (i.e., more than one eigenvector for a given eigenvalue) for sim-
plicity here at the moment],

the source vector |yg;) in Hg gives rise to the largest possible magnitude of wave
vector in Hp, and has the form |¢g,);

the source vector |y g, ) is the source vector in H g that is orthogonal to |y ) and that
gives rise to the second largest possible magnitude of wave vector in H », which has
the form |¢g,) and is orthogonal to |¢pg;);

the source vector |yg3) is the source vector in H that is orthogonal to |yg) and
lyso) and that gives rise to the third largest possible magnitude of wave vector in
Hp, which has the form |¢h3) and is orthogonal to |¢g;) and |¢pg,);

and so on.

We have therefore established the best set of possible orthogonal (and therefore zero
“crosstalk™) “channels” between the two volumes (at least “best” as given by the mag-
nitude of the inner product). Note explicitly that these channels are orthogonal to one
another, both at the sources and at the receivers.

Incidentally, in matrix terms, the SVD as in Eq. (33) can also be written in the form
Gsg = VDgiae U, (35)

where Dyjy is a diagonal matrix with the singular values s; as the diagonal elements, V
is a matrix whose columns are the vectors |¢p;), and U™ is a matrix whose rows are the
vectors (wg;| (or equivalently U is a matrix whose columns are the vectors |yg;)).

Technically, the matrices V and U' (and also U) are “unitary.” (See Appendix E.)

3.8. Sum Rule on Coupling Strengths

One very important point emerges from this algebra, which is a “sum rule” on the [s; ks
Specifically, we can show that, quite generally for finite numbers Ny and Ny of
sources and receiver points,
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Nr Ng

Ny
S= "l P =D gyl (36)
q=1

i=1 j=1

This mathematical result [Eq. (36)] is technically a consequence of the fact that the
eigenfunctions have been written in normalized form, which in turn is why the ma-
trices V and UT are “unitary,” but this is really a deeper truth, and it has several im-
portant consequences that are central to the larger discussion here.

(1) We can evaluate this sum S without even solving the eigenproblem.

(2) Having evaluated S, we can know immediately that there is an upper bound on
how many channels we could have that have at least some given coupling
strength; there could only be a finite number of orthogonal channels with any
given finite magnitude of coupling strength.

(3) Suppose we solve the eigenproblem by looking one by one, physically or math-
ematically, for the channels by some process, noting their coupling strengths.
Then, when we find we have nearly exhausted the available sum rule S, we
can stop looking for any more channels; there cannot be any more strongly
coupled channels, because there is not sufficient sum rule S left.

It might seem that this kind of sum rule is only going to exist when we consider finite
numbers of sources and receivers. However, we are going to find below in Section 6
that the operators associated with wave equations are going to have a finite result for
this sum rule even as we consider continuous functions and infinite basis sets. Indeed,
this finiteness is the defining characteristic of so-called Hilbert—Schmidt operators
(which, incidentally, are necessarily also “compact”), and we return to this point
in Section 6. So, though we continue for the moment with finite numbers of sources
and receiver points, our results are generally going to survive even as we make the
transition to such continuous source and receiver functions, with possibly infinite
basis sets.

This finite sum rule can also be regarded as the source of diffraction limits with
waves, as will become clearer below. Such limits apply both in conventional optical
situations and more generally, and this result is a central benefit of this SVD
approach.

3.9. Constraint on the Choice of the Coupling Strengths of the Channels

In looking at the sum rule, we might hope that we have the flexibility to choose how
many channels are how strong—we might want to have several channels at a weaker
coupling strength rather than a few strong ones, for example—while still “obeying”
the sum rule. However, once we have chosen a given set of source and receiver points,
or have done the equivalent for continuous functions in choosing the Hilbert spaces for
source and receiver functions, we do not have that flexibility.

The eigenvalues, which are the coupling strengths, and any degeneracies they have,
are uniquely specified when we solve the eigenproblem. The eigenfunctions are
also essentially unique, other than for the minor flexibility allowed in choosing
the specific linear combinations for eigenfunctions associated with the same degen-
erate eigenvalue.

So, not only does the sum rule constrain the overall sum of connection strengths; the
eigensolutions uniquely determine the coupling strengths of the channels if we want
them to be orthogonal (with orthogonality determined by the inner products in the
Hilbert spaces).
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Suppose we write down the “power” coupling strengths |sj|2 in order, starting from the
strongest and proceeding to weaker ones. In this list, if a given eigenvalue is degen-
erate, with a degeneracy of n, we will write it down » times [136], and give each

occurrence a separate value of the index j. So we would have a list of the form
511> > [s2? 2 oo > [P > (37)

Then, provided we include all the occurrences of a given degenerate eigenvalue (so if
we encounter degenerate coupling strengths in the list, our choice of j must be at the
end of any such degenerate group of coupling strengths), we can state that

the number of orthogonal channels (communications modes) with power coupling

strength |s|? > |sj|2isj. (38)

We cannot rearrange any linear combinations of communications modes to get more
channels that are at least this strongly coupled. If we want more such channels, then
we have to change the source and/or receiver points and/or Hilbert spaces.

4. INTRODUCTORY EXAMPLE—THREE SOURCES AND THREE
RECEIVERS

To understand how this approach works, both mathematically and physically, we can
look at a simple example, one that is large enough to be meaningful, but small enough
for explicit details. Figure 3 shows the physical layout. We have Ny = 3 point sources,
spaced by 24 in the “vertical” y direction, (with wavelength 1 = 2z /k as usual for a
wavevector magnitude k). These are separated by a “horizontal” distance L, = 54
from a similarly spaced set of Ny = 3 receiving points.

4.1. Mathematical Solution

We use Eq. (7) to calculate the matrix elements g; of the coupling operator Gigp.
Explicitly, for example, for the matrix element g5 that gives the wave amplitude
at rp; as a result of the source amplitude at rg;, noting first that

[rpi —rg3| = \/(Vm —53)? + (21 — 253)> = W4 + 52 = V412, (39)

then
Figure 3
Source points Receiving points
Tsio oTRI
Is2 ofR2
2\
Iss ofr3

y
5 5k
z

Set of three sources, spaced by 24 in the “vertical” y direction, separated from three
similarly spaced receiving points by a distance 51 in the “horizontal” z direction.
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1 exp(iklrg —rss)) 1 SXP (2”W41> 001020 — 0.00711i

813 = —_

. (40
dr |rp; —rgl 4r VA1 A (40)

Now we write distances in units of wavelengths for convenience (or equivalently, we
set A = 1). To get numbers of convenient sizes and signs, we multiply by a factor

gsr = —471'LZ = —6283 (41)
So, then,

2er€13 ~ —62.83 x (0.01020 — 0.007117) =~ —0.64 + 0.45i. (42)

Proceeding similarly for the other matrix elements, we have

1 —0.7+0.6i —0.64 + 0.45i
—0.64 + 0.45i —0.7 4+ 0.6i 1

The sum, Eq. (36), of the modulus squared of these matrix elements of Gg as in
Eq. (43) is the sum rule

S =17.67/g%. (44)

The matrix G§RG sg can be written, with a convenient scaling factor gzp,

| 2.47 —0.67 — 0.08i —0.42
22:GlrGsr = | —0.67 + 0.08i 2.72 —0.67 +0.08i |.  (45)
—0.42 —0.67 — 0.08i 2.47

Note that this matrix is Hermitian, as required. Having established the matrix G;R Ggg,
we can now use standard numerical routines to find eigenvalues and eigenvectors. The
resulting eigenvalues of G;Ggr (and of G SRGER) are

341 2.89 1.37

|SI|2:T’ |Sz|2=T, and |S3|2=T- (46)

SR 85k 8sr
Note that the sum of these is indeed also the sum rule S [137], i.e.,

341 289 137 767
==

5117 + [s2]* + Is5]* = = 5 =3 S. (47)
8srk 8sk 8sk &sr
The corresponding eigenvectors of G,Ggy are [138]
0.41 —0.71 0.58
|l[/S1> = —0.81 + 0.1i , |l//52> = 0 . and |l//83> = 0.57 —0.07i ,
0.41 0.71 0.58
(48)

which are all orthogonal to one another [139], and the corresponding eigenvectors
of GSRG;Q are
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0.41 —0.71 0.58
) = | —0.81—0.1i |, |dm)=| 0 |, and |pgs) = | 0.57 +0.07i
0.41 0.71 0.58

(49)

For this very symmetrical problem, the receiving wave vectors and the source vectors
are just complex conjugates of one another, though that is not generally the case. In
this case, the complex conjugation means that the “phase” curvatures are equal and
opposite. (The idea of phase curvature becomes clearer as we consider more source
and receiver points, so we postpone that illustration.) If we wanted to construct the
strongest ‘“‘channels” between these sources and receivers at this wavelength (or
frequency), we would

(a) choose to drive the point sources with relative amplitudes and phases given by
one of the source eigenvectors in Eq. (48), and

(b) at the receiving points, add up the signals from the different points weighted with
the relative amplitudes and phase shifts given by the corresponding receiving
eigenvector in Eq. (49).

We can also send and receive three separate channels at once through this system if we
construct appropriate systems to create and to separate the necessary signals.

4.2. Physical Implementation

To see how to create and detect the necessary signals, including running all three
channels at once, we can look at example physical systems. These are not meant
to be engineered solutions to a real problem, but they make the mathematics more
concrete physically.

4.2a. Acoustic and Radio-Frequency Systems

First, for acoustic or radio-frequency signals, we can likely generate and measure the
actual field directly. We will not consider the actual corresponding loudspeakers, mi-
crophones, or antennas for the moment, just approximating them instead by ideal
point sources and receiving elements. (We are still postponing any consideration
of vector electromagnetic fields, just considering scalar waves.)

We can then use appropriate electronic circuits that generate and collect the corre-
sponding signals (Fig. 4). In these cases, we can imagine input voltage signals
Vsimis Vs, and Vgps that represent the signals (three different binary bit streams,
for example) that we want to send on the three different “channels” in the commu-
nication between the three sources and the three receivers. We would like these signals
(e.g., the three binary bit streams) to appear as the three output voltage signals Vo1,
Virouo> and Vious at corresponding electrical outputs at the far end of the system.

Each such input signal voltage has to generate the corresponding vector of amplitudes
to drive the sources. So Vg, should generate a vector of voltage amplitudes
& Vi lwst), and similarly for the other two input voltage signals, and these three
vectors should be added to generate the corresponding set of output voltages Vs,
Vs, and Vs that drive the sources (e.g., loudspeakers) at the corresponding positions
gy, I'so, and Irgs3.

We can perform this generation of the correct vectors of amplitudes and their sum-
mation by using the “analog crossbar” circuit on the left of Fig. 4. We presume that we
can make electrical phase shifters (circles in Fig. 4), whose phase delay is indicated
inside the corresponding circle. The output of each such phase shifter is then passed as
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a voltage to drive a resistor (rectangular boxes in Fig. 4), whose conductance (i.e.,
1/resistance) is given by the value inside the box (in some appropriate units). The
other end of the resistors is connected in each case to a common “bus” line that
is a “virtual ground” input to an operational amplifier (the triangles in Fig. 4).
The operational amplifiers each sum all the currents on their input bus line and each
generate an output voltage proportional to this sum, giving the set of output drive

Voltages VSI’ Vsz, and Vs3.

At the receiving end of the system, we can construct a similar circuit. In this case the
input voltages to the analog crossbar are the outputs Vi, Vz,, and Vi3 from the mea-
sured fields at the three positions rg;, Iz, and rzs. If we have designed and set up our
circuits correctly, the corresponding summed outputs, which become the voltage sig-
nals Vzout1> Vrourzs and Vzous should each now be proportional to the original voltage
signals Va1, Vsima, and Vs that we wanted to send through this three-channel system
(just with some propagation time delay). If we make the feedback conductances in the
operational amplifier circuits all identical at some value dp, then, for equal overall
magnitudes of input voltage signals Vi, Vo, and Vs, the relative sizes of the
output voltage signals Vzouis Vrours and Vzows would be weighted by the corre-
sponding singular values s; for the jth channel through the system. (Of course, we
could compensate for the different singular values by using feedback conductances

o s; in the circuits with the output operational amplifiers R1, R2, and R3.)

Writing each of the vectors in Egs. (48) and (49) with matrix elements in “polar”
form, i.e.,

ay, exp(ify,) b exp(iniy)
[Wsq) = | a2q exp(ithy) | and |[gg,) = | by exp(iny,) |, (50)
azg exp(i93q) b3q exp(i”3q)

where the a, b, 6, and 5 coefficients are all real, we obtain the corresponding desired
settings of the phase shifts and conductances in Fig. 4.

Figure 4
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Example electrical driving and receiving circuits to form the superposition of sources
for transmission and to separate the channels again for reception. The input channels
are the (voltage) bit streams Vy,;, and the outputs are the corresponding (voltage) bit
streams Vpo,,;- The feedback conductances dg and dj, set the overall electrical gain in
transmission and reception in the operational amplifier circuits that sum the currents
on their input “bus” lines as required to form the necessary linear superpositions.
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Note that, in the receiving analog crossbar circuit, the phases are set to minus
the corresponding phases in the receiving vectors themselves. This is because, in
summing the currents in this crossbar, we are actually performing the inner pro-
duct (¢gy|Vgm), where [Vgy) is the column vector of received voltages
[Vami Vama Vamz]'» so as to extract the appropriate component of the signal.
Since the [¢g,) vector is in “bra” form (¢py,| in the inner product, we must take
the complex conjugate of the phase factors.

Hence in this way, starting out with three quite separate signals, we are able to transmit
them through the system and recover the original signals again. Note that the three
channels here have no crosstalk even though the waves from each source are mixed at
the three receiving points. This remains true even if the three “channels” in the system
have different coupling strengths (as given by the singular values s;), as they do here,
with relative power strengths of 3.41, 2.89, and 1.37, respectively. Taken together,
these three channels use up all the available power coupling strength, as given by
the sum rule [Eq. (47) or, more generally, Eq. (36)].

The mathematical function performed by each of the crossbar circuits is, of course, sim-
ply a (complex) matrix multiplication. By use of appropriate analog-to-digital and
digital-to-analog conversion, such multiplications could be performed digitally instead.

4.2b. Optical Systems

At optical frequencies, we generally cannot measure the field directly (certainly not in
real time), and circuit approaches as in Fig. 4 are not viable. Indeed, until recently, it was
not generally understood in optics how to separate overlapping optical signals (without
fundamental loss) to turn them into individual output beams, which is a process we
require at the receiver in our scheme. Similarly, it was not clear how to losslessly gen-
erate arbitrary linear superpositions of inputs to give overlapping outputs, as required at
the source. Indeed, without some apparatus to perform such functions, in optics the
multiple-channel schemes presented here would remain mathematical curiosities.

Recently, however, specific schemes have been devised for both creating and sepa-
rating arbitrary linear combinations of overlapping optical beams, and for emulating
arbitrary linear optical components [24-27]. Indeed, these schemes constitute the first
proof that arbitrary linear optics is possible [25]; the proof is entirely constructive
because it shows specifically how to make the optical system, at least in principle.

These schemes rely on meshes of two-beam interferometers, in appropriate architec-
tures and with associated algorithms [24-28] to allow the meshes to be set up. We will
not review these in detail in this article, but some key aspects are important here. In
some of the architectures, the setup of the mesh (and, if required, the calculation of the
necessary settings of the interferometers) can be entirely progressive [24-28]. The
setup of the mesh can also be accomplished by “training” the mesh with the beams
of interest [24-28], based on a sequence of single-parameter power minimizations,
without calculation or calibration.

For our present example, the electronic matrix multiplications implicit in the analog
crossbar networks at the source and at the receiver can be implemented instead using
the “triangular” source mesh and receiving mesh, respectively, as in Fig. 5(a). These
meshes, which can also be viewed as analog crossbars, work directly by interfering
beams in waveguides and waveguide couplers. The light in these meshes flows
through them without fundamental loss, and they mathematically represent “unitary”
(lossless) matrix multiplications.

In Fig. 5, we imagine that the input signals, instead of being voltages as in Fig. 4, are
the amplitudes E g1, Egmo, and Egp,3 of the waves in single-(propagating)-mode input
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waveguides. By setting up the phase shifters and interferometers appropriately, the
necessary superpositions are created as the amplitudes Eg;, Eg,, and Eg; in the output
waveguides. These amplitudes then feed the point sources at the corresponding posi-
tions rg;, Isy, and rgs.

In this example, we pretend that the outputs of those guides essentially represent point
sources of waves that we can also approximate as being scalar (which is reasonable if
we consider only one polarization for the moment). At the receiving end, we imagine
that the inputs to receiving mesh waveguides, at points r;, I'z,, and g3, are essentially
“point” receiving elements to couple light into these waveguides, with corresponding
waveguide amplitudes Eg, Er,, and Egs, respectively. The receiving mesh then per-
forms the appropriate matrix multiplication to separate out the signals (again without
fundamental loss) to the output amplitudes Eroyui1s Erourn> and Erous, recreating the
input bit streams.

In Fig. 5(b), we show one example way of making the necessary 2 x 2 interferometer
block. This block should be able to control the ““split ratio” of the interferometer—how
the input power in, say, the top-left waveguide is split between the two output wave-
guides on the right; this can be accomplished by controlling the phase angle &
(achieved by differentially driving the two phase shifters on the arms of the interfer-
ometer). The block should also independently be able to set one other phase on the
outputs; in this example, this is achieved by the “common mode” drive of the phase
shifters in the block, setting phase angle ¢ [140].

The setup of these unitary meshes is relatively straightforward [141]. Such a mesh has
exactly the right number of independent real parameters (here, nine phase shifters
altogether) to construct an arbitrary 3 x 3 unitary matrix. Such design calculations
are presented explicitly in [25] together with the self-configuring algorithms to allow
direct training.

In a real system, rather than “bare” waveguide outputs and inputs for communications,
likely one would add some optics, such as collimating lenses, in front of the wave-
guides, to avoid sending power in unnecessary directions. However, for our tutorial
purposes at the moment, we will omit such optics (though it can ultimately also be
handled by this approach by including the optics in the Green’s function for the system).

(a) Source mesh Receiving mesh
Egp — Eg "51> . Ep — Eroun
Egp 511 Eg 1o >( ry Epy R11 Eroun
n ) i
E s12 S21 Egr, >2 ry E E,
LSy .. S3))) ek Ko
)
o e
— +6/2
W id = ! -\j !
aveguide =
g L p-6/2 \—L
|1 2x2 b - 1
Phase shifter interferometer Example Mach-Zehnder 2x2
and phase shifter interferometer and phase shifter

(a) Interferometer mesh architectures to generate and superpose the necessary source
communications mode source vectors from the separate input signals on the left and to
separate out the corresponding communications mode receiving vectors on the right to
reconstruct the original channels of information. These processes work directly by
interfering beams and without fundamental loss in the meshes. (b) Key to the various
elements in (a). One example form of Mach—Zehnder interferometer and phase shifter

is shown that has the necessary functions for the 2 x 2 blocks.
|
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The kind of architecture shown in Fig. 5(a), with unitary meshes at both sides, has one
other interesting property worth noting here. There is an iterative algorithm [12],
based only on overall power maximization on one channel at a time, and working
forwards and backwards through the entire system, that allows this system itself
to find the best coupled channels. Essentially, by running such an algorithm, this sys-
tem physically can find the SVD of the coupling operator Gg between the source
points and the receiver points, without calculations. The results are then effectively
stored as the settings of the various elements in the two meshes. This algorithm also
still works even if there are other optics or scatterers between the source and receiver
points, and so gives a way of finding the best orthogonal channels through any fixed
linear optical system at a given frequency.

4.2c. Larger Systems

As we consider larger numbers of source and receiver points, the specific approaches
in Figs. 4 and 5 would face technological limits of various kinds, especially for the
purely optical approach of Fig. 5. However, practically, the ability to make large num-
bers of interferometers has been developing rapidly; working systems with up to hun-
dreds of interferometers [109—116] and small self-configuring systems [27,29,117]
have both been demonstrated recently. Extensions to thousands of interferometers
may be feasible with current technology, and that number may not represent any par-
ticular fundamental limit. Indeed, these demonstrations and the potential for expand-
ing to larger systems are reasons why we consider these “modal” approaches. We need
the modal approaches both in wireless systems, where they can be viewed as exten-
sions to MIMO (multiple-input multiple-output) antenna and communications sys-
tems, and in optical systems, where we are now able to explore such configurable
and optimizable multiple-channel systems.

Whether we choose to make systems as in Fig. 4 or Fig. 5, these kinds of systems
show the upper limits in terms of orthogonal channels and coupling strengths of what
could be achieved through such linear processing and the resulting optimum channels.
The scheme of Fig. 5 gives a method in principle of constructing arbitrary unitary (and
hence nominally lossless) transforms of a given number of inputs and outputs (given
ideal physical components). It operates with the minimum number of adjustable com-
ponents and no loss in principle. No physical linear system can in principle do better
than this scheme in constructing the communications modes for given numbers of
source and receiver points. The existence of these approaches shows in principle that
such systems could be made, both as actual physical systems up to some scale and as
thought experiments at arbitrary scales for more basic discussions.

In what follows, we look at a variety of systems with larger numbers of source and
receiver points in various different geometries. This progressively introduces many
different behaviors. Some of these behaviors at large scales can relate to those seen
in conventional optical systems, but some quite general behaviors have no particular
well-known precedents. Though there are just a few results that can be expressed in
analytic approximations for specific classes of systems (e.g., paraxial optics), there are
several broader classes of behaviors that can be understood intuitively from these
numerical simulations and some approximate heuristic results. These provide novel
insights into communicating and sensing with waves in a wide range of systems, from
acoustics, through radio and microwaves, to optics.

5. SCALAR WAVE EXAMPLES WITH POINT SOURCES AND RECEIVERS

Now we continue to larger numbers and other geometries of source and receiver points
to illustrate various behaviors.
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5.1. Nine Sources and Nine Receivers in Parallel Lines

Now we space Ng = 9 point sources over the same total length of 44 as in the three-
source case above (Fig. 3), and similarly for the Nz = 9 receiving points, which
means the points are spaced by 1/2 in each case [142].

5.1a. Channels and Coupling Strengths

Using the same numerical approach as in the 3 x 3 case above, but now witha 9 x 9
matrix, there are nine orthogonal source vectors and nine corresponding orthogonal
receiving vectors, and the sum rule S is

S =72.65/g%p. (51)
The results for the coupling strengths are summarized in Table 1.

Though there are formally nine orthogonal channels, there are only three strongly
coupled channels of approximately the same coupling strength, one other channel
about half as strong, one weak channel, one very weak channel, and three other
extremely weak channels. Though we have nine sources and receivers, we certainly
do not have nine practically usable channels. We see immediately that

increasing the number of sources and/or receivers in given source and receiving
volumes past a certain point does not increase the number of well-coupled
channels.

The inability to form further well-coupled channels is being enforced by the sum rule
S, and could be viewed as an effective “diffraction” limit.

5.1b. Modes and Beams

Once the eigenvectors |y ;) of amplitudes of the sources in each mode are calculated,
it is straightforward to calculate the resulting wave or “beam” at any point r in space.
Explicitly, with Ng point sources, and writing out the jth (column) eigenvector as

lys) =[h; hy oo hygl” (52)

(with the superscript 7' indicating the transpose, used here just to save space), the
corresponding (complex) wave at point r is

(0 :_;”Zeﬂklr—rsD

™l Ir —rg,l

hy. (53)

In Fig. 6, we have plotted the resulting amplitudes and phases of the first three (strong-
est) modes, together with the resulting waves or “beams.” In Fig. 6, (a) is mode 1,

Table 1. Mode Coupling Strengths for Nine Point Sources and Receivers

Mode Number, j Is;1*/ &%z % of S Cum. % of S
1 20.73 28.54 28.54
2 20.39 28.07 56.61
3 19.09 26.28 82.89
4 10.41 14.34 97.23
5 1.90 2.62 99.84
6 0.11 0.16 ~100
7 0.0028 0.0038 ~100
8 0.000027 0.000037 ~100
9 0.000000065 0.000000089 ~100
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(b) is mode 2, and (c) is mode 3. The wave plotted is the real part of the wave am-
plitude, so it is essentially a snapshot of the wave at an arbitrary time, here for the
values in the plane of the source and receiver points (i.e., the plane of the “paper”).

In Fig. 6, we have also chosen the phase of all the source modes (source and receiving)
to be zero in the middle of each mode [143]. Here also, because of the symmetry of
this problem, the receiving vectors are just the complex conjugates of the transmitting
vectors. We have deliberately used a scale to plot the phase of the source points so that

Source Source
amplitude phase .
Source Receiver
(a) 0 0 m 21 positions positions

(b) O 0 n

Plots of the source relative amplitude, the source relative phases, and the resulting
waves for the three most strongly coupled modes, (a), (b), and (c), respectively,
for the nine point sources and receiving points shown. The phase of each source mode
is chosen to be zero in the center of the mode. For graphic clarity, the wave is multi-
plied by \/m, where z is the horizontal position relative to the source plane; the actual
wave decays in amplitude from left to right, and the real part of the wave is plotted in
false color. To avoid singularities, the waves just next to the source are not shown, so
the positions of the sources, as shown, are just outside the graphed region on the left.
The source amplitudes of the points in the “source amplitude” and “source phase”
plots are also indicated using an amplitude false color of the points.
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27 of phase corresponds to the same distance on the graph as one wavelength in the
wave plot. This enables us to compare “phase curvatures” on the source vectors with
the actual phase curvature as seen by eye on the wave plots.

With this larger number of sources and receivers, though without increasing the over-
all “size” of the source and receiving spaces, we can get intelligible behavior of the
waves, including relatively clear “phase fronts” in the wave propagation. Mode 1 and
mode 2 have almost exactly the same coupling strength, with mode 1 being (possibly
surprisingly) just slightly stronger. Mode 2 is the simplest, corresponding to a “single-
bumped” beam in the region between the source and receiver positions. Mode 1 is a
“two-bumped” beam, with the upper and lower halves having opposite sign.

Note that the solution of these eigenproblems has given the source vector a “phase
curvature” that, for these first two modes, leads to a beam “waist” approximately in the
middle horizontally, though, by eye, the beam in mode 1 is wider “top to bottom”
throughout than that of mode 2. Again, the phase curvature of the source for these
two modes is such that, by eye, it is similar to the phase curvature of the wave. Mode 3
corresponds to a “three-bumped” beam, though the behavior overall is not so simple to
describe as that of modes 1 and 2. Note that the beam in mode 3 in particular is nearly
filling all the space between the source points and the receiver points.

The calculations also show that the corresponding receiving vector in each case has
the opposite phase curvature to that of the source. In general,

the orthogonality of these three modes at both the source and receiver points is
obvious graphically since they correspond to one, two, and three “bumped”
beams over the lines of sources and receivers.

Note, incidentally, that

the solution of the singular-value decomposition problem has “found” the necessary
phase curvatures of the sources and corresponding receiver amplitudes so as to maxi-
mize the power coupling. These curvatures are not artificially put into the problem.

We can loosely interpret some of what is happening with these modes as diffraction
limits. The beams associated with modes 1, 2, and 3 are able to remain substantially
within the space between the source points and the receiving points (at least in this
two-dimensional plane). After these three modes, however, attempts to create more
orthogonal channels lead to waves that cannot be substantially contained in this way,
and they start to “miss” the receiver points, as we will illustrate below for another case.

Now, point sources at different points in space are in one sense automatically orthogo-
nal since they do not overlap; generally, for two non-overlapping functions f'(x) and
g(x), such as small or “point” sources at different points, an inner-product integral
such as [ f*(x)g(x)dx is zero, giving orthogonality. Furthermore, each different point
source is mathematically a vector with one “one” in one unique position and so is
orthogonal to the other point-source vectors. However, a key point is that

though the individual different point sources themselves can be orthogonal, the
waves they generate in the receiving space are not necessarily orthogonal. To
establish just what actual orthogonal sources give orthogonal waves in the receiv-
ing space, we need to perform the SVD, as we have done here.

We can usefully illustrate more behaviors of such modes, and this becomes somewhat
clearer if we use a double line of sources as in Fig. 7. A single line of point sources like
those in Figs. 3 and 6 actually broadcasts just as effectively “backwards” (i.e., to the
left in these figures) as it does to the right [144]. To see more clearly what else is
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happening in the generated waves, we can first avoid such backwards waves. A double
line of sources allows the sources to take the form of a “spatio-temporal dipole,” which
can suppress the backward (leftward) radiation [145-147].

In Fig. 7(a) we show the “single-bumped” mode with such a “double line” set of
sources, which is analogous to the similar mode in Fig. 6(b) [148]. We also show,
in Fig. 7(b), the next most strongly coupled mode (after these first three), which
has only 14.4% of the sum rule. We can see here that in this mode, significant parts
of the beam are missing the receiver positions, in two angled parts that are just

(a) Source Source
amplitude phase

0 -T 0=

(b) Source Source
amplitude phase

0 -T 0=

Two example modes using a double line of sources. (a) “Single-bumped” mode.
(b) “Four-bumped” mode that is only approximately half as well connected as the first
three modes. (As can be seen, large parts of it miss the receiver positions entirely.) (As in
Fig. 6, the real part of the wave is plotted in false color, and the wave is multiplied by
\/H for graphic clarity.) The use of a double line of sources avoids substantial “left-
propagating” waves for these modes, making the beam behavior clearer in this larger
picture. To avoid singularities in the graphics, the wave is not plotted in the region of the
white rectangle. The two lines of sources are spaced by a quarter wave. In the plots of
the source phase, the “left” column of sources lag the phase of the right column of
sources by approximately 90° (z/2), and the amplitudes are approximately equal
and opposite. [In (b), we have joined the amplitude points in a given vertical column
of sources by dotted lines to guide the eye.] The fact that the sources within a given
“left-right” pair have opposite amplitudes and are phase-delayed in this way comes out
of the numerical solution, and is not a starting constraint. This behavior is typical of
“spatiotemporal dipoles” [145], and the calculations have “found” these as the best

sources here.
|
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overlapping with the top and bottom receiver positions; this behavior is consistent
with the power coupling strength here only being approximately half of that of
the first three strongly coupled modes.

This fourth mode in Fig. 7(b) illustrates another point. Note that, in this case, the beam
is quite clearly not symmetrical about the center between the sources and receivers.
(This asymmetry is not because we have different numbers of sources and receivers—
similar behavior is seen with equal numbers of both.) Note that

even with identical, symmetric source and receiver volumes and/or numbers,
there is no requirement that the resulting beam for any given communications
mode is similarly symmetric from “left” to “right.”

With these first four modes, altogether ~97.16% of the available sum rule has been
used up. The next (fifth) mode looks somewhat similar to Fig. 7(b), though with one
more “bump,” and in this case, the upper and lower angled beam parts almost entirely
miss the upper and lower receiver points. This fifth mode consumes ~2.67% of the
sum rule, which leaves the sum rule therefore essentially exhausted, with only just
over ~0.17% of the sum rule to be divided among the remaining four possible
orthogonal modes. (We will return to look in more depth at such very weakly coupled
modes in a later example.)

5.2. Two-Dimensional Arrays of Sources and Receivers

As another example, we can look at “planes” of source and receiver points, as in
Fig. 8. Here we have arranged 17 x 17 = 289 source and receiver points (so
Ng = Ny = 289), each spaced by the wavelength 4, to give parallel 164 x 164 square
source and receiver “surfaces” positioned 504 apart. Now we plot, in false color, a
snapshot (the “real part”) of the amplitude of the wave on the receiver “plane” for
each of the first 12 most strongly coupled modes [Fig. 8(d)], in decreasing order of
coupling strength. Also shown, in Fig. 8(c), is a graph of the relative magnitudes of the
corresponding “power coupling strengths” [149] |sj|2, expressed as a percentage of
the total available sum rule S for this problem.

The most strongly coupled mode, mode 1, is a simple “single-bumped” beam. An
early heuristic approach to understanding how many independent “channels” there
are between two surfaces is due to Gabor [150]. In Gabor’s approach, he asks first
what would be the minimum “diffraction-limited” size of spot one would be able to
form on the receiving surface using a source that is the size of the source surface. Then
he asks how many such spots one could lay out on the receiving surface if those are to
be approximately non-overlapping. If we interpret mode 1 here as approximately a
“diffraction-limited” spot, then by eye in Fig. 8(b), we might reasonably expect that
we could fit about nine such spots within the square “receiver” region, roughly imag-
ining a 3 x 3 array of such spots to fill that square region. In fact, this heuristic is a
reasonable guess (and this correspondence is already known [5]). We will return to
discuss such heuristics generally below.

Looking at Fig. 8(c), we see that there are roughly nine modes that are within just over
a factor of 2 in relative power coupling strength (i.e., from 12.09% of S down to 5.61%
of S). After that, there are about six weakly coupled additional modes, and then the
coupling strengths fall to very low values.

In all of these modes, the wave functions are orthogonal to one another within the
square receiver region. This is even true as we go to the more weakly coupled modes
[e.g., modes 10, 11, and 12 in Fig. 8(d)]. From these views, it may not be obvious what
is happening to the rest of the coupling. In part, for these more weakly coupled modes,
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there is significant power in the regions outside the areas plotted in Fig. 8(d). Though
the solutions are giving orthogonal channels into the receiver region, they are also
broadcasting significant power elsewhere. With these sizes of source and receiver re-
gions and this separation between them, it is not possible to keep the wave within the
receiver region for these higher-numbered modes (as we will see explicitly below for
another example.)

In this symmetric and “square” problem, we see behaviors in numbers and symmetries of
beam forms that are typical in general of mode forms also found in related resonator
problems [35,36]. Because of the finite size of the region, however, the higher-numbered
well-coupled modes, such as modes 5 to 9, are strongly influenced by the finite size and
shape of the receiver region, as also are the more weakly coupled modes 10-12.

We can also guess (correctly) that mode 1 here is essentially as well coupled as it could
be. In this case (other from the backward wave from this single “sheet” of sources),

Figure 8
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(a) Layout of two-dimensional arrays of 17 x 17 = 289 point sources and receiver
points, each on a square array, with points separated laterally by the wavelength 4,
and the arrays separated, on the same axis, by 504. (b) End view of the (real part of the)
field amplitude for mode 1, with the receiver points superimposed. (c) In order, for the
first 24 communications modes, the relative power coupling strengths (|sj|2), as a per-
centage of the power coupling strength sum rule S. (d) False color plots of the (real
part of the) field amplitude at the receiver plane, together with the corresponding per-
centage of the sum rule. The dashed square represents the extent of the array of
receiver points in each case, as in (b). Plots are relative to the maximum in each mode,
and the false color amplitudes do not represent the relative coupling strengths of dif-
ferent modes.
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there is no “wasted” wave. Essentially, all the (“forward”) wave from the sources is
indeed focused into the receiver plane. The corresponding 12.09% of S in |s; |* there-
fore corresponds to a well-coupled communications mode, and we could deduce
immediately that we could not expect more than 100/12.09 ~ eight or nine modes
that are this well coupled. In fact, we do see about eight or nine relatively well-coupled
modes, with strengths falling off somewhat with increasing mode number.

Not surprisingly with such square arrays of points, there are obvious degeneracies.
Modes 2 and 3 have the same coupling strength, as do the pairs of modes 7 and
8 and modes 10 and 11. The resulting beams in each pair also have shapes that
are related by simple symmetries (e.g., rotating by 90°). We will call this particular
kind of degeneracy a symmetry degeneracy (in part to distinguish from another degen-
eracy that emerges later).

5.3. Paraxial Behavior

A common situation in optics is that the lateral sizes of the input and output spaces are
relatively small compared to the separation between those spaces. Such situations are
often called “paraxial” because much of the propagation is close to being parallel to
the axis between the sources and receivers. Also, in optics often such input and output
spaces are approximately surfaces (or lines) that are parallel to one another, and are
both centered on the same axis that runs between them. The situations we have si-
mulated so far (as in Figs. 3, 6, 7, and 8) are not well approximated as being paraxial
(the lateral extent of the source and receiver spaces is somewhat too large for the
separation between them). The situation of Fig. 9 is, however, approximately paraxial;
the lateral extent here, 48 wavelengths, is relatively small (1/4) compared to the sep-
aration of 192 wavelengths. The paraxial case has a number of simplifying properties
compared to the more general cases, and we can use it to illustrate several behaviors.

In Fig. 9(a) we show the positions of the sources and receivers, together with the beam
for one calculated mode (actually, the “first” mode—the one with the largest magni-
tude of singular value). As in Fig. 7, we have used two lines of sources to allow sup-
pression of the generation of “backwards” waves (i.e., to the left), and the sources in a
line are spaced vertically by 1/2 to suppress generation of spurious “higher-order
diffraction” waves at large angles. In Fig. 9 we now are plotting intensity (presumed
x |¢(r)|?, where ¢(r) is the calculated complex wave amplitude at each point r).
(Plotting the real part of the field would lead to a graph with too much structure
on the very small wavelength scale for a graph of these dimensions.)

5.3a. Behavior of Singular Values

Figures 9(b) and 9(c) show the behavior of the magnitudes of the singular values. The
mode numbers correspond to sorting the modes in decreasing order of the magnitude
of the corresponding singular value. So, mode 1 has the largest singular value, and
subsequent modes have progressively smaller singular values. Figure 9(b) shows the
modulus squared of the singular values for each mode, |s]-|2, shown as a percentage of
the sum rule S for this set of sources and receivers [as calculated using Eq. (36)].
Figure 9(c) shows the relative magnitude of the singular values of the modes, plotted
on a logarithmic scale.

The relative sizes of the singular values in Figs. 9(b) and 9(c) show two striking behav-
iors: (1) the singular values are nearly constant and equal up to a relatively abrupt
threshold, here around mode 12 or so, after which they drop off rapidly with increas-
ing mode number; (2) for larger mode numbers, in Fig. 9(c) we see that this drop-off
becomes extremely rapid, with an apparently approximately exponential decrease in
the singular-value magnitude at large mode numbers.
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5.3b. Forms of the Communications Modes

Strongly coupled modes: In Fig. 10, we have plotted the beams for the odd-numbered
modes (in decreasing magnitude of singular value), as in Fig. 9(a). At least for
modes 1 through 11, we can count the number of “bumps” relatively simply, which
is an odd number in these cases. (The even-numbered modes show similar behavior,
though with even numbers of bumps.) The order of modes 1 through 9 is somewhat
surprising, being perhaps “backwards” compared to what we might expect. However,
we should note that these modes have almost identical singular values, so this is a
nearly degenerate eigenproblem, at least for modes 1 through 10, so the order of these
modes may have little physical importance.

Weakly coupled modes: More strikingly, though, and more importantly for our dis-
cussion, once we pass mode 11, the magnitude of the singular values starts to drop,
and, consistent with that drop, the intensity starts to “miss” the line of receiving points.

It might seem that there is no intensity left at the line of receiving points for modes 13
and above, especially in the “middle” vertically; certainly it is so small that after mode
13 the intensity at the receiver points does not show up on the graphics in Fig. 10.
However, if we plot the actual modes at the sources and at the receiver points, we see
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(a) Positions of sources and receivers superimposed on the beam intensity in the plane
of the source and receiver points for a given mode. Here the intensity of the mode
multiplied by the horizontal distance z from the source plane is shown in false color.
This multiplication by z compensates in the graphics for an underlying fall-off in in-
tensity proportional to ~1/z with such lines of sources. A small region immediately
adjacent to the sources is not plotted so as to avoid singularities and/or some very large
amplitudes there in the graphics. The sources consist of 97 pairs of sources in two
vertical lines. The sources in a vertical line are spaced by 4/2 (1 is the wavelength),
and the two lines of sources are spaced horizontally by 1/4 (similarly to those in
Fig. 7). (b) Histogram of the modulus squared of the singular values |Sj|2 for the differ-
ent modes (numbered in decreasing order of the singular-value magnitude). These are
shown as a percentage of the total sum rule S. (c) Relative magnitude of the singular
values of each mode, compared to the first (and largest) singular value, and plotted on

a logarithmic scale.
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that there is field at the receiver points, with well-defined if progressively very weak
behavior for these higher-numbered modes.

Before plotting those higher-numbered modes, we should note the behavior of the
phase curvature of the modes. For the strongly coupled modes 9, 8, 7, 6, 5, 4, 3,
2, 1, and then 10 and 11, the phase of the sources and of the waves at the receiver
points goes (in this order) from being nearly a “flat” phase front for the approximately
“single-bumped” mode 9 to being progressively more curved, until by mode 11 and
for all the subsequent modes, the phases of both the source and the receiver points
show what could be described as approximately confocal curvature: for a pair of sur-
faces or phase fronts, the center of curvature of one surface or phase front is the center
of the other surface [Fig. 11(a)]. We can formally describe the confocal curvature at
the source and receiver planes using

Figure 10

Intensity graphs of the beams associated with the odd-numbered modes 1-19 for the
source and receiver points, as in Fig. 9(a) (with intensities multiplied by the distance z
from the sources for graphic clarity). Relative intensities are rescaled for graphic
clarity for each mode plotted, so the absolute “brightness” has no meaning in compar-

ing different modes.
____________________________________________________________________________________|
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cs(xg,yg) = exp [—ik(w /xg —I—y% + 1% — L>] (54)

and

cr(xp, Vr) = €xp [ik<\/x§ +ya 4+ L2 — L)], (55)

respectively, where yy is the vertical coordinate in the source plane in Fig. 11, and xg is
similarly the coordinate in the direction into the “paper” in the source plane in
Fig. 11(a), and similarly for the coordinates y and x in the receiver plane. By taking
out the confocal curvature (by multiplying by c§(xg, ys) at the sources and by cj(xg, yz)
at the receiver points), and by choosing an overall phase factor that makes the resulting
wave real in the middle of the line of receiver points vertically, we can conveniently plot
(Fig. 12) both the source and the receiver amplitudes for these modes from mode 11
onwards using just the real part of the source and receiver amplitudes [151].

In the plots of Fig. 12, we see that the actual relative amplitudes of the sources and of the
waves at the receiver points are remarkably similar in form in each case (though pos-
sibly with very weak amplitudes at the receivers). This similarity is despite the fact that
the total wave when we consider the region outside the receiver region is certainly not
symmetric from left to right in Fig. 12 for the modes beyond mode 11. The nominal
behavior of the form of these source and receiver vectors is also relatively straightfor-
ward and similar for all of these higher-numbered modes—we see a relatively sinus-
oidal behavior near the center, with correspondingly more “bumps” for the higher-
numbered modes, and with some increase in amplitude towards the edges (the top
and the bottom of the source and receiver regions in Figs. 9 and 10) in all these modes.

The major difference between these higher-numbered modes, other than the propor-
tionate increase in the number of “bumps” is, however, that the singular value drops
rapidly with increasing mode number. To see the actual receiver amplitudes for the
higher-numbered modes for normalized source vectors, we should multiply these nor-
malized receiver amplitudes by the magnitude of the singular values. Graphically, that
makes the receiver amplitudes essentially invisible, as in Fig. 10 for these higher-
numbered modes.

So, though the source and receiver eigenvectors behave in a straightforward and sim-
ilar manner for these higher-numbered modes, the coupling strength vanishes very

Figure 11
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quickly with increasing mode number. The effect of this behavior for these higher-
numbered modes becomes very important when we consider below what happens as
we try to pass the “diffraction limit,” and we return to this point below.

5.3c. Additional Degeneracy of Eigenvalues— Paraxial Degeneracy

We noticed above in considering a two-dimensional problem with square source and
receiver “areas” (Fig. 8) that we had obvious two-fold degeneracies that are associated
with the symmetry of this problem. However, in this paraxial example (Fig. 9), we are
seeing an additional behavior. Modes 1 to 10 are approximately degenerate—their
coupling strengths or singular values are nearly the same. This approximate

Figure 12
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Graphs for the source function amplitudes (left column) and the receiver function
amplitudes (right column) for modes 11, 13, and 19 for the source and receiver points
as in Figs. 9 and 10. The points are the amplitudes, and the lines join adjacent points to
guide the eye. Underlying approximately confocal phase curvatures have been re-
moved in each case, and the set of points in each graph has been multiplied by a
constant phase factor to make the resulting points approximately real for graphic
clarity. Only the real parts of the source and receiver function amplitudes are plotted.
The receiver amplitudes are for the normalized vector of amplitudes. The vector of
source amplitudes is also normalized, but because only the amplitudes of the “right” of
the two vertical lines of sources are plotted here, this vector is additionally multiplied
here by +/2 to give the source function amplitudes plotted here for clarity in com-
parison since only half of the sources are plotted. The |s;| are the magnitudes of

the singular values for each mode.
|



718 Vol. 11, No. 3 / September 2019 / Advances in Optics and Photonics Tutorial

degeneracy does not obviously result from symmetry, and we call it a paraxial
degeneracy [152].

This paraxial degeneracy is common in paraxial problems with either parallel surfaces
or parallel volumes of uniform thickness, as we will illustrate below with more ex-
amples. This paraxial degeneracy generally applies only to well-coupled modes.
Unless the modes are also symmetry degenerate, the paraxially degenerate modes
are generally only approximately degenerate—that is, they only approximately have
the same coupling strength. However, the eigenvalues can be so nearly the same,
typically up to some specific number, that from a physical point of view they can
practically be thought of as degenerate. As a result,

for the well-coupled modes in simple paraxial cases, there will also be many ap-
proximately equivalent ways of choosing the communications modes.

Again, just because there can be multiple approximately equivalent ways of choosing
these modes does not change the counting of the modes or channels.

Generally, these two concepts of symmetry and paraxial degeneracy are different and
overlapping. We can have symmetry degeneracy that is part of paraxial degeneracy, as
in well-coupled modes between square apertures. We can have symmetry degeneracy
that is not part of paraxial degeneracy, as in two very weakly coupled modes that may
nonetheless have equal coupling strengths because of symmetry. We can have para-
xially degenerate modes even if the “apertures” in the problem have no particular
symmetry (as we will illustrate below); in such cases, there would be no symmetry
degeneracy.

The number of approximately degenerate modes in paraxial problems with large aper-
tures is essentially the same thing as the “space-bandwidth product” as used in Fourier
optics, and can be described by a concept we will call the “paraxial heuristic number”
Ny, which we discuss next.

5.3d. Paraxial Degeneracy and Paraxial Heuristic Numbers

To establish the intuitive idea of the paraxial heuristic number, suppose we have two
point sources, on the surface of the source space, separated in the y direction by a
distance d,. This separation d, is presumed small compared to the separation L be-
tween the source plane and the corresponding receiving plane on the incident surface
of the receiving volume. (See Fig. 13.) Then, as in a “two-slit” diffraction, the result-
ing interference pattern on the receiving surface will approximately take the form,
in the y direction,

d, d,
d(») xexp | ik (y - 5) +L* | +exp | ik <y + 3> + L% ], (56)
Figure 13
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where in all denominators we approximate the distance » between points on the two
planes by L.

Taking the approximation /1 + € ~ 1 + ¢/2 for small ¢, we obtain the usual two-slit
intensity pattern result for small y:

2 2 ﬂdsy 57
0P s cos? (%), )
So the intensity “fringe spacing” or periodicity on the receiving plane is
AL
d, =—. 58
by (58)

So, if the source space extends from —Ayyg to Ay in the y direction, and the receiving
plane similarly extends from —Ayy to Ay, then the maximum number of intensity
fringes we can form in the receiving space in the y direction, with sources spaced as far
as possible on the source plane, i.e., at distance d; = 2Ays, is Ny, = 2Ayz/d,, i.e.,

(2Ay5) 2Ayg)

Ny, = ——————. 59
Hy AL ( )
This number Ny, is our paraxial heuristic number N of well-coupled channels
for source and receiver spaces that are one-dimensional “lines” in the y direction.

It represents the maximum number of (intensity) “bumps” we could reasonably form
in the receiver space from such “two-slit” interference from two points in the source
space, for such “line” source and receiver spaces.

Note, for example, that, for the situation in Fig. 9, we would have

48 x 48
Ny = 4848 _

)=y = 12 (60)

We could therefore regard it as not surprising intuitively that the number of strongly
coupled channels, as indicated by the strengths of the singular values, is ~12 in the
numerical results of Fig. 9.

Of course, considering a similar “two-slit” interference for sources spaced in the x
direction instead would lead to a similar result there. With source and receiver space
sizes in the x direction 2Axg and 2Axy, we would obtain a similar paraxial heuristic
number for that direction,

_ (2Ax5)(2Axg) ‘

N
Hx AL

(61)

We can then take one more step, asserting that we can reasonably postulate that
for rectangular surfaces the corresponding paraxial heuristic number would be the
product

NH - NHxNHy' (62)

In this rectangular case, the areas of the surfaces are, respectively, for the source and
receiver spaces

A = (2Axg) x (2Ayg) and  Ap = (2Axz) x (2Ayp). (63)
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Then we can write

ASAR
-2

Ny (64)

This number N is our paraxial heuristic number of well-coupled channels for
planar source and receiver spaces.

Though we have provided a rationalization of this paraxial heuristic number N only
for the cases of rectangular source and receiver surfaces, we assert that we can also use
this as a useful characteristic number even when the source and receiver surfaces are
not rectangular. The numerical calculation examples below will empirically illustrate
the extent to which this number is useful in these cases.

We can also usefully write Eq. (64) using solid angles. In a paraxial approximation,
the solid angle subtended by one surface of area 4 at another surface or point at a
(perpendicular) distance L is Q ~ 4/L?. So, for the solid angles Qg and Q subtended
by the source and receiver surfaces, respectively, at the other surface, we have, as in
Fig. 14,

Qg ~Ag/L? and Qp~Ag/L%. (65)

So we can write Eq. (64) in the alternative forms
(66)

We can also consider the source and receiver solid angles per “channel,” Qg; and Qp;,
respectively, which we simply define as

Q 22 Q 22
QS] :7S — and QRI :NiR:Z,
H N

Ny Az (67)

and which will be useful for a comparison later.

Paraxial heuristic numbers with rectangular surfaces: Figure 15 shows the calculated
coupling strengths |s,|> for several situations with rectangular or square source and
receiver surfaces under approximately paraxial conditions. In each case here, we have
approximate paraxial degeneracy up to the paraxial heuristic number of modes N,
after which the coupling strengths drop rapidly.

Note that this behavior is similar (i) for both rectangular and square source and
receiver spaces, (ii) for aligned rectangular spaces [Fig. 15(b)], and (iii) where one

Figure 14
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is rotated by 90° [Fig. 15(c)]. For larger spaces, as in Fig. 15(d), the paraxial (approxi-
mate) degeneracy of the |s,|? is particularly smooth and relatively constant up to N ;.

Other planar shapes of source and/or receiver spaces in paraxial problems: As we
move to source and/or receiver spaces of different shapes, but still with plane-parallel
surfaces, we see (Fig. 16) that the paraxial (approximate) degeneracy is retained,
though possibly up to a number of modes somewhat smaller than the N value cal-
culated from the areas using Eq. (64). Ny still remains a useful approximate guide to
the number of strongly coupled modes, however. The case of an “L” shaped source
space [Fig. 16(a)] shows a slightly less uniform set of coupling strengths within the
first Ny modes than for the “rectangular” cases (Fig. 15), but still shows an abrupt
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drop starting at N . Once we introduce a circular source area [Fig. 16(b)], the initial
drop in coupling strengths near Ny is less abrupt, and we have fewer modes with
paraxial (approximate) degeneracy. This smoother drop in strengths is wider when
both source and receiver spaces are circular [Figs. 16(c) and 16(d)]. (We find that
this less abrupt drop with the circular spaces is retained in other similar simulations
with different sizes and separations.) So, empirically,

the very abrupt drop in mode coupling strengths at N appears to be a conse-
quence of areas that are rectangular, but N remains a useful guide to the number
of strongly coupled modes for other shapes.
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Effect of thickness on paraxial degeneracy: So far, we have considered only uniform
“sheets” of sources (or pairs of sources) and receivers. It is, however, straightforward
to simulate other situations. For example, we can use a cubic lattice of source points
that fit within some other shape. Figure 17 shows various cases in which the two
circular faces of the source and receiver spaces retain the same size and separation,
so the paraxial heuristic number Ny is the same in all these cases.

In Fig. 17, we see that changing from a circular set of sources (the red line and points)
to a cylindrical one (the dashed gray line) makes little difference to the relative strengths
of the various modes. The (approximate) paraxial degeneracy in both of these circular
cross-section cases is good up to about mode 20, illustrating that a finite but uniform
thickness of the source volume can retain the existing paraxial degeneracy. However,
as we change to a non-uniform thickness of the source volume, given here by using
ellipsoidal bounding volumes of increasing thickness (p, in units of the circle radius),
the paraxial degeneracy is progressively lost. Little evidence of such approximate
degeneracy is left by the pp = 0.45 case, and there is essentially no such paraxial degen-
eracy by the pr = 1.5 case [153]. These simulations illustrate, then, that

paraxial degeneracy is a characteristic of paraxial systems of uniform thickness,
but the paraxial heuristic number N5 remains a good indicator of the number of
strongly coupled modes, even if that coupling is not uniform between the differ-
ent modes.

Strengths of weakly coupled modes: We have already seen in Table 1 for the case of
nine sources and receivers in a line, and in the similar case of Fig. 9(c) with 97 sources
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and receivers, that, once we pass beyond the well-coupled modes, the singular values
(or coupling strengths) drop off rapidly. For these “one-dimensional” (line) source and
receiver cases, this drop-off becomes apparently exponential. This exponential behav-
ior becomes quite general as we move to larger numbers of sources and receivers in
these geometries. Three cases of progressively increasing N, are shown in Fig. 18.

Note first that all three of these cases show clear paraxial degeneracy, with obviously
nearly equal singular values for modes 7 up to very nearly Ny,. As n increases, the
drop-off in singular values near Ny, is very abrupt, increasingly so on these graphs as
we increase Ny, by using larger source and receiver spaces (though we have also
increased their spacing to keep the relative geometry comparable).

Once the singular values start dropping off, they tend to decrease exponentially with
increasing n. The dashed lines in Fig. 18 are exponentials given by

h(n) = 8 exp[—0.811(n — 0.985N ;,)]. (68)

(This formula is not derived, nor is it a fit to the calculations; it is simply heuristic,
being judged by eye to represent the form of the decay. However, with one set of
numerical coefficients, it approximately models the decaying exponential in all three
cases.) The factor 0.811 in the formula Eq. (68) means that, between each successive
mode in this decaying region very near to and after n = Ny,, the singular value in all
three cases decreases by a factor exp(0.811) ~2.25; we can see this behavior in the
equal vertical spacing of the successive points on the right in the logarithmic-scale
graph in Fig. 18. [In Eq. (68), the factor of 0.985 accounts for the fact that the
exponential decay starts slightly before Ny, in each case [154].]

As a practical matter, then, once Ny, becomes a significantly large number (e.g., in the
hundreds), there really will be essentially no usable modes beyond N ,, for this case of
parallel one-dimensional source and receiver spaces.

Figure 18
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Plots of the relative size of the singular values for several different approximately
paraxial pairs of lines of source and receiver points, as a function of the mode number
n compared to the paraxial heuristic number Nz, for each pair of source and receiver
lines, on both linear (left graph) and logarithmic (right graph) scales. The values are
shown as points, with the solid lines in the linear graph joining them to aid the eye.
The dashed lines are exponential functions given in the text. Note that, because the
fall-off of the singular values is very rapid above N, the horizontal scale is expanded
to show the behavior just around N . Three cases are plotted for different lengths of
source (w,) and receiver (w,) lines and separation (L), as sketched on the left.
Red points and lines (upper traces): wy = w, = 10241, L = 40964, Ny, ~256.
Blue points and lines (middle traces): w, = w, = 20484, L = 81924, Ny, ~512.
Orange points and lines (lower traces): wy = w, = 40964, L = 163844, Ny, ~ 1024.
The number of source and receiver points used in the calculations was 513 (red),
1025 (blue), and 1036 (orange).
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For two-dimensional source and receiver spaces, such as square arrays, Fig. 19 shows
that there is also a strong fall-off of the singular values above N, with an underlying
exponentially decaying form, though in this case in a “staircase” curve. The dashed
lines in Fig. 19 are exponentials given by

h(r) = 4 exp <—§%> (69)

[Again, this formula is not derived, and is simply heuristic, judged by eye to show an
approximate trend, though again only one set of coefficients (the numbers 4 and 3/5) is
used for all three curves.] The “staircase” behavior and the +/N; in the denominator in
the exponential can be rationalized [155].

In this two-dimensional case, then, the fall-off in the coupling strengths is not so
abrupt as in the case of the one-dimensional source and receiver spaces, but it still
has a strongly exponential underlying form. Again, once we pass significantly beyond
n & Ny, the coupling strengths become very weak, with an underlying exponential
fall-off.

In Fig. 19, in addition to plotting the relative strengths of the singular values between
equal-sized square source and receiver spaces, we have also plotted one additional set
for a case in which we have made the receiver “square” twice as large in linear di-
mension, but at double the distance (as shown by the gray points in the graph on the
right). In this case, the solid angle subtended by the receiving space at the source space
is retained; hence this additional case has the same paraxial heuristic number N as
the “orange” points and lines. We see that, indeed, the orange and gray relative sin-
gular values have very similar behavior. This similarity illustrates an important point.
All of the modes we are showing here, including the ones past Ny on these curves,
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paraxial square arrays of source and receiver points, as a function of the mode number
n compared to the paraxial heuristic number Ny for each pair of source and receiver
squares, on both linear (left graph) and a logarithmic (right graph) scales. The values
are shown as points, with the solid lines in the linear graph joining them to aid the eye.
The dashed lines are exponential functions given in the text. Note that the horizontal
scale is displaced to show the behavior near to and above N ;. The square source and
receiver spaces have linear dimensions w, and w,., respectively, and separation L, and
the points are equally spaced on square lattices in each case, and with an equal number
of source and receiver points N. Red points and lines (upper traces): w, = w, = 404,
L =1604, N =441, Ny =100. Blue points and lines (middle traces):
wy = w, = 604, L =2401, N =961, Ny = 225. Orange points and lines (lower
traces): wy = w, = 804, L = 3204, N = 1681, Ny = 400. Gray points (right graph
only): w, = 404, w, = 804, L = 6401, N = 1681, Ny = 400.
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are propagating modes; their amplitudes are falling off in an inverse-square fashion.
If they did not do that, then the orange and gray “curves” would have different forms.
In particular, we can restate this point as follows:

These weakly coupled modes are not in general evanescent in the “far field.”

We might have thought that the exponential fall-off in the singular values was some-
how associated with exponential fall-off in the field amplitudes with distance. In that
case, the well-coupled modes with a “diffraction angle,” which have ordinary inverse-
square behavior, would remain similar in their coupling strengths as we increased the
distance (while retaining solid angle), but the weakly coupled modes would not.
However, the weakly coupled modes show very similar relative coupling strengths
(as we increase the distance while retaining the solid angle)—in fact, slightly stronger
in this numerical example for the case of the more distant but larger receiving surface.

There is some discussion in the literature of what is equivalent to our exponential fall-off
in the singular values past our heuristic numbers, at least in the “Fourier-transform” view,
[156-158] for simple apertures [157] or some higher dimensional structures [158].

5.3e. Use of Point Sources as Approximations to Sets of “Patches”

So far, we have discussed point sources and point receivers because they enable a
relatively straightforward set of “toy” problems to illustrate various behaviors. Below
we will consider the mathematics of continuous sources more deeply, and to get that
correct, we need several additional concepts. However, we can already argue that, at
least under some circumstances, such point sources and receivers are some reasonable
approximation to a situation in which we have uniform source “patches” covering the
source surface and similarly for a receiving surface. In other words, we can argue that
a point source in the middle of a “patch” can be a good approximation to a uniform
source that covers the patch, and that a similar approach can also work for uniform
receiving “patches.”

We can construct a heuristic argument, at least for the paraxial case, to get the char-
acteristic maximum separation we need between our point sources if they are reason-
able to approximate continuous source line segments on a “line” source (e.g., as in
Figs. 9, 10, and 18) or a uniform “patch” source (e.g., as in Figs. 15, 16, and 19). This
argument is based on keeping the variation in the path length to the receiving line or
surface less than half a wavelength for two adjacent point sources (or, equivalently,
between the extreme ends of the line segment or patch).

For a line source of total (lateral) length w (e.g., the length of 484 in Fig. 9) and sep-
arated from the receiver space by a distance L (e.g., the distance 1924 in Fig. 9), and
for a paraxial condition in which w < L, we can argue (Appendix B) that the distance
d, between the source points should obey

d, < AL/2w. (70)

We can presume that a similar constraint applies in each direction for a two-dimen-
sional source, using different w in each direction if the overall source has different
sizes in the two directions.

For the paraxial situations above in Figs. 9, 10, 12, and 15-19 where L/w ~ 4, we
should therefore have a separation between the point sources of d,, < 21 if those point
sources are reasonable to approximate uniform patches. For the “line” sources in
Figs. 9, 10, 12, and 18, we have 1/2 source spacing, so we easily satisfy Eq. (70).
In the various “area” examples, Figs. 15-17 and 19, where the source spacings used
are ~24 or slightly larger, we are just on the edge of violating this simple criterion.
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We could follow through similar arguments for the idea of replacing the point receiv-
ers with uniform patches of continuous “receivers,” with a similar result. So,

with some care in the spacing of point sources and receivers, such an approach
can mimic the behavior we would have for uniform patches of sources and/or
receivers with dimensions equal to the spacing between the point sources
and/or receivers.

5.4. Non-Paraxial Behavior

5.4a. Longitudinal Heuristic Angle

A set of sources can have directionality not only as a result of their transverse dimen-
sions. Longitudinal sets of sources can also give rise to directional waves. This is
routine in many designs of radio antennas, for example. This behavior is illustrated
in the example in Fig. 20. Here we take horizontal lines of sources and of receivers and
find the most strongly coupled communications mode. We can rationalize this behav-
ior with a heuristic argument based on interference of sources at the two extreme ends
of the line of sources, and we construct this argument in Appendix C. This leads to a

longitudinal heuristic angle
A
0, =1/— 71
L=\ 5A; (71)

that characterizes the “cone angle” of the resulting diffraction, which is a measure of
the directionality we expect to be possible in the longitudinal direction from a line
source of length 2Az. The calculated intensity pattern in Fig. 20 shows that this angle
6; gives a good approximate description of the resulting beam. Incidentally, in this

Figure 20

(b)

25y =70.72
[lustration of the beam resulting from finding the best-coupled mode between two hori-
zontal lines of sources and receivers, showing the longitudinal heuristic angle 6;. Both
sources and receivers use 201 points spaced by 4/4, aligned in the z horizontal axis, and
with center-to-center spacing of z, = 2504. From Eq. (71), §; ~ 141 mrad ~ 8.1° and
the corresponding dy ~ 35.354. (a) is a cross section of the intensity. For graphic clarity,
the magnitude is multiplied by z> once we leave the source region (technically, a factor
[max(304,2)]?). The intensity in the region immediately around the source is omitted
from the graphics to avoid singularities. (b) x—y cross section of the intensity in the
middle of the receivers; (c) perspective surface-plot view of the same data as in (b).
|
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case, there is only one communications mode; within numerical accuracy (at least to
five significant figures), all of the sum rule S is consumed by the coupling strength
|s;|> of this mode.

We can also evaluate the effective solid angle of this channel. The area of the disk
of half-angle 6;, or equivalently, of radius given by the corresponding oy, is
A; = n(8y)? = 72262, so the corresponding solid angle of this “disk” is

(72)

which is z divided by the length of the line source in wavelengths. We can compare
this with the solid angle per channel for the two-dimensional surfaces, as in Eq. (67),
which is 1/(the area of the relevant surface in square wavelengths). This tells us that,

for some object of comparable dimensions in all three directions, once the dimen-
sions are some reasonable number of wavelengths, the solid angle per channel is
determined more by the cross-sectional area than by the thickness.

Equivalently, for some cuboid of dimensions 2Ax, 2Ay, and 2Az, the ratio of the solid
angle per channel from the cross-sectional area 2Ax x 2Ay to that from the length 2Az
alone is

O, 2820 (73)
Q;  7(2Ax)(2Ay)

For example, for 2Ax = 2Ay = 24, to get this ratio to be 1 (i.e., the solid angle from
the length comparable to that from the cross-sectional area), the length 2Az would
need to be 4 x 7 ~ 12.6 wavelengths, much larger than any cross-sectional dimension.
So, conventional “optical” situations with large cross-sectional dimensions in wave-
lengths have solid angles per channel roughly independent of the depth of the volume
for any thickness comparable to the cross-sectional dimensions.

By contrast, if we consider transverse dimensions 2Ax = 2Ay = 1/2, then once the
length 2Az becomes significantly greater than a wavelength, the effect of the length
will dominate in narrowing the solid angle of the channel. This is a typical situation in
many multiple-element wireless or radio-frequency antennas (such as the classic
“Yagi-Uda” antenna [159]), and could also occur in nanophotonic systems.

5.4b. Spherical Shell Spaces

Concentric spherical “shell” source and receiver spaces (see Fig. 21) are good exam-
ples of a case that is very much not paraxial. Indeed, there is no preferred axis at all in
this case. This case is also interesting from a fundamental point of view; it may allow
us to deduce some limiting behavior for any and all waves emitted from some space
because there is no way for the generated wave from a smaller “source” spherical shell
to miss a larger spherical shell “receiving” space that surrounds it.

Figure 21 shows the calculated singular-value magnitudes [relative to the strongest
(first) one] for three different situations with increasing radius of the inner “source”
spherical shell surface. The singular-value magnitudes are plotted on both a linear
scale (left graph) and a logarithmic scale (right graph). We see first from the left graph
in Fig. 21 that this situation does not lead to anything like paraxial degeneracy of the
“well-coupled” modes. Other than some “step” structure, there is no large “plateau” of
approximately equal singular values. Indeed, intriguingly, as we increase the size of
the “source” sphere, these “strongly coupled” singular values apparently asymptote
towards a simple straight line (the dotted line in the left graph), with an intercept
we call a spherical heuristic number of
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NSH = 1671'1"2//12, (74)

where 7 is the radius of the sphere of sources; that is, the line goes from 1 at n = 1
down to 0 at n» = N gy, or equivalently, a function 1 — n/N g;. We can also justify this
number with a heuristic argument given in Appendix D. This number Ngy corre-
sponds to one mode for every square half wavelength [a surface area element
(1/2)?] on the source sphere surface.

As we continue past this N gz in each case, we see an underlying exponential fall-off in
the singular values on a “staircase” line in each case. The dashed lines in each case are
given by the function

(75)

fon(n) :% eXp< E(i’l—NSH)).

8 /Ny,

Note that this expression is heuristic; it is not derived, and the constants 1/3 and 3/8 are
simply chosen to give exponentials that, by eye, approximately describe the apparent
exponential fall-off in the singular values as n begins to significantly exceed Ngy in
each case. It is worth noting, however, that we are able to use the same coefficients, 1/3
and 3/8, for all three cases shown. We can, however, argue for the \/N g factor in the
denominator in the exponential by a similar rationalization to that above for the para-
xial case.

Note that, despite there being nowhere for the wave go to avoid the receiving sphere,
we still see an exponential fall-off in coupling the weakly coupled modes, rather
similar in form to the two-dimensional paraxial case above. It is also true in this
spherical case that increasing the radius of the “receiving” sphere makes essentially
no difference to the form of the lines in Fig. 21. Again, we conclude that the weakly
coupled modes therefore also correspond to propagating (not evanescent) modes,

Figure 21
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Behavior of the magnitude of the singular values |s,|, as a function of communication
mode number #, relative to that of the largest singular value |s;|, for three different
centered spherical “shell” source and receiver spaces. In each case, the receiving points
are on the surface of a 241 diameter sphere. The source points are on the surfaces of
spheres of diameters 24 (upper, red line), 44 (middle, blue line), and 81 (lower, orange
line), respectively. The solid lines are drawn between the calculated values of |s, | /|s;| in
each case to guide the eye. The dashed and dotted lines are heuristic functions shown for
comparison (see text). On the horizontal axis, the mode numbers for each curve are
divided by the corresponding spherical heuristic numbers, which are N gy, ~50.3,
Ngpa ~ 201, and N g5 ~ 804 for the 2, 4, and 81 diameter source spheres, respectively.
1600 source and receiver points are used for the 24 and 44 cases, and 2400 for the
84 case, distributed approximately uniformly over the sphere surfaces [160].
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with inverse-square behavior of their intensities, at least for receiving radii much
larger than the source sphere.

The simplicity of the asymptotic behaviors of the singular values suggests that some
analytic solution may explain these. Indeed, we expect there may be analytic solutions
in such a spherical case, likely involving spherical Bessel functions for the radial
behavior and spherical harmonics for the angular behavior, for example.

5.5. Deducing Sources to Give a Particular Wave

The SVD approach gives a straightforward way to calculate just what source in the
source space or volume is required to generate a specific wave in the receiving space
or volume. Suppose we want a (normalized) wave (or vector of amplitudes) |¢g,) in
the receiving space. Because the (normalized) set of eigenfunctions or eigenvectors
{|¢g)} is a complete set for the receiving space, we can expand |¢g,) in this set, as

|bro) = _ajldp), (76)
J

where
a; = (¢Rj|¢Ro) . (77)

Suppose, for the moment, that we want to generate just one component, a,|¢g,), of
this sum [Eq. (76)]. Then because Gsg|ys;) = s;/¢g;) [Eq. (31)], to generate that com-
ponent we need an amplitude of the (normalized) source function |y,) of a,/s,. We
can repeat this argument for each component, adding up the results. So, quite gen-
erally, the required source function |yg,) to generate |¢p,) is

s = Dlys) =3 L dnltrlvs). (79)
J J

J

J

This point has been known, at least for the specific case of prolate spheroidal basis sets
and correspondingly simple apertures, for some time [161].

5.5a. Sources for an Arbitrary Combination of Specific Receiver Modes

In the example of Fig. 22, we have deliberately chosen to try to create a set of am-
plitudes at the receiver positions that is a specific arbitrary (normalized) superposition
[162] of the first 14 “receiver” communications modes, here of the approximately
paraxial example as in Figs. 9, 10, and 12.

The points in Fig. 22(a) show the modulus squared of the desired amplitudes at the
receiver points (so, the effective power desired at each of these points). In this case,
because we restricted to waves that could be created just from these first 14 modes, we
are able to generate exactly the wave we want by using Eq. (78) to set the correspond-
ing amplitudes of the first 14 source functions. The gray curve that passes through the
points in Fig. 22(a) is not a line joining the points (as we have done in earlier graph-
ics); rather it is the modulus squared of the calculated wave as a function of vertical
position at the line of receivers. Obviously, this approach generates the form we
wanted at the receiver points. The modulus squared of the corresponding amplitudes
at the source points is shown in Fig. 22(b).

Figure 22(c) shows the modulus squared of the corresponding receiver modal ampli-
tudes used to make up the superposition. Note in particular that we have chosen finite
amplitudes for modes 12, 13, and 14 [highlighted as the solid red bars in Fig. 22(c)]
so that we can see the effect of including some modes with relatively small singular
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values. The singular values are all similar for the first 10 modes. In general, we see
from Eq. (78) that the modulus squared of the required amplitude in the corresponding
source modes should be larger by a factor 1/ |sj|2 for the jth mode so as to generate the
required receiver values. For the first 10 modes in this approximately paraxial prob-
lem, this source quantity [Fig. 22(d)] varies only slightly from 1/|s;|? ~ 3752 for
mode 1 to 1/|s;0|*> ~3803 for mode 10. Consequently, the modulus squared of
the source amplitudes for these first 10 modes [in Fig. 22(d)] looks essentially iden-
tical in form for these first 10 modes to the corresponding modulus squared of the
receiver mode amplitudes [Fig. 22(c)].

Note, though, that the required relative magnitudes of the source amplitudes grow
substantially especially as we consider modes 12, 13, and 14 [we have also high-
lighted these in Fig. 22(d)]. Once we get to mode 14, 1/|s4|* ~ 44694, and the re-
quired mode amplitude magnitude has grown accordingly. Hence we see explicitly in
this example that, if our desired set of receiver amplitudes requires the use of modes
with small singular values, the amplitude of the corresponding source mode has to be
increased accordingly. The reason the shapes of the curves in Figs. 22(a) and 22(b) are
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Example of constructing the required sources to generate a specific received “wave” or
set of received amplitudes. To avoid the additional graphic complication of handling
phases, the values plotted in the graphs are for the squared magnitudes of the relevant
quantities. The source and receiver points are as in Fig. 9, with the corresponding
modes as in Figs. 10 and 12. (a) Desired receiver values (points) and the calculated
actual values generated (line) using the calculated source values. (b) Corresponding
source values (points, joined by lines for visual clarity). (c) Values for each receiver
mode used to construct the desired values at the receiver points. (d) Corresponding
required values for each source mode to generate the desired receiver values. Note in
particular in (c) and (d) that, though the required source values for each mode largely
track the required receiver values for each mode for the first 10 modes (which all have
similar singular values), for modes 12, 13, and 14 in particular [which are highlighted
in (c) and (d)], the required values for the source modes have to rise because the sin-

gular values are becoming smaller.
___________________________________________________________________________________|
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different is because we need these relatively larger amplitudes of the weakly
coupled modes.

Note again that, for this case in which we made up the desired set of amplitudes at the
receivers as a specific linear combination of a finite number of the (receiver) com-
munications modes, we were guaranteed to be able to make up the required source
amplitudes from a finite linear combination of the corresponding source communi-
cations modes. If we examine more general functions, we are not guaranteed any such
finite linear combination, however, and we look at some such examples next.

5.5b. Sources for a Gaussian Spot— Passing the Diffraction Limit

A Gaussian “beam” is a well-known example form with straightforward mathematical
properties, and is one that also occurs in optics as a good approximation to the beam
form from confocal laser cavities. Such a Gaussian distribution of desired amplitudes
at the receiver points does not, however, correspond to any of the communications
modes for finite source and receiver spaces, and mathematically generating that
set of Gaussian amplitudes will require a linear combination of multiple receiver com-
munications modes.

In the examples in Fig. 23 (which uses the same sets of sources and receivers as in
Figs. 9, 10, 12, and 22), we have chosen to ask for receiver amplitudes of the form

L2
¢(VRj) = CR(O’ij) exXp <— %72)}0)) (79)

w

These amplitudes correspond to a Gaussian in the y direction (vertical on the graphs)
with 1 /e amplitude half width of w (which is also therefore 1/¢? “intensity”” half width
of the set of modulus squared amplitudes |¢ Rj|2), with unit amplitude at the center of
the Gaussian (i.e., at the point y,), and with confocally curved phase fronts from the
factor cg(0,yg;) [as in Eq. (55)]. For all the graphs except Fig. 23(e), we choose
v, = 0, which corresponds to a Gaussian centered vertically. Figure 23(e) has the
desired center shifted down (here, technically a positive shift) by 184

We have confocally curved the desired phase front because such waves are “easier’” to
construct, especially for “off-center” desired beams [as in Fig. 23(e)], because of the
underlying confocal curvature of the beams with large numbers of “bumps.”
Constructing “flat” phase fronts away from the center tends to require the use of sig-
nificant amplitudes of more modes than we might expect from just the intensity shape
of the beam.

In the superpositions, we only use the first 20 communications modes in our calcu-
lations for Figs. 23(a)-23(c), and the first 12 for Figs. 23(d) and 23(e). Twenty modes
are apparently sufficient for (a) 164 and (b) 114 full widths; the resulting generated
amplitudes (the black lines) correspond well with the desired values (red points), at
least as seen by eye in these calculations. The source form for the 164 case also looks
to be a smooth and essentially Gaussian curve. (We can rationalize later why the
source form here is also Gaussian.)

For the 112 full-width case, the form of the source is more complicated, which essen-
tially reflects the fact that we are close to violating what we typically regard as dif-
fraction limits, which loosely here means we are starting to require the use of weakly
coupled modes. As a result, we see significant amplitudes of some of the high-
numbered modes, which also shows in the emergence of parts of the beam that miss
the receiver space.
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For the 64 case in Fig. 23(c), large amounts of weakly coupled high-numbered modes
are required. Note in particular that the vertical scale maximum (4 x 10°) on the
source graph in (c) is 2000 times as high as that in Figs. 23(a) and 23(b), and that
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Plots of the required sources (the red points, joined by red lines for visual clarity, are
the modulus squared of the amplitudes of the “front” line of sources) in the graphs
on the left to attempt to synthesize the desired receiver values, shown as the red points
on the graphs in the right (the modulus squared of the desired receiver amplitude is
plotted). The actual resulting values of the modulus squared of the receiver amplitude
are shown as the black line in these graphs on the right. Beam intensity, multiplied by
the distance from the sources on the left for graphic clarity, is shown in the middle
pictures in false color. Results for three different desired Gaussian widths are shown in
(a), (b), and (c), respectively, with calculations based on using the first 20 commu-
nications modes. For (d) and (e), the calculation is restricted to using only 12 modes,

and for (e), the desired position is shifted down by 184.
|
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there are particularly large amplitudes of the sources at the two extreme ends of the
source region. Now in the picture of the beam intensity, on this false color scale, the
amplitude of the desired Gaussian beam does not even show up, and large parts of
the beam miss the receiver region entirely (above and below). Nonetheless, an approx-
imately Gaussian beam of approximately the correct width is generated along the line
of receivers, as we see in the graph on the right of Fig. 23(c). The very large source
amplitudes and the substantial parts of the beam missing the receiver space entirely are
because there are significant amplitudes of high-numbered and very weakly coupled
communications modes.

The red bars in Fig. 24(b) show the amount of the various modes (as the modulus
squared of their desired amplitudes) that we require. Now we see that for this 61 wide
beam, there are small but significant received amplitudes required though mode 23 on
this graph. If we include 23 modes in the calculation, we can do somewhat better in the
beam shape, as shown by the orange curve in Fig. 24(a), though even then we still do
not quite reach the desired shape.

If we look closely at the graph on the right in Fig. 23(c), we see that the desired
Gaussian beam is not quite correctly created; the peak is not quite high enough in
the center. The reason for this discrepancy is that we do not have enough modes in
our calculation. We have plotted the region near the center in more detail in Fig. 24.
Now the calculation for the 20-mode case is the light blue line in Fig. 24(a), which is
below the desired peak (as given by the red points) in the center (and is also slightly
wider near the base of the curve).

Figure 24
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[lustration of the effect of changing the number of modes used in trying to create the
Gaussian amplitudes for the six-wavelength-wide Gaussian shape in Fig. 23(c) [red
points in (a) here]. The red bars in (b) show the mode amplitudes (modulus squared)
required for the receiver communications modes (up to mode 23) to attempt to create
the desired Gaussian shape. The gray bars show the corresponding relative strengths
of the (modulus squared of) the source mode amplitudes up to mode 12. (Only odd-
numbered modes occur in this problem because of the symmetry, and only those am-
plitudes are therefore plotted here.) The pink, blue, and orange colored bars show
progressively the additional required (modulus squared) amplitudes for 16, 20,
and 23 mode calculations. [The overall vertical position of the source mode (modulus
squared) amplitudes on this logarithmic scale is adjusted to match the corresponding
receiver mode (modulus squared) amplitude for the strongest coupled mode for easier
comparison of relative magnitudes.] (a) shows that a sharper peak and a slightly nar-
row shape do result from adding further modes, but (b) shows that the required am-
plitudes of the additional higher-numbered modes become enormous, illustrating the
practical impossiblity of substantially exceeding diffraction limits.
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In principle, we could keep adding more, higher-numbered modes and continue to
increase the accuracy of the created beam shape. However, the source amplitudes re-
quired for these higher-numbered modes increase very rapidly because of the very
small singular values associated with these high-numbered communications modes.
In fact, beyond mode 23, the coupling is so weak that the calculation starts to have
significant numerical errors in conventional 64-bit calculations, and further improve-
ments are essentially beyond such standard calculations.

As we see in Fig. 24(a), the shape calculated with just 12 modes is not much different
from those with added higher-numbered modes. [In these calculations for a centered
beam, only the odd-numbered modes are actually required because of the symmetry,
so we only plot values required for the source and receiver modes for the odd modes in
Fig. 24(b).] The first 12 modes here are all strongly coupled [see Fig. 9(b)], with the
first 10 being approximately equally well coupled. As we add in further modes (modes
13 and 15) for the 16-mode calculation, we see some improvement in the resulting
shape [the pink curve in Fig. 24(a)] with corresponding required additional source
modes [pink bars in Fig. 24(b)]. The required source mode values for the 20-mode
and 23-mode cases are shown as the blue and orange bars, respectively, in Fig. 24(b).

In Fig. 24, we see that adding in higher-numbered modes makes only small improve-
ments in the desired shape, and at the cost of extremely large amplitudes of the source
modes. We are therefore illustrating the practical impossibility of substantially passing
the diffraction limit; even extremely large amplitudes in the additional sources make
relatively little improvement in the resulting shape.

In this case, if we restrict ourselves to using only the well-coupled modes (e.g.,
up to mode 12), we can generate a reasonable shape of received beam [Fig. 23(d)],
even if it is not quite as narrow as we would have wanted, while avoiding any large
source amplitudes and while also having the beam essentially all arriving in the
receiver space.

Figure 23(e) illustrates what happens if we retain this 12-mode calculation but now
ask for a beam displaced by 18 wavelengths from the center. We see that we are able to
shift the beam while retaining what appears to be a similar shape, and we expect sim-
ilar beam “scanning” behavior over the entire receiver space.

5.5¢c. “Top-Hat” Function

As another example, we can attempt to generate a “top-hat” function—one that is
constant within a range and zero elsewhere. We use the same configuration as in
Fig. 23, and we ask in this example for a centered “top-hat” set of receiver amplitudes
with a width of 18A. The resulting actual receiver amplitudes and the relative mode
amplitudes are plotted in Fig. 25. Except for the use of the top-hat function rather than
the Gaussian, Fig. 25 is otherwise similar to Fig. 24.

The top-hat function is approximately created, but the edges are not abrupt, consistent
with diffraction limitations, and additionally there is “ringing”—spatial oscillations—
in the amplitude across the top of the “top-hat,” reminiscent of the Gibbs phenomenon
in the use of Fourier series to represent “square” functions. We also see similar behav-
ior to that seen with the Gaussian in that the inclusion of further higher-numbered
modes in the calculation leads to relatively little improvement in the form of the actual
amplitudes at the receivers, and very large amplitudes of higher-numbered source
modes are required even for these benefits.

5.5d. Notes on Passing the Diffraction Limit
Generally, these examples illustrate that
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the reason we cannot focus past conventional diffraction limits is that we must
then use very weakly coupled communications modes, leading to very large
source amplitudes.

There is no way of avoiding this for given source and receiver spaces. If we look back
at Fig. 12, we see that, once we pass the “well-coupled” modes, the number of
“bumps” in the subsequent modes only improves linearly as the coupling strength
falls off exponentially. Equivalently,

linear improvements in resolution past the diffraction limit essentially require
exponential increases in source amplitudes.

Our discussion here is, of course, only an example to illustrate how this communi-
cations mode approach relates to resolution limits. Such limits are well understood and
have been comprehensively reviewed [163,164]. References [165-167] are examples
of using such a modal approach experimentally for super-resolution, based on the
analytic prolate spheroidal functions and/or equivalent “sampling theory” approaches
(see Subsection 7.3 and [33]). Reference [167] explicitly makes the same point we are
making here that the rapid fall-off the singular values prevents effective super-
resolution. These conclusions are also consistent with recent innovative approaches
to sub-diffraction imaging [168], which indicate that large amplitudes of sub-diffraction
effective image sources are required to image such features into the far field.

6. MATHEMATICS OF CONTINUOUS FUNCTIONS, OPERATORS, AND
VECTOR SPACES

Using finite collections of point sources and receivers, we have seen many of the
behaviors of orthogonal wave channels between sources and receivers. But we have
two problems:

(1) Why is it that adding more sources and receivers (in given volumes) does not con-
tinue to increase the number of usable communications channels or “degrees of
freedom”? We have some heuristic answers, but no general mathematical principle.

(2) How can we transition to mathematically continuous functions rather than dis-
crete “point” sources and receivers? For example, we may actually have current
densities on antennas or in continuous solids, and we may want to understand
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(a) Receiver amplitude (modulus squared) for the desired “top-hat” function of width
182 (red points and dashed light red lines to guide the eye) and the various actual
amplitudes (modulus squared) for use of different numbers of modes, similarly to
Fig. 24(a). (b) Relative amplitudes of the (modulus squared of) the receiver and trans-
mitter modes, similarly to Fig. 24(b).
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continuous waves in receiving volumes or even use them as effective continuous
sources in diffraction problems.

Both of these questions are answered in this section. To address them, we need to step
back mathematically from finite matrices, and set up an approach based on functional
analysis. The results are very general and powerful.

To introduce functional analysis properly would take too much space. Unfortunately,
though there are substantial texts in the field (e.g., [169—171]), their style and length
can be forbidding. To help, I wrote a separate introduction [122] that, though shorter
by about a factor of 10 than standard texts, does present all we need, including all
proofs. With that as a reference, in Subsections 6.1-6.6, I introduce the main ideas and
terminology, and give a path to the answers we need.

As we progress, we develop extended ideas of the inner product (Subsection 6.6). We
need this to handle electromagnetism properly. This development clarifies how to get
back to a simpler “matrix-vector” algebra (in what we call an “algebraic shift”). We
also complete the mathematics of SVD in Subsection 6.7 and Appendix E.

One other key point is that we argue from the physics (Subsections 6.8 and 6.9) that
the core operators we need (such as Green’s functions) will be so-called Hilbert—
Schmidt operators. That in turn allows us to use the particularly powerful mathematics
of so-called compact operators, and also gives us the sum rule S.

This section can be skimmed on a first reading because it is necessarily quite math-
ematical. Two key results are essential for us, however: (i) the sum rule S, which
means we only ever have finite numbers of “good” communications channels even
with continuous sources and waves and even with arbitrary linear optical devices or
scatterers, and (ii) the deeper discussion of inner products, which we need for handling
channels with electromagnetic waves.

6.1. Functions, Vectors, Numbers, and Spaces

In this mathematics, we can think of functions as being mathematical “vectors”, (e.g.,
column vectors of numbers), with possibly infinite numbers of elements; these might
be the values of the function at each of a possibly infinite number of points, for ex-
ample. If needed, we use the term “mathematical” vector to distinguish these from
“geometrical vectors” such as a position vector r, or an electric field E. From here
on, we use the terms “functions” and (mathematical) “vectors” interchangeably.
Initially, we use Greek lowercase italic letters, such as «, to represent functions
(or vectors), and Roman italic letters, such as a, for (complex) numbers or “scalars.”

An (abstract) space is simply a set (here, of elements that are vectors) with some addi-
tional axiomatic properties (such as the inner product). So our vectors (or functions)
will be elements in (or members of) what we call a vector (or function) space.
Defining spaces is important; specifically, we will have different spaces for source
functions and for received waves (or wave functions). Though these functions will
generally also be in different physical volumes, by space we mean this abstract space,
not the physical volume. Our “source” and “receiving” spaces may also differ in other
ways—they may even also have different “inner products,” for example.

6.2. Inner Products

The most important axiomatic property we add to our space is the “inner product.” This
gives a well-defined effective “length” of a function (a norm), and a “distance” between
two functions (a metric). It also defines “orthogonality” of the functions. The following
defines an inner product, and anything with these properties is an inner product.
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For all vectors @, #, andy in a vector space, and all (complex) scalars a,
we define an inner product (a, ), which is a (complex) scalar,

through the following properties :
(IP1) (r.a+p) = (.2 + (1. 5),

(IP2) (y,aa) = a(y,a) [where aais the vector or function in which

all the values in the vector or function @ are multiplied by the (complex) scalar a],

(P3) (f,a) = (a. )",
(TP4) (a,a) > 0, with (a, @) = 0 if and only if a = 0 the zero vector). (80)

The first two “linearity” properties, (IP1) and (IP2), are useful in describing linear sys-
tems (as in a linear superposition of waves) [172]. (IP3) gives a useful algebra for work-
ing with complex quantities, and (IP4) means that the inner product gives us a positive
real norm

lal =/ (a, a). (81)

A space with a norm is called a normed space. A norm expresses an idea of “length” for
a function as some single, real number. The existence of a norm then allows us to define
a metric (the metric “induced” by the norm), which then gives a real number that we can
use as the “distance” between two functions or vectors. For two vectors or functions «
and f, that metric would be defined as

dp(a.p) = lla—pl = V(a = f,a=p). 82)

A space with a metric is called a metric space.

With ordinary geometric vectors, the norm is just the length of the geometric vector,
and the metric is the distance between the “tips” of the two vectors if their other ends
are “joined” at the same point. The usual dot product of geometric vectors is an inner
product, satisfying all the properties (IP1)—(IP4), though geometric vectors have only
real components, so (IP3) just corresponds to the geometric dot product being com-
mutative. Note that the inner product is not, however, in general commutative because
of the complex conjugate in (IP3). A vector or function space that has an inner product
with these properties is called an inner-product (vector) space.

If some situation, such as waves in linear media, can be usefully described using vec-
tors with such an inner product, then these properties of the norm and the metric mean
that we can exploit much of the mathematics from real analysis; hence, we can use
ideas of the convergence of sequences of numbers to discuss the convergence of func-
tions as well, and that idea is at the core of functional analysis.

The other very important use of an inner product is to define orthogonality.
Specifically,

a non-zero element a of an inner-product space

is said to be orthogonal to a non-zero element

of the same space if and only if (a, ) = 0. (83)

This is a generalization of the idea that the geometrical vector “dot” product is sim-
ilarly used to define orthogonality (or “being at right angles”) in geometric space.
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Note here that we extend that idea to allow for complex vector “components” and for
arbitrary, even infinite, numbers of dimensions.

Note that these essential properties of an inner product (IP1) to (IP4), listed in
Eq. (80), leave considerable flexibility. When we set up a given vector space, we for-
mally choose the inner product for that space; in different spaces we may make differ-
ent choices. For a “receiving” space, we may want the inner product to correspond to
the “energy” in a wave, and we can define such “energy” inner products. For the
sources, on the other hand, we might just want a simple Cartesian inner product
(as in ordinary vector multiplications), for example, for different current distributions.
For a reason that will become clear later, we call such a choice the underlying inner
product of the space [173]. We return to specific forms of inner products once we have
defined the idea of “operators.”

6.3. Sequences and Convergence

We can obviously write a list of multiple elements in a set or space, but we need to
distinguish two kinds of lists. The first kind simply lists elements in the set, conven-
tionally written by enclosing the list within curly brackets. So {1.7, 3.6, 2} is a set that
contains the three real numbers 1.7, 3.6, and 2. The order of the elements in this simple
list does not matter, so {1.7, 2, 3.6} means the same as {1.7, 3.6, 2}.

We often do care about the order of numbers, however: 1.7, 2, and 3.6 might be the
values of some function at successive points, or they might be the x, y, and z coor-
dinates of some point in space. The second kind of list, called a sequence, gives the
elements in a given order, and is conventionally written by enclosing the elements in
ordinary braces [174]. For example, (1.7, 3.6, 2) is a sequence of the real numbers 1.7,
3.6, and 2 in this order.

In functional analysis, by default, a sequence of elements is usually an infinitely long
[175] list of elements in a particular order, as in some (infinitely long) sequence
(a1, ap, 3, -+ -) of vectors. A subsequence is just some of the elements of such a se-
quence, but retaining the relative order. So, one subsequence of (a;, a,, a3, ---) would
be (a;,as, - - ), where we have missed out element a,, but have kept the order of the
rest. (A subsequence is therefore also a sequence in its own right.)

Many of the proofs in functional analysis depend on convergence of sequences (or
subsequences). Specifically, does a sequence converge so that, for every element q;
after some specific nth element a, (so for j > n), each such element is closer and
closer (in the sense of the metric) to some specific element $? If so, # is the limit
of the sequence. In real analysis (the analysis of numbers rather than functions),
the sequence (1,1/2,1/4,1/8,1/16, ---) converges towards 0, for example.

Another formal convergence is called Cauchy convergence, in which, essentially, the
separation between elements gets closer and closer [176]. It can be proved that every
convergent sequence in a metric space is such a Cauchy sequence of elements.

Mathematically, it can be important whether or not the limit of a convergent sequence
lies within the space. So, in our example (1,1/2,1/4,1/8,1/16, ---), it matters
whether 0 is within the range of numbers allowed in the space or not. A (metric) space
is said to be complete if every Cauchy sequence in the space converges to a limit that is
also an element of the space. This completeness essentially means that we are not
“missing out” specific functions from the space, and we are careful to include func-
tions that might be at the “edges” in a mathematical sense of our space—i.e., that are
the limits of sequences of functions that are otherwise within the space. These are all
reasonable requirements in the physical problems of interest to us, and we presume
such completeness in our spaces.
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6.4. Hilbert Spaces
With this background, we can now define a Hilbert (vector) space:

A Hilbert space is a complete inner-product space. (84)

Generally, we notate spaces using italic uppercase letters such as D, F', G, and R, with
subscripts to distinguish spaces if necessary, and if we use H (with or without a sub-
script) for a space, then it is certainly a Hilbert space. The mathematics of Hilbert
spaces is powerful and very useful. One particularly powerful aspect is the idea of
a basis set.

6.4a. Orthogonal Sets and Basis Sets in Hilbert Spaces

An orthogonal set of elements (vectors) in a Hilbert space is a subset of the space
whose (non-zero) elements are pairwise orthogonal—every member is orthogonal
to every other member. So, for any two (non-zero) members « and y of this orthogonal
set, (a,y) = O unless a = y. Even more convenient is an orthonormal set, which is an
orthogonal set in which every element is normalized to have a norm of 1, i.e.,
(a,a) = \/(a,a) = 1. We presume that we can index the members with an integer
or natural number index j or k, for example. Then, using the Kronecker delta
[Eq. (27)], for an orthonormal set

(“j, ) = (Sjk- (85)

A linear combination of vectors f, ..., 3, of a vector space is an expression of the
form d,f, + dyp, + ... +d,pB, for some set of scalars {d,,d,,...,d,}. We can
choose to have a set of vectors defined as those vectors y that can be represented
by a linear combination of the vectors in an orthonormal set {a;,a,, ...}, i.e., by
the sum

y=a0 + a0+ = Zajaj. (86)
J

We can also call such an expression the expansion of y in the basis a; (i.e., in the set
{aj,ay,...}), and the numbers a; are called the expansion coefficients. A set of
orthogonal (and, preferably, orthonormal) vectors that can be used to represent
any vector in a space can be called an (orthogonal or orthonormal) basis for that space.
The number of such functions in the basis—i.e., in the set {a;, a,, ...}—is the dimen-
sionality of the basis set and of the corresponding space. Depending on the space, this
dimensionality could be finite or infinite. By definition, a basis, because it can re-
present any function in a given space, is also said to be a complete set of functions
for the space [177]. The coefficient a; is easily extracted by forming the inner product

with @, 1.€.,
(a,7) = a;. (87)

Indeed, this is the defining equation for the expansion coefficients a;. Now we come
to a key attribute of a Hilbert space (see, e.g., [122]):

There is always a basis for a Hilbert space. (88)

That is, there is always some complete set of orthogonal (or orthonormal) functions
{a;,a, ...} that forms a basis for any given Hilbert space. Importantly, this also ap-
plies to infinite-dimensional Hilbert spaces. Of course, if there is one basis set, then
there are many possible basis sets—in fact an infinite number—because we can make
them from orthogonal linear combinations of the set {a, ay, ...}
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6.4b. “Algebraic Shift” to Dirac Notation for Vectors and Inner Products
We can now view this set of numbers {a;} as being the representation of the function y
in the basis {a;,a,, ...}, and we can choose to write them as a column vector,

=y). (89)

We can now use a Dirac “ket vector” notation |y) as shorthand for just such a column
vector of such expansion coefficients and, indeed, for the function it represents. The
usefulness of this notational shift to Dirac notation goes deeper, however. Consider an
inner product of two functions 7 and y in a given Hilbert space. Expanding each func-
tion in this basis {a},a,, ...} gives

n= Zrkak and H = Ztkak, (90)
k

k

where

rp = (og,m) and 1t = (o, p) (91)

are inner products formed using the underlying inner product in the space. Using these
expansions and the inner-product “linearity” properties [(IP1) and (IP2) in Eq. (80)],
we have

r

() = Brya,a) =Y 67,8,y => tir,=[th65...1] 2. (92)
p.q p.q p.q .

Once we make an “algebraic shift” of regarding the ket vectors in Dirac notation |u)
and |) as being vectors of expansion coefficients constructed using the underlying
inner product in the space, i.e., defining the Dirac ket vectors, using the underlying
inner product, as in

((11, ’7) ((11 s /’l)
=@M | and |u)=| (@M ], (93)

then the subsequent mathematics of the inner products is simply the Cartesian inner
product

(a1> 77)
() = [ * (1| @1 = wlin) = (el), - (94)

where we have now introduced the “bra” vector (u| as being the row vector whose
elements are the complex conjugates of the expansion coefficients, and the shorthand
(u||n) = (u|n) for such an inner product. We will take a further step in this “algebraic
shift” once we have defined linear operators and their matrix representation below.
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6.5. Linear Operators

In our mathematics, we also need operators. An operator mathematically turns one
function into another, or, equivalently, generates a “new” function from an “old”
one. It maps from functions in a “domain” space D to a “range” space R (which
may be a different space). In our case, we are particularly interested in operators that
generate a “wave” function in a receiving volume from a “source” function in a source
volume, for example. We notate operators using an uppercase letter in a sans-serif
font, as in A. We can write the action of the operator A on any vector or function
a in its domain D to generate a vector or function y in its range R as

y = Aa. (95)

6.5a. Definition of Linear Operators
The operators of most interest to us are linear operators, defined as follows:

For any two vectors or functions a and f in its domain D, and any (possibly
complex) scalar ¢, a linear operator A is required to have two properties:

O1 Ala+ p) = Aa + Ap,
02 A(ca) = cAa. (96)

All operators we consider will be linear. Note that all matrices are linear operators
in this sense.

6.5b. Operator Norms and Bounded Operators

We can now usefully introduce the idea of operator norms. We need this because it
allows us to consider convergence, now of the functions in the range that result from
operating on functions in the domain, and to define “boundedness.” For an operator to
be bounded, we require that, for any vector « in the domain D and with a finite norm

llallp = v/ (a, @)p, the resulting vector Aa in the range R must have a finite norm

|Aallz = v/ (Aa, Aa)g. (Here the subscripts D and R are allowing for possibly differ-
ent inner products in the domain and range.) With physical operators representing
waves, we expect boundedness—finite inputs should give finite outputs. Formally,
we can restate this as

|Aal[r

llexll p

[Allsup = sup (97)

ainD
a#0

The supremum (“sup”) here essentially [178] means the largest value for any non-zero
vector a in the domain D, so here the norm of the “largest” vector we could get in the
range by operating with A on a normalized vector in the domain. This expression also
formally defines the supremum (operator) norm||Al|y,, for the operator, which can be
used in various proofs. Later, we will define another operator norm (the Hilbert—
Schmidt norm). Formally, the existence of such a norm implies the operator is
bounded, and vice versa. Quite generally for operator norms, we can also write

[Aall < [|A[l]lell, (98)
which is obvious from Eq. (97) for the supremum norm.

6.5c. Matrix Representation of Linear Operators and Use of Dirac Notation

Because any Hilbert space has some complete basis set, we can use this property and
the underlying inner product to represent a linear operator as a matrix. Suppose, then,
that we have two Hilbert spaces, H; and H,, which may be different spaces and



Tutorial Vol. 11, No. 3 / September 2019 / Advances in Optics and Photonics 743

may have different underlying inner products. We presume orthonormal basis sets
{a;,a, ...} in H| and {f,, p,, ...} in H,. Both Hilbert spaces may be infinite dimen-
sional, and so these basis sets may also be infinite.

We presume that a bounded linear operator A,; maps from vectors in space H to
vectors in space H,—for example, mapping a vector # in H; to some vector ¢ in H,:

o= Ayn. (99)

Quite generally, we could construct the (underlying) inner product between this re-
sulting vector and an arbitrary vector u in H,. Specifically, we would have

(1, 0)2 = (1, Agin),. (100)

Here, since both vectors u and o are in H,, we are using the underlying inner product
in H,, and we use the subscript “2” to make this clear. Now we can define a matrix
element, which is generally a complex number, as

ai = (B, Ay ), (101)

Now we expand the vectors # and y on their corresponding basis sets using the under-
lying inner product in each space. So, we have

n= Zrkak and p = thﬁj, (102)
J

k
where the 7, and the ¢; are complex numbers given by

rr = (1) and t; = (B, 1), (103)
Then, we can rewrite Eq. (100) as

Z”k%]) = Zt}krkwj',Azlak)z = Zt}kajkrk-
2 Uk Jk

k

(s Agim)y = E i (ﬁj,Azl
J
(104)

Equivalently, substituting back for r; and ¢; using Eq. (103), and noting that, therefore,
by (IP3), 7 = (u, p;), we could choose to write

Ari =D G B)aplay, ), (105)
.k

€6 9

where we substitute the vector being operated on for the dot “-” in each case, as in
substituting ¢ for the dot in the left inner product and # for the dot in the right inner
product to evaluate the same result as in Eq. (104) [179].

Now we can to complete our an “algebraic shift” towards a matrix-vector algebra,
written in Dirac notation. We can write the “ket” version of the vectors # and y, though
with the basis {f;, 5, ...} for u because it is in space H,, i.e.,

ri(= (ar,m) H(= (Br.1)2)
= | 2= @m) | and |p) = | (= G | (106)

Using Eq. (101) for the matrix elements, we can also write a matrix A,; as a matrix
representation of the operator A,;:
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a4
A= | %1 dn 0| (107)

(Note that we use the same notation for these two technically different things—the op-
erator and its matrix representation—but the context will resolve the confusion: if we
are using Dirac notation, then we are using the matrix representation of the operator.)
Then the sum Zj’ xlj a1y can be interpreted as the vector-matrix—vector product

Z apry = (ulAg|n). (108)

This completes our “algebraic shift” to Dirac or matrix-vector notation. So, now, we can
use Dirac or matrix-vector notation as long as we presume the following:

* The bra or ket vectors are considered to contain the expansion coefficients con-
structed using a basis and the underlying inner product for that space in which
the corresponding function exists, as in Eq. (106);

* The operators are considered to be matrices with matrix elements as in Eq. (101),
again based on the use of the underlying inner products in the corresponding
spaces.

Note that, in writing underlying inner products with operators, such as (u,0), =
(4, Ay11), in Eq. (100), we have only ever required the operator to operate to the
“right.” Indeed, for some operators, such as a conventional derivative operator, that
may be a “legal” requirement. One particular benefit of this “algebraic shift” is that,
though the actual operator may only be able to operate to the “right,” in the matrix-
vector/Dirac version, the matrix version of the operator can also “operate” to the left,
which gives us the convenience of the usual associative laws of matrix-vector algebra.
Explicitly, for example, we can “break up” {(u|A,;|n) as

(Ao ) = (ul (Ao ) = ({ulAz1) ). (109)

So, summarizing these benefits, the use of Dirac notation in this way

* “hides” the underlying inner products for subsequent algebra, leaving just a
Cartesian inner product for bra and ket vectors;

» allows full use of associative laws as in matrix-vector multiplications.

So, used in this way, Dirac notation can handle situations with different underlying
inner products in different spaces. It gives a simple and convenient algebra for work-
ing within and between these more sophisticated Hilbert spaces [180].

We can usefully go one step further, writing the matrix A,; itself in terms of bra
and ket vectors. For the moment, we will be explicit about what spaces the vectors
are in by using “1” and “2” subscripts on the vectors. Specifically, we write a bilinear
expansion [181]

Ay = Z k|51 ol (110)

This form results in the same matrix elements as in Eq. (101). Explicitly,
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Al = m(z axlf)o ak|)|n>

Z 2By (Zaﬂcmj 21 ak|>z relag), = ZZ;Z‘Spjajk‘squrq
q ik q
= Zfi"aﬂk (11)
J.k

in agreement with Eq. (104), so this approach for writing matrices works here
also. Dropping the subscript notation on the vectors, instead of Eq. (110), we can
just write

Ay = Z a|B) oy (112)

Note that a linear operator such as A,; from one Hilbert space to another can be written
in such an “outer-product” form as in Eq. (110) on any desired basis sets for each
Hilbert space. Of course, the numbers aj will be different depending on the basis
sets chosen. From this point on, we will use either the “original” notation with explicit
underlying inner products, or the Dirac notation, depending on which is the most
convenient.

6.5d. Adjoint Operator

For an operator A that maps vectors in space H to vectors in space H,, the corre-
sponding adjoint operator A" (in a notation that anticipates a key result here) is one
that maps vectors from space H, to space H |, and that, for any vectors # in H; and y in
H,, satisfies

(1, Ay = (A'p, )y, (113)

which is the defining equation for an adjoint operator. To relate this to matrices, we
can consider orthonormal basis sets {a;, @,, ...} in H| and {f|, f5, ...} in H, and write
the matrix elements of these two operators as

ay. = (B, Aay), and by = (ak,ATﬂj)l. (114)

Then from Egs. (113) and (114), and using the inner-product property (IP3) from
Eq. (80), we have

= (. ATB), = (A'B ) = (B, Aay); = aj, (115)

which means that, as anticipated in the notation, in matrix form, the adjoint operator
AT is simply the matrix that is the Hermitian adjoint of the matrix version of A.
Generally we can use this superscript  to indicate the Hermitian adjoint operation.
Note also that

(AT =A. (116)



746 Vol. 11, No. 3 / September 2019 / Advances in Optics and Photonics Tutorial

6.5e. Compact Operators
Compact operators are a key category for our purposes. One definition is as follows:

The operator A (from the normed space F'to
the normed space G) is compact if and only if
it maps every bounded sequence (a,,) of vectors

in F into a sequence in G that has a convergent subsequence. (117)

Such a mathematical definition contains just enough to allow various useful math-
ematical proofs, but it is rather technical, and does not directly reveal what is so
powerful and relevant about compact operators. For our purposes, however, compact-
ness is ultimately what lets us deduce that we only have finite numbers of useful
channels in communication.

We can begin to see the point of these operators through an extreme example
case. Consider an infinite-dimensional Hilbert space, with an orthonormal basis
{a;,a,, ...}. Physically, we could think of these as representing orthogonal source
functions, such as orthogonal current distributions, inside a source space, for example.
For any two such basis vectors, the “distance” between them is defined by the metric

day ) = /(@ — a @ — @) = /(@ @) + (@ @) = (@) = (0, @)
=JVI+1-0-0=+2. (118)

(This can be visualized as the distance between the “tips” of two unit vectors that are at
right angles.) So, we can construct an infinite sequence that is just these basis vectors,
each used exactly once, such as the sequence (a;,®»,...). This sequence does not
converge, and has no convergent subsequences; every pair of elements in the sequence
has a “distance” between them of +/2 because they are all orthogonal.

A compact operator operating on that infinite (and non-converging) sequence of dif-
ferent basis vectors will create a sequence of vectors that will have some convergent
subsequence [182]. This will ultimately lead to only finite numbers of usable channels
in communication, even with infinite-dimensional spaces.

6.5f. Mathematical Definition of Hilbert-Schmidt Operators

Hilbert—Schmidt operators form a particularly important class of compact operators.
This is because, as we will discuss later, the important operators we encounter for
Green’s functions for waves are such Hilbert—Schmidt operators, though we postpone
that physical discussion. The mathematical definition of a Hilbert—Schmidt operator is
as follows:

For a Hilbert space H with an orthonormal

basis {a;, ay, ...} and a bounded operator A that

maps from vectors in H; to vectors in a Hilbert

space H,, Ais a Hilbert-Schmidt operator if

and only if § = [|Ag|? < oo. (119)
J

Because we use this specific sum elsewhere, we name it the sum-rule limit S. The
square root of this sum-rule limit S can be called the Hilbert—Schmidt norm of the
operator, i.e.,
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IAllgs = VS= D IIAg]2. (120)
J

For any arbitrary complete basis sets {|a;)} and {|$;)} in H, starting from this def-
inition, we can prove three other equivalent expressions for S [122]:

S= Al = Z|ak_,-|2
= Z ,|AfA|a = (BIATAIB)

k
= Tr(A A) = Tr(AA"). (121)

One particularly important property, as mentioned above, is that [122]
Hilbert—Schmidt operators are compact. (122)

Other important results for our purposes are that [122]

if Ais a Hilbert—Schmidt operator, so also are A", ATA and AAT (123)

6.5g. Hermitian Operators
The most general definition of a Hermitian or self-adjoint operator A is that, for all
vectors or functions # and y in the relevant Hilbert space or spaces,

(8. Ay) = (AB.7). (124)

If we compare this with the definition of the adjoint operator, Eq. (113), we see that
this means a Hermitian operator is equal to its own adjoint,

A=A, (125)
and for the matrix elements of the operator on some basis set(s), we have
a4 = ag;. (126)

Using the general mathematical relation for two operators or matrices B and C,
(BC)" = C'BT [see Eq. (13), and easily proved in summation notations, for example],
and Eq. (116), we see that both ATA and AAT are Hermitian, regardless of whether A is
Hermitian. Hence,

for a Hilbert—Schmidt operator A (which is not necessarily Hermitian),

the operators A"A and AAT are both compact and Hermitian. (127)

This is relevant because in general the Green’s function operator G, coupling sources
in one volume to generate waves in another volume, is not Hermitian, though it will be
a Hilbert—Schmidt operator; however, the operators G'G and GG' will be Hilbert—
Schmidt, compact, and Hermitian.

Quite generally, for an operator A, some vector a is an eigenvector (or eigenfunction)
of A if and only if, for some number c,
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Aa = ca, (128)

in which case c is the corresponding eigenvalue.

With these definitions, we can write down several important and useful properties of
Hermitian operators (see [122] for derivations and proofs).

e For any Hermitian operator A, (3, Ap) is a real number.
e All eigenvalues of Hermitian operators are necessarily real.
* For a Hermitian operator, eigenvectors for different eigenvalues are orthogonal.

e If a non-zero eigenvalue of a compact Hermitian operator has some number n > 1
of orthogonal corresponding eigenvectors (known as degenerate eigenvectors),
then this number n (known as the degeneracy or multiplicity) is finite.

* [f a compact Hermitian operator is operating on an infinite-dimensional space, then
the sequence of eigenvalues (c,) must tend to zero as p — oo.

6.5h. Spectral Theorem for Compact Hermitian Operators
The spectral theorem is a particularly important and powerful theorem for the
eigenfunctions of a compact Hermitian operator, and it can be stated as follows:

For a compact Hermitian operator A mapping
from a Hilbert space H onto itself, the set of
eigenfunctions {f;} of Ais complete for
describing any vector ¢ that can be generated

by the action of the operator on an arbitrary
vector y in the space H,i.e., any vector ¢p = Ay.
If all the eigenvalues of A are non-zero, then
the set {a;} will be complete for the Hilbert
space H; if not, then we can extend the set by
Gram-Schmidt orthogonalization to form a

complete set for H. (129)

A consequence is that we can write any such compact Hermitian operator in terms of
its eigenfunctions and corresponding eigenvalues as

A= rfiB.) (130)
Jj=1

€6 99

(where we substitute the vector being operated on for the dot “-”) or, in Dirac notation,

A= er|ﬂj>(ﬁj|- (131)
J=1

Here, the eigenvalues r; are those that are associated with the corresponding eigen-
vector f3;. [Note here that for the case of degenerate eigenvalues, we presume that we
have written an orthogonal set of eigenvectors for each such degenerate eigenvalue
(which we are always free to do), and for indexing purposes for a p-fold degenerate
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eigenvalue, we simply repeat the eigenvalue p times in this sum, once for each of the
corresponding orthogonal degenerate eigenvectors. ]

Another important property is the following [122]:

The eigenvectors ; of a compact Hermitian

operator can be found by a progressive

variational technique, finding the largest

possible result for |Ag;|| where f; is

constrained to be orthogonal to all the previous

eigenvectors. This will also give a corresponding

set of eigenvaluesr;in descending order of

their magnitude. (132)
This means, physically, that the eigenfunctions are essentially the “best” functions we
can choose if we are trying to maximize performance in specific ways (such as maxi-

mizing power coupling between sources and the resulting waves), and we could even
find them physically just by looking for the best such performance.

6.5i. Positive Operators
A positive operator C [183] is one for which, for any vector f in relevant space(s),

(B,Cp) > 0. (133)
In particular, we can prove [122] that

any operator that can be written in the form
C = BB, where Bis a linear operator, is a

positive operator. (134)

The property (133) automatically implies that

any eigenvalues ¢ of a positive operator are positive (non-negative), i.e., ¢ > 0.
(135)

Note then that, following from Eqs. (127), (134), and (135),

if Ais a Hilbert-Schmidt operator, then the
operators ATA and AAT [in addition to being
Hermitian Hilbert—-Schmidt (compact)
operators] are positive operators, and therefore
any eigenvalues of either of them are

necessarily positive (technically, > 0). (136)

6.6. Inner Products Involving Operators
We have mentioned that there can be many ways of choosing the inner product for a
Hilbert space, and the choice we make may depend on the problem. Positive
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Hermitian operators give a particularly broad class of ways we can set up inner
products.

6.6a. Operator-Weighted Inner Product

Suppose we have a positive Hermitian operator W that acts on functions such as a, /3,
and y, and suppose we have already defined an inner product of the form (f, @) with
all the properties (IP1) to (IP4) as in Eq. (80). Now, the action of W on a vector y is
to generate another vector a as in @ = Wy. So, we can form the inner product
(f,a) = (B, Wy). Now, from the Hermiticity of W, we know that (8, Wy) =
(Wp,y), as in Eq. (124), and by (IP3), we know that (3, Wy) = (Wy, f)*. So, let
us define a new entity, which we could call an operator-weighted inner product [184],

B, )w = (B, Wy). (137)
Then, using first Eq. (124) and then (IP3), we have
B.rw = (B.Wy) = (WB.7) = (r, WP* = (v, B (138)

Hence this new entity, based on a positive Hermitian operator W, also satisfies the
property (IP3) of an inner product. It is straightforward to show that, because W
is linear, this entity also satisfies (IP1), as in

7 a+Pw =, Wla+ ) = (v, Wa + Wp) = (v, Wa) + (v, Wp)

and (IP2), as in
(v, ax)w = (y, Waa) = (y,aWa) = a(y, Wa) = a(y, a)y. (140)

As for (IP4), because W is by choice a positive operator, we already know by
Eq. (133) that any entity (, Wp) is a positive real number, and hence (f, y)y satisfies
(TP4). So, for any positive (linear) Hermitian operator W, we can construct an (oper-
ator-weighted) inner product of the form given by Eq. (137).

One simple example of such an inner product is what we could call a (simple)
weighted inner product. If we have a non-zero positive real “weighting” function
w(x), then we could use an expression

(@p), = / W) @) dr (141)

to define a “legal” inner product. In this case, the weight function can be viewed as a
diagonal, positive Hermitian operator on a “position” basis.

6.6b. Transformed Inner Product
With a positive operator that can be written as in Eq. (134) in the form

W = BB, (142)

where B is a linear operator, we can take an additional step that opens another sub-
class of inner products. Specifically, we could define what we could call a transformed
inner product [184]. To do this, we first write the operator-weighted inner product
with W as in Eq. (137), with this form (142):
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where in the last step we have used the definition of an adjoint operator as Eq. (113)
and the property (116).

We can regard the operator B as transforming a vector f—after all, B operating on /3 is
just a linear transform [185] acting on f—and we could write generally

(ﬁ’ 7)TB = (Bﬁ’ BV), (1 44)

where the subscript “7'B” indicates this inner product with respect to the transforma-
tion B of the vectors in the inner product. Because this is just a rewriting of an
operator-weighted inner product, as in Eq. (143), we already know it is a “legal” inner
product. Note we can use any (bounded) linear operator B to construct such a trans-
formed inner product because it can construct a (bounded) positive operator using
Eq. (142). We will encounter just such an inner product as an energy inner product
for the electromagnetic field.

6.7. Singular-Value Decomposition

We have already discussed SVD for finite matrices, where it is well known. With the
mathematics of functional analysis, however, we can extend this idea more generally
to any compact operators (so, even with infinite-dimensional spaces). We can at the
same time complete the formal proofs of the various statements, Egs. (29)—(35), even
for infinite-dimensional spaces, and these statements now apply for Ggz as any com-
pact operator. The results for finite matrices are then just a special case. Since this is
now a purely mathematical argument, we defer it to Appendix E.

6.8. Physical Coupling Operators as Hilbert-Schmidt Operators

We see that having coupling operators or Green’s functions that are Hilbert—Schmidt
operators opens powerful mathematical tools for infinite-dimensional spaces, as required
for continuous functions. We can, however, now argue, based on physical presumptions,
that the free-space Green’s functions associated with wave equations quite generally are
Hilbert—Schmidt operators, as also are a wide range of physical coupling operators.

We start with the monochromatic scalar Green’s function as in Eq. (4), now written as
being between points ry and ry in the source and receiving volumes, Vg and Vp,
respectively:

1 exp(ik|rg —rg))

145
4 [rz — rg] (145)

G,(rg;irs) = —

We follow an approach similar to [5], though using the notations and results from the
general mathematics we developed above for Hilbert spaces. Presuming the source
volume Vg is finite, and that the source and receiver volumes are separate (i.e.,
not overlapping) [186,187], with some minimum distance r,;, between them,

1 1 V.
Pro<C=—"5_,
s = 167212

min

(146)

|G (I'R'I’S)|2d3rs =
/VS @ ’ 1671'2 Vs |rR — r5|2

where, with these assumptions, C is finite. Hence, integrating this finite quantity over
a finite volume V' also gives a finite result we can call S, given by

— 147
167212 (147)

min

5 = / G, (g xs) Proddeg <
Ve JVs

Indeed, with this specific Green’s function we can even let the receiving volume V' be
a spherical shell of some finite thickness w but of arbitrarily large radius , and still
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get a finite, limiting result for S, i.e., because as r, » oo, Vp — 4zr2w, and

"min = Ta>

L L, (148)
A

which we can interpret as resulting from the “inverse-square” behavior characteristic
of power or energy in waves.

With this finite S, we can examine the Hilbert—Schmidt nature of this G,,. Since by
presumption our source and receiver spaces are Hilbert spaces, we have complete
orthonormal basis sets in each, which we can write formally as {ag,}=
{agy, asy, -} and {ag,} = {ag;, ag,, - -}, respectively. Since these are just spatial
functions, we can also write them in the form ag,(rs) and ag,(rg), respectively.
For the moment, we use simple Cartesian inner products in integral form for the
underlying inner products, i.e.,

(4o 1s) = /V Wi ens(e)drs and  (upoe) = /V W) dPry,  (149)

where ug, ng, pr, and i are arbitrary functions in their spaces.

Using the form Eq. (105) for expanding an operator on two basis sets, we can rewrite
Eq. (147) using these basis sets [188]:

Go(CriTs) = € ar,) (@sy) =Y 2,0ty (Kr)a, (Ts). (150)
p-q p-q

Completing the inner products with basis functions ag,(rg) on the left and ag;(rg) on
the right, and using the orthonormality of the respective basis sets, we obtain

gij:/V[/a;éi(rR)Ga)(rR;rS)aSj(rS)d3er3rS' (151)

Now, using Eq. (150), we can write

*

|G, (rgirs) > = [ngqaRp(rR)a§q<rs)] [ngnam (rp)a%, (I'S)]
p.q m,n

= > iy (TR) @, (), (Ks) s (). (152)
p, q, m,n

So

/ |G, (s Ts) PP
Vs JVr

= > 2w / apy (FR)tf, () dry / a%, (rs)as, (rs)drs

Daq.m,n Vr Vs
= Z gpqg;knnépméqn = Z|gpq|2- (153)
p.q,m,n P-4

Putting this result together with Eq. (147), then, we have a key result
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— . 243 3 _ 2
s= [ [ 1Gumropandes = el (154)
Vs v Vk P

Taking this result together with the definition of a Hilbert—Schmidt operator,
Eq. (121), and the result (148), we therefore conclude that

the scalar Green’s function
1 exp(ik|rp —rg|)

operating from
A [rp —rg| p &

G,(rg;rs) = —

a finite source volume V5 to a receiver volume

Vr, which is either finite or a spherical shell of

arbitrarily large radius, is a Hilbert—Schmidt

operator. (155)

Note in particular that, by evaluating the integral in Eq. (147),

we can establish the sum rule S without solving

the SVD problem for the eigenfunctions and eigenvalues. (156)

We can see from the structure of this proof that even broader classes of physical op-
erators between source and receiver spaces will also be Hilbert—Schmidt operators.
First, note that

any finite coupling operator D(rg;rg) between

finite volumes Vg and Vy is a Hilbert—-Schmidt operator. (157)

To see this, we can repeat the formal integration as in Eq. (147) with D instead of G,,,
which will give a finite result because of the finiteness of D and the finiteness of the
volumes. Then we can follow through similar algebra as in Egs. (150)—(153) to prove
a result as in Eq. (154) with D instead of G,,.

We can also extend the result to operator-weighted inner products, as in Eq. (137), at
least if those operators are “local”—that is, the action of this (bounded) (positive
Hermitian) “weighting” operator W on a function at a point r in a given space only
depends on the value and/or the spatial derivatives of the function at a given point, and
so it can be written as W(r). This may be reasonably obvious, but we give the full
proof in Appendix F. So,

any finite coupling operator D(ry; rg) between
finite volumes Vg and V', and for which any
finite functions in the associated Hilbert spaces
lead to finite operator-weighted inner products,
is a Hilbert—Schmidt operator with respect to

those inner products. (158)

This is then a very broad category of physical coupling operators. If the operator
D(rg;rg) is such that its magnitude falls off as ~1/r with distance » from the source,
as is common in wave operators so that the energy in the wave does not grow with
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distance from the source, then the receiving volume can be a spherical shell of arbi-
trary radius, and the operator will still be a Hilbert—Schmidt operator.

Thus far, we have only formally considered scalar operators, but the generalization to
operators for vector fields (such as the electromagnetic field) is straightforward, and
we complete this in Subsection 8.6 once we have introduced the necessary notations.
The operators are then formally tensor or dyadic, but as long as they are bounded, they
will also be Hilbert-Schmidt operators.

Generally, we see that the Hilbert—Schmidt nature of these physical operators follows
immediately if the operators give finite results in the receiving volume from finite sources
in the source volume and if the source and receiver volumes are both finite. With wave
operators, we expect that this extends even to spherical shell receiving volumes of ar-
bitrary radius. Hence, following from these Hilbert—Schmidt properties of the coupling
operators, we have a key result that we can state informally but correctly as follows:

For all operators that give waves in one volume from sources in another, the sum
of the squares of the coupling strengths between orthogonal sources in one vol-
ume and orthogonal waves in the other is a finite “sum-rule” number S that can be
calculated by integration using the operator without otherwise solving the prob-
lem. This is true even if the orthogonal sets are infinite.

6.9. Diffraction Operators

So far, we have discussed actual sources in one space generating waves in another.
Another very common class of problems, especially in optics, uses wavefronts as ef-
fective sources to describe diffraction and beam propagation. Indeed, in optics, unlike
in radio-frequency electromagnetics, we work more commonly by manipulating
existing forms of waves than by generating complex waves from primary ‘“current”
sources. So, in such diffraction approaches, if we know the wave on one surface, then
we can hope to calculate it on another. This approach goes back to Huygens [189]. We
could call the operator that relates the resulting wave on a second surface to the wave
amplitudes on the first surface the diffraction operator. In the simplest “Huygens”
approach, then, we have a set of effective point sources on the first surface whose
density is proportional to the wave amplitude on that surface. In that case, the dif-
fraction operator for scalar waves is just the same Green’s function, Eq. (4), that
we have used when considering “actual” point sources, so in that approximation
all our results using this Green’s function carry over to diffraction problems.

The simple point-source approach to diffraction operators does have known problems;
notoriously, it leads to non-existent “backwards” waves. The effective source also
should not radiate uniformly in angle even in the forward direction; one solution,
taken by Fresnel, introduces an ad hoc angle-dependent “obliquity factor” to the
Green’s function [145,190] (and see [191] for a general discussion of diffraction).

Generally, diffraction operators can be constructed using integrations of the wave
equation (Kirchhoff for scalar waves (e.g., [145,191]), and Stratton and Chu
[192,193] for electromagnetic waves). Such integrations show that the waves gener-
ated from sources inside some closed surface can be emulated outside the surface by
effective sources on the surface. Though technically only valid if we consider the
entire closed surface, typically we pretend that we can consider effective sources only
over some finite surface corresponding to the aperture of the system. See discussions
of communications modes for scalar [65] and vector [66] diffraction, and [166] for the
Debye-Wolf vector wave approach to a diffraction operator.

We will not provide further details of such diffraction operators here. However, a key
point is that, for the same reason that the actual Green’s functions between sources and
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receiving points are Hilbert—Schmidt operators, all such diffraction operators will be
Hilbert—Schmidt as well, as in Eq. (158). The waves they give are finite, and the source
area or volume is finite. So certainly the resulting Hilbert—Schmidt integral, as in
Eq. (154) or Eq. (F5), will be finite for any finite receiving volume, and also, we
expect, for any spherical shell receiving volume of arbitrary radius. because we also
expect the resulting waves to fall off as ~1/r or faster. Hence, we can also apply the
general results of our analysis to diffraction operators, or, equivalently,

within the limitations of diffraction operators, communications modes based on
diffraction operators correctly model the channels for waves between surfaces.

6.10. Using the Sum Rule to Validate Practical, Finite Basis Sets

The formal mathematics above for continuous functions generally leads to basis sets
with infinite numbers of elements. In practice, we prefer finite sets that are “complete
enough” for our problems. Using the sum rule of Eq. (154) [or, more generally,
Eq. (F5)], we can establish a simple criterion for knowing when to stop adding
elements to our sets.

First, we evaluate the sum rule S by performing the required Green’s function or cou-
pling operator integral over the source and receiver volumes [as in Eq. (154) or
Eq. (F5)]. Then we choose any convenient finite sets of orthonormal functions—N g
functions fyg,(rs) in the source space and Ny functions fyg,(rg) in the receiving
space. Then we evaluate coupling matrix elements b,, as in Eq. (151) or Eq. (F4),
but with our sets fyg,(rs) and Byg,(rg) instead of the complete basis sets ag, (rs)
and ag,(rg). Then we compare

Ng Ng

ZD gl (159)

p=1gq=

to S. If S, is close enough for our purposes to S, then we can stop adding functions to
our basis. The most strongly coupled channel that we could be missing would be one
with power coupling strength S — S;. Once that power coupling strength becomes too
small to be useful, we can stop, and work with the finite sets we now have.

As a simple example, we can consider “uniform patch” basis functions for two sur-
faces, approximated by point sources at the center of the patch, as in Subsection 5.3e
above. We already have a hint as to how many such points we would require in each
space from the heuristic results above in Subsection 5.3e; there we deduced desirable
minimum spacings of such points [Eqgs. (B2) and (70)] if they are to be good approx-
imations to uniform “patches” of sources and/or receivers. Consider, for example, the
sets of nine source and receiver points as in Fig. 6 above. We will consider these
as approximating continuous lines of length 7 =9 x 1/2 = 4.54, equivalent to
assigning each “point” source to a linear “patch” of size (length) 1/2. As in
Fig. 6, these are separated by a distance L = 5. In this case, the sum-rule integrals
become, with a scalar Green’s function as in Eq. (4),

h/2 h/2 5
= / / |G (Vr; ¥s) |“dysdyg
y ys=—h/2

=—h/2

1 /h/2 /h/2 1 0.726
=— dy.d (160)
41)% e Jyomip2 L2+ (vs — )2 ISR = (4m)

For a “patch” source or receiver of length 4/2, so that the source or receiver function is
normalized on integrating over the patch, the linear source or receiver density in the
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patch should be /2/A. For the equivalent point source, that entire density over a /2
length is now concentrated in a “point,” so an effective point-source amplitude of
(4/2) x \/Q—/— = \//_1—/5, and similarly for the equivalent point receiver. So, with this
normalization, we should use an expression

|gij|E\/l/2X\//1/2 ! s (161)
477(\/L2 + (ij_yRi)2>

where yg; and yp, are the nine source and receiver vertical positions. Summing over all
nine source and receiver points gives

5= D lgy 0 (162)

i=1 j=1 - (477:)2 ,

which is identical to the result in Eq. (160) within numerical error. The near exact
equality here between the results in Egs. (160) and (161) is somewhat accidental,
because the point sources are already an approximation to line-segment sources.
The agreement nonetheless confirms that, in this case, no additional points should
be required for a useful model here, and the point sources and receivers effectively
capture all the strongly coupled channels. So, some further subdivision into smaller
patches, hence adding more basis functions, would essentially make no difference;
it would find no further strongly coupled channels.

7. COMMUNICATIONS MODES AND COMMON FAMILIES OF FUNCTIONS

So far, we have evaluated communications modes numerically for several represen-
tative “toy” problems, and have justified that, with point sources chosen sufficiently
close, such results are valid approximations to continuous source distributions and
effective sources in diffraction problems. We also know, however, that under analytic
paraxial approximations, useful families of continuous functions emerge, and we con-
sider these here.

7.1. Prolate Spheroidal Functions and Relation to Hermite-Gaussian
and Laguerre-Gaussian Approximations

Paraxial analysis of laser resonators without considering the finite size of the mirrors
[35] leads to Hermite—Gaussian functions in rectangular coordinate systems and to
Laguerre—Gaussians in cylindrical coordinates. With finite mirror sizes in laser res-
onators [34], and in work with a diffraction operator for waves between finite aper-
tures [33], the so-called prolate spheroidal functions emerge; with finite rectangular
apertures, we obtain the linear prolate functions, and finite circular apertures lead to
circular prolate spheroidal functions.

Hermite—Gaussian and Laguerre—Gaussian families are discussed extensively in con-
nection with laser resonators (e.g., [2]), and Laguerre—Gaussians have received much
recent interest because of their so-called OAM [30,31] (see Subsection 7.2 below).
Prolate spheroidal functions are less well known, possibly because we cannot express
them in simple formulas (though we can calculate them [194—197]), but they have
some important mathematical properties.

Prolate spheroidal functions (see [33] for a discussion) arose for solving some quite
unrelated problems in prolate spheroidal coordinates [198], but the linear versions
became better known for being the eigenfunctions of the finite Fourier transform.
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(The circular version correspondingly gives the eigenfunctions of the finite Hankel
transform.) They are thus of some interest in signal processing problems.

We do not have space here to discuss the mathematics of these functions in detail, but
we can show the relation to our approach. First, generally, these functions can emerge
in scalar communications mode analysis if we take a paraxial approximation, which
means that (i) we approximate the distance |rg — ry| in the denominator of the Green’s
function [Eq. (4)] by L, the separation between the surfaces, and (ii) in the complex
exponential exp(ik|ry — rg|) we approximate

2 2
|rS—rR|:L<1 + 2LXS) 4 2LyS) ) (163)
Then, for rectangular source and receiver apertures of equal size, for example, linear
prolate spheroidal functions (with confocal phase curvatures) emerge as the commu-
nications mode functions in each aperture [5,199]. Notably, the eigenvalues (or sin-
gular values) clearly show the same “paraxial degeneracy” we saw in our numerical
examples above—nearly constant up to the paraxial heuristic number, and then falling
off rapidly. Similarly, for circular apertures, the circular prolate spheroidal functions
are the communications mode functions in each (circular) aperture.

Hermite—Gaussians and Laguerre—Gaussians are only approximate communications
modes functions to the extent that they are approximations to the corresponding pro-
late spheroidal functions. Once significant field amplitudes approach the boundaries
of the rectangular or circular apertures, the corresponding prolate spheroidal functions
correctly incorporate the effects of those boundaries, but the Hermite—Gaussians and
Laguerre—Gaussians do not. Hermite—Gaussians and Laguerre—Gaussians can be de-
rived as solutions to differential equations under conditions without boundaries [35],
but they do not usefully emerge as solutions to our integral equation approach [200].
The absence of boundaries can also lead to apparently infinite sets of communications
modes with finite coupling strengths, but this is unphysical, and is cut off when the
problem is solved correctly with boundaries on the volumes or surfaces. A failure to
understand this point can lead to confusion on available channels, especially for
Laguerre—Gaussians as OAM beams.

7.2. Orbital Angular Momentum Beams and Degrees of Freedom in Communications
Given the considerable recent interest in OAM beams and modes [30,31], it is im-
portant here to make three points explicitly. In systems in which positive and negative
angular momentum “modes” are degenerate—that is, they have the same coupling
strength (which is usually the case in systems without some explicit helicity or
nonreciprocity)—we can make the simple statement that

the use of OAM does not increase the number of usable channels beyond those
already available without the use of OAM,

and, indeed,

we can obtain the same number of usable channels when using beams of
zero OAM.

The proof of these statements is straightforward [201]. Furthermore, for reasons as-
sociated with the Hilbert—Schmidt nature of the Green’s functions in wave problems,

the use of OAM or any other form of spatial multiplexing does not allow for
infinite numbers of usable channels in communicating between finite volumes
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A communications mode analysis removes any such confusion about the available
modes. See also these critiques of OAM modes and comparisons to other approaches
[18,22,23,77,202-208].

7.3. Paraxial Degeneracy, Sets of Functions, and Fourier Optics

When we have paraxial (approximate) degeneracy, up to the paraxial heuristic
number N p, we have some reasonable flexibility in the choice of our sets of commu-
nications mode functions. If this paraxial degeneracy were perfect, mathematically
any orthogonal linear combination of those degenerate functions would be an equally
good choice, at least for the first Np functions. If the degeneracy is not perfect,
then such orthogonal linear combinations of source functions will lead to receiver
functions that are in general not quite orthogonal. Then we would have some cross-
talk, but this would be a matter of degree, and we would therefore have some practical
freedom.

This paraxial (approximate) degeneracy also allows us to connect to other descriptions
of optics, especially as Np becomes large, as it may be in conventional optical sys-
tems. For example, we can ask, in an approximately paraxial system such as Fig. 9 or
Fig. 15(d), for the sets of source functions that would generate sinusoidal-shaped
transverse field patterns (with confocal curvatures), with integer numbers of half peri-
ods fitting within the receiver surface. If we do that, we would find numerically that,
up to some number somewhat smaller than the appropriate paraxial heuristic number
[in each direction for Fig. 15(d)], we would be able to create such sinusoidal patterns.
The mathematics of the problem also looks numerically similar to a Fourier transform
between the source surface and the receiving surface. Hence, we can find a correspon-
dence to the common Fourier-optics approach [191] to optical systems, at least as the
paraxial systems become large. This is only approximate, of course, and plane waves
or simple interfering combinations of them are not generally the true communications
modes of the system, but this paraxial degeneracy allows us to link approximately to
those kinds of descriptions.

8. EXTENDING TO ELECTROMAGNETIC WAVES

So far in our explicit simulations and discussions we have considered just the simplest
case of scalar waves and the corresponding Green’s functions, and a simple
“Cartesian” inner product to enable the results of functional analysis. For electromag-
netic waves, however, we need to go beyond this, both in the way we describe the
wave and in the form of the inner product we need in some situations. Fortunately, we
can derive relatively simple results for both the Green’s function and an energy inner
product. In Appendix G, we derive these results in detail for a uniform isotropic
medium. Here we summarize key results.

8.1. How Many Independent Fields?

A first question is how many effective “fields” do we need to count? We know that
electromagnetism can be described using the electric field E and the magnetic field B.
Each of these is a vector with three components at each point in space, so naively we
might think we need six scalar fields to describe them. Of course, Maxwell’s equations
relate E and B to each other and to the charge density p and the current density J, and p
and J are themselves related by conservation of charge. One way of reducing the
number of scalar fields is to change to a description in terms of a (magnetic) vector
potential A and a scalar potential @, thereby reducing to four scalar fields. But there is
still arbitrariness here, which formally appears as the freedom to choose the “gauge”
or, equivalently, set V - A.
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In communications problems, we are not interested in any static fields; communicat-
ing information requires changing fields. In Appendix G, we show that, if we separate
out any static fields, then we can set up a new gauge—the M-gauge:

This new M-gauge allows us to express the (changing) electromagnetic field in
terms only of the vector potential in this gauge, A,,, and using only the current
density J as the source of the fields.

So, we can conclude that

we only need consider three independent scalar fields in counting the modes and
“degrees of freedom” of the electromagnetic field for communication problems.

For such a gauge, if we know A, we can get back to the electric and magnetic fields
(neglecting any static fields) using

A

E, = s
M ot

(164)

8.2. Vector Wave Equation for Electromagnetic Fields
In this M-gauge, we find we can write a wave equation for A, driven by the current
density distribution J. For monochromatic waves at (angular) frequency w, we find

V xV x A(uM — sz(uM = /le (166)
with
k* = w’ep = 0* V? (167)

with dielectric constant &, magnetic permeability u, wave (phase) velocity

v=/1/eu, (168)

and the monochromatic driving current density
J(r,t) = J,(r) exp(—iwt) + c.c. (169)

This wave equation uses the V x Vx operator rather than the V? of the scalar wave
equation, but this allows just one wave equation for the entire vector field, and driven
just by the current density. (Full time-dependent versions are given in Appendix G.)

8.3. Green’s Functions for Electromagnetic Waves

The resulting Green’s function for Eq. (166) is more complicated than the scalar
Green'’s function for two reasons. First, it needs to embody the necessary vector attrib-
utes. Since in general the resulting wavevector field at a point may not be in the same
direction as the vector current density at some other point that generates the wave, the
Green'’s function has a corresponding “dyadic” character, signified by a “double line”
notation [as in Eq. (170) below]. (Dyadics and their algebra are introduced and de-
scribed in Appendix 1.) Second, though the resulting Green’s function has far-field
“propagating” parts that fall off as ~1/R (where R is the distance from the source),
just like the scalar Green’s function, it has additional near-field parts falling off as
~1/R?* and ~1/R3. The full dyadic Green’s function with all these terms is derived
in Appendix G, for both monochromatic and full time-dependent cases.
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In communications we are likely most interested in the propagating (“~1/R”) waves.
If R = r — r' is the vector separation between a source point r’ and the point of interest
r (so these points are separated by a distance R), then

in this M-gauge, the far-field (propagating) monochromatic dyadic Green’s func-
tion for the vector potential is

Goup(r;r) = —(8,€ + ,&,)G,,(r;r), (170)

where G, (r;1’) is the scalar Green’s function as before Eq. (4), and the unit vec-
tors &; and €, are perpendicular to each other and to R (Fig. 26). (We are other-
wise free to choose the directions of €, and &,.)

We have had to use a dyadic notation in Eq. (170). Briefly, a “dyad” such as €,¢&, can
be viewed as a pair of vectors, one, here €,, “waiting to be operated on” by a vector
from the left, and the other (€,) similarly “waiting to operate” on by a vector on the
right. (See Appendix I for an extended discussion of dyads.) So, for example, we
could operate mathematically on the left and right of € ,€,, using the vector dot products
with, say, a vector potential A and a current density J to obtain

A-ee,-J=(A-e),-)=4,J,, (171)

which is the product of the component J, of J in the €, direction and the component
A, of A in the €&, direction.

The specific dyads €€, and €,€&, have a simple physical meaning in Eq. (170): the
resulting propagating vector potential field at r has two polarization components (see
Fig. 26), in perpendicular directions €, and &,, that are transverse to the “direction of
propagation” (the vector R), and that are each driven by the corresponding component
of the current density at the “point” source at r'. [Note that the electric field E,,, from
Eq. (164), is parallel to A;,, so E;; and A, have the same polarization directions.]

This might seem almost a trivially obvious answer from our normal understanding of
polarization in optics, but note that we have constructed this limiting case from a novel
full treatment of the electromagnetic field, and a rigorous counting of the independent
field components.

Figure 26

Ilustration of current density elements J, and J, at r’, in two directions €; and &,, both
perpendicular to each other and to the vector R = r — 1, generating corresponding
vector potential components A; and A, in those same directions at r. Note that, for
propagating waves, a current density Jg in the direction of R does not generate a
corresponding “longitudinal” vector potential component in that direction at r, though
near-field (“non-propagating”) terms can do so.
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We also have rigorous results that extend beyond this limiting case. The full mono-
chromatic Green’s function is the sum

Gou = EwMP + EwMN (172)

of this “propagating” Green’s function auMP (r;r') and the near-field (“non-propagat-
ing”) Green’s function

— 1 1\ A

Goun = [ﬁ <i - —> (CRR—¢€,€; — €,&,) | G, (R), (173)
which also gives “longitudinal” fields—i.e., vector components that are not
perpendicular to R (or the corresponding unit length vector R). The full dyadic time-
dependent Green’s functions are also give below in Egs. (G60), (G61), and (G62).

In a paraxial approximation, we might also approximate the vector directions €, €,,
and R, which generally depend on the choices of the points r’ in the source plane or
volume and r in the receiving plane or volume, with the fixed coordinate directions
X, ¥, and Z, respectively. In that case, Eq. (170) would separate into two scalar Green’s
functions, one for the X-polarized field, driven by the X component (/,) of J, and the
second for the y-polarized field, driven by the § component (/) of J, for two planes or
volumes separated in the Z direction. Generally, however, we do not have to make that
paraxial approximation, and we should note that these coordinate directions €; and &,
change depending on r’ and r.

Finally, we can note that for the specific case of monochromatic fields at (angular)
frequency w, for the amplitudes A,;,(r) and E_,,(r) of the “positive frequency” [i.e.,
x exp(—iwt)] parts of the vector potential and the electric field in a standard complex
notation [see Egs. (G70) and (G76) below], Eq. (164) becomes

So, within this constant factor iw, the electric field and the magnetic vector potential
are identical, and conceptually we can work just with the electric field, deducing the
magnetic field if necessary just using the monochromatic version of the corresponding
Maxwell equation [see below, Eq. (G3)], or, equivalently, from Eq. (165), with B, as
in Eq. (G71),

B, = (1/io)V x E, . (175)

In optics, then, where the full use of the vector potential is less common or necessary,
at least for monochromatic cases, we can return to thinking in terms of the electric
field. For full time-dependent cases, as for pulsed fields, however, we should continue
working with the magnetic vector potential to derive the full electromagnetic behavior.

8.4. Inner Products for Electromagnetic Quantities and Fields

8.4a. Cartesian Inner Product for Sets of Sources or Receivers

We could have some set of N g sources, driven by some (complex) mathematical vector
lws) of Ggp amplitudes, such as voltages or currents from some output amplifiers.
Similarly we could have some set of N receivers that give a (complex) mathematical
vector of received amplitudes |¢z) with N elements, which might also be voltages or
currents. As long as the generated wave is linear in the source amplitudes and the
received signals are linear in the wave amplitude, we can choose to perform simple
Cartesian inner products in the space of source (mathematical) vectors |yg) and in the
space of received (mathematical) vectors |¢). In this case, we are essentially defining
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our ideas of orthogonality in these mathematical spaces before transmission and after
reception. It makes no difference in principle to such inner products if the sources have
particular vector directions and the receivers detect waves with particular vector di-
rections. Of course, such vector aspects will come into the matrix of coupling coef-
ficients between sources and receivers. Such simple Cartesian inner products are
likely to be useful in situations, e.g., in acoustics or radio-frequency electromagnetics,
where we have corresponding separate source and receiver elements such as sets of
loudspeakers, microphones, and antennas.

8.4b. Cartesian Inner Product for Vector Fields

We can extend the idea of a simple Cartesian inner product, as in Eq. (149), to vector
fields using the ordinary dot product between the vectors. For two vector fields pu(r)
and 7(r) in some volume V', we could write such a Cartesian (vector) inner product as

() = /V (@ - O Er, (176)

which is valid because it would satisfy all the mathematical criteria as in Eq. (80).

Just what inner product we want to use in a given situation might depend on the physi-
cal system in a given space. For example, for some currents out of a set of amplifiers
each driving wires as radiators, we might use such a simple Cartesian inner product of
the currents (or current densities) to define orthogonality between different overall
“transmitting” outputs, so a Cartesian inner product such as Eq. (176) might be ap-
propriate for current density J in a source volume.

8.4c. Electromagnetic Mode Example

We show an electromagnetic example in Fig. 27 (based on the Cartesian inner prod-
ucts of both source and receiver amplitude vectors). Here we presume point sources
(small current elements) and receivers, spaced as in the earlier scalar wave example in
Fig. 6; here, though, these sources contain three (geometrically) orthogonal vector
current sources, each of which can be set separately, and similarly each receiver de-
tects the field amplitude (vector potential or, more realistically, electric field) sepa-
rately in three orthogonal directions. Now, instead of nine mathematical sources
and receivers in this example, we have 27 of each, in vector groups of three at each
point. Using the dyadic Green’s function, Eq. (172), we now construct a 27 x 27 ma-
trix coupling these sources and receivers, and perform the SVD to establish the current
source modes, which are now 27-element vectors. In Fig. 27, we show the mode cou-
pling strengths (the modulus squared of the singular values) in decreasing order for all
27 of the resulting modes.

Because of the geometry of this example, there are nine resulting modes for which the
sources and receivers are entirely polarized out of the plane, and the wave field in the
cross section that is the plane of the paper is also polarized this way. The polarization
for the sources and receivers of the remaining 18 modes lies entirely in the plane, as
does the wave field polarization in the plane plotted. The nine “out-of-plane” modes
(red bars) have behavior quite similar to the scalar results in Fig. 6, with three or four
strongly coupled modes (here modes 1, 3, 5, and 8). The first three or four other
strongly coupled modes are substantially [modes 2, 4, and 6 (blue bars)] or mostly
[mode 7 (gray bar)] transverse in the plane. The vector field plot for mode 4 is shown
in Fig. 27; this is a “single-bump” beam. We can reasonably interpret these results as
showing that, using propagating vector waves, we have twice as many well-coupled
channels as in the scalar case because we can now use two polarizations.
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The various other modes here are not strongly coupled, and hence might be practically
uninteresting. Various other of the in-plane modes have somewhat mixed character,
with some significant longitudinal components in the polarization. It is, however, worth
noting that we do also acquire additional modes strongly associated with the longi-
tudinal polarization. There is a group of three of these (modes 14, 15, and 16) with

Figure 27
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Mode coupling strengths |s,|> and vector source current and (vector potential) fields
for two example modes for an electromagnetic system with lines of point vector
sources and receivers, spaced vertically by 1/2 in lines 54 apart, as in the earlier scalar
wave example of Fig. 6. Mode 4 is a well-coupled mode whose polarization, in both
the current sources and the resulting waves, is in the plane of the paper and is also
substantially tranverse to the propagation direction from left to right. The vector field
plots and the source current vectors show only the real part of the complex values, and
so are essentially “snapshots” of the current and field vectors. Some of the modes have
source and wave polarization entirely in the direction out of the plane, and transverse
to the propagation direction in this plane (red bars). All other modes have polarizations
of currents and waves in the plane. Some of those are substantially transverse (blue
bars); others of those are mixed between transverse and longitudinal (i.e., with polari-
zation in the horizontal z direction) (gray bars). Some are almost entirely longitudinal
(orange bars), with mode 14 being the strongest of these longitudinal modes. For
graphic clarity, the amplitude of the wave is multiplied by a factor depending on
the horizontal distance z from the sources. For mode 4, this factor is /Z to compensate
for the expansion of the wave in the directions out of the plane. For mode 14, we also
need to compensate for the additional "1/R " fall-off because the longitudinal wave
Green’s function falls off at least as fast as 1/R?. To prevent the particularly large near-
field amplitudes from dominating the drawn vector lengths, the factor used is
(z — 0.24)%/? rather than just z3/2. Though the amplitude changes from left to right
are therefore artificial, the relative amplitudes within a vertical column of vectors,

and the directions of the vectors, are, however, correct.
|
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approximately equal coupling strength; mode 14 is plotted, which shows dominant
longitudinal polarization and a ‘“single-bump” character. Modes 15 and 16 have
two- and three-bump character. These three modes can be seen as longitudinal analogs
of the sets of transverse-polarized and strongly coupled modes. They are weakly
coupled because they result from terms in the Green’s function that fall off as 1/R?
or faster; however, we see that

longitudinally polarized electromagnetic waves show diffraction behavior similar
to that of transverse waves.

We can understand this because, though their wave amplitude falls off faster with R,
the wave still incorporates the underlying scalar Green’s function that determines the
interference behavior underlying diffraction. See [66] for other vector field examples.

8.4d. Energy Inner Product for the Electromagnetic Field

We might be passing the wave in a receiving volume into some lossless optical net-
work to separate out the power or energy to different output ports. Then we might
want the inner product to define orthogonality so that adding up the energy or power
in the different orthogonal channels or ports gives the total energy or power in the
field. In general, for an electromagnetic field, a simple Cartesian inner product as
in Eq. (176) does not separate out orthogonal parts of the field whose energies we
can add to get the total, and this inner product (A,;, A;,;) does not reliably give a
measure of the energy in the field A,.

In such a case, when considering inner products and orthogonality directly in the field
itself, not in the sources or receivers, we would like an “energy” inner product; spe-
cifically, we want the property that the sum of the energies in the (mathematically)
orthogonal components of the field is the total energy of the field. Such an energy
inner product is also useful for quantizing the electromagnetic field (Section 9). Using
the M-gauge, we derive an energy inner product for the electromagnetic field in
Appendix G, which we summarize here.

Since the entire properties of the electromagnetic field (at least for communications)
can be described using the vector potential in the M-gauge, we set up the inner product
using that. Briefly, we use an operator that we call +/U to mathematically generate the
E,, and B;, electric and magnetic fields from the vector potential A,,. Then we can
formally calculate the energy density u in the (time-varying) field based on a standard
expression [see Eq. (G66) and associated discussion],

1 1
u=—<€E-E+—B-B>. (177)
2 H

The transformed inner product [Egs. (143) and (144)] with respect to JUis formally
()7 5 = (VUp, VUn), (178)

where now u(r) and 7(r) are vector potential fields (e.g., in the “receiving” volume).
We derive the full time-dependent form of Eq. (178) below [see Eqs. (G81)—(G84)].
From this we can deduce the simpler monochromatic case, for which we have the
operator
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where by the notation [\/U;AwM (r)] we mean the six-element column-vector version.
Note here that we have explicitly clarified that this operator essentially generates the
electric and magnetic field components, appropriately weighted for constructing the
total energy density. [The factor V2 in Eq. (177) disappears in Eq. (180) because of
the way we define monochromatic field amplitudes.] To complete the construction of
the inner product as in Eq. (178), we formally construct the six-element mathematical

column vectors [+/U,u(r)] and [v/U,;(r)], which are both functions of space. Then
we take the Hermitian adjoint [\/Ua,,u(r)]T, which is a six-element row vector,

and form the product [v/U,u(r)]'[v/U,;(r)], which is a scalar function of r. Then
we integrate that over the volume V' of interest (e.g., the receiving volume), as in

+
0y = [ [VU©] [VOnw]e'r (181)
For a monochromatic vector potential A, (r), the total energy of the field in V is then

U= (AwM’AwM)T\/D;- (182)

8.5. Energy-Orthogonal Modes for Arbitrary Volumes

Typically, in considering “modes” of the electromagnetic field in free space, we pre-
tend we have some resonator, and we presume that its resonant modes will be orthogo-
nal in some suitable sense. For free space, for example, it is common to pretend we
have some cuboidal box, with perfectly reflecting walls. This box will therefore have
standing plane-wave resonant oscillation modes, which we can check to satisfy
Maxwell’s equations, and which we can then count. Possibly, we will take some limit
as we make the box large, to get some density of modes per unit box volume. We may
also just presume that we can using traveling waves instead of the standing ones,
possibly with periodic boundary conditions (though those would not be resonant
modes). Generally, the justification for such choices is weak; we do not have such
a box, nor is free space periodic. A rationalization is that these fictitious approaches
give results that ultimately seem to agree with experiments, such as for the thermal
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radiation of light fields in arguments such as Planck’s radiation law and Einstein’s
A&B coefficients.

Now that we have an energy inner product, in the monochromatic [Eq. (182)] or full
time-dependent [Eq. (G85)] version, we can directly define electromagnetic fields that
are orthogonal in energy. And, we can do this in any volume, without the fiction of a
resonator or spatial periodicity. The total energy of a field that is a linear combination
of these functions is the sum of the energies in these orthogonal components.

There could be many ways of setting up such (energy) orthogonal waves in some
arbitrary “receiving” volume Vi, which we also require to be solutions of
Maxwell’s equations. Note first that we can guarantee that the waves are Maxwell
equation solutions by formally generating them using current sources in some other
“source” volume Vg. We could then proceed as follows. (We will give this for the
monochromatic case, though we could use a full time-dependent case instead.)

(1) Choose a current source function J,;;(rg) in V. (Here the subscript b indicates
that this is going to be a basis function for the source space.) For later conven-
ience, we can choose this to be a function that is normalized [using a simple
Cartesian inner product in Vg as in Eq. (176)].

(2) Calculate the resulting vector potential wave (in the M-gauge) A1 (rz) in Vi
using the dyadic Green’s function G,,,(rg;rs) as in Eq. (172) using the corre-
sponding Green’s function integral

Auprt (09) = /V Gons (£ Ts) - T (£5) 0% (183)

and construct a normalized version A, (rg) [using the energy inner product in
Vz as in Eq. (181)].

(3) Choose a second (normalized) current source function J,;,(rg) in Vg, orthogonal
to J,p1(rs) [209,210]. Now calculate the corresponding wave A, (rg) as in
Eq. (183). Now retain only the part A, (rg) that is orthogonal to A1 (rz),
using the energy inner product Eq. (181) in V', which we can do by formally
“projecting out” the component of A, (Tr),

AL (Tr) = Aupa(rr) — (Amsr, Awur2) r mAwal(rR)- (184)

Now normalize A, (rg) to give the second wave function A (rR).

We then proceed similarly, choosing a subsequent source function J,,;,(rs), orthogonal
to all preceding ones J ,,, (rs). Then, in the resulting vector potential field in V', using
an extended “projecting out” of the components in all previous functions, we retaining
only the (normalized) part A, (rz) of the resulting wave in each case, which will be
orthogonal to all previous such functions Az, (rz). This process is just a version of a
Gram—Schmidt orthogonalization, and it will generate a set of waves A/,(rg) in Vp
that are orthogonal with respect to the energy inner product in Vp.

We have also incidentally generated an orthogonal set of source functions J,, (rs)
during this process. So, now we have basis sets, J ., (rs) and A, ;/,(rz), each ortho-
normal with respect to the underlying inner products in their respective spaces
(Cartesian for the source space, energy for the receiving space).

To emphasize, with such a process, and noting explicitly that orthogonality here is in
the sense of the entire vector function being orthogonal, whether or not the geomet-
rical vector components of the fields are at right angles,
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we can construct orthogonal sets of electromagnetic waves for any shape of vol-
ume, avoiding fictitious boxes or resonators, with the energy of any superposition
being the sum of the energies of the orthogonal components.

If we wanted to make sure, for example, that we had a set that corresponded to any
possible propagating electromagnetic waves for that volume V5, for Vg we could use
a large spherical shell surrounding V.

8.6. Sum Rule and Communications Modes for Electromagnetic Fields

We briefly discussed the concept of the sum rule for the electromagnetic field case
above in Subsection 6.8. Now that we have the necessary notation and definitions, we
can explicitly write the integral for the sum rule S in this electromagnetic case, using
the energy inner product, Eq. (181), in V', as

/VS/VRZZX @ﬁw(rR;rs)}T[@ﬁw(rR;rS)} &, Pryd’rs.  (185)

p=1gq=

Now that we have constructed basis sets J,,(rs) and A, (rz) that are orthogonal
with respect to the underlying inner products in their respective spaces, we can gen-
erate a coupling matrix between these orthogonal sets. With these sets, the matrix
elements would be

= /V /V |: V UmAmei(rR)] ' [ V Umﬁm(rR; rS):| ' Ja)bj(rS)d3er3rS' (1 86)

We could also keep on adding functions until 7, Jl gijl2 was sufficiently close to S, as
discussed in Subsection 6.9, and then we would have a finite matrix that we could
practically call Gy for this problem. Then we could perform the SVD of this matrix to
construct the singular values s; and the corresponding sets of communications mode
functions {|y;)} and {|¢;)}. The {|y;)} would now be mathematical vectors whose
elements were the expansion coefficients 4;, on the basis J,;,(rs), and similarly
{l¢;)} would be vectors of expansion coefficients f, on the A, (rg) basis.

For subsequent work, we might well want to use the current density and vector po-
tential functions corresponding to these communications modes, i.e.,

Jocj®s) = higlupg(rs) and  A,cy(®s) =D fipAuump(rp),  (187)
q P

as appropriate orthogonal basis sets since they represent the “best” choices of basis
functions.

9. QUANTIZING THE ELECTROMAGNETIC FIELD USING THE M-GAUGE

(Note that this section requires some familiarity with the quantum mechanics of light,
and can be omitted without consequences for the rest of the article.) Typical standard
approaches [9,211-213] to quantization of the electromagnetic field are based on the
Coulomb gauge and “transverse” vector potentials, with monochromatic modes
chosen either arbitrarily as plane waves or as modes of some resonator. Now that
we know that we can generate some complete (or complete enough) set of (energy)
orthogonal functions A, (rg) for representing any electromagnetic wave in Vg, we
can use these to quantize the electromagnetic field in the M-gauge. As a result,

we need no fictitious resonator or “box,” allowing quantization for any volume

and we avoid the formal problems of the Coulomb gauge [214,215]. The result-
ing quantization then proceeds otherwise essentially similarly to those standard
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approaches. (As in typical standard approaches, we will consider waves only in a
uniform isotropic background medium.) Note also that our approach can also be based
on the full dyadic Green’s function, including all near-field terms if we wish;
we would simply include those in the evaluation of the A, (rg).

To start, we formally expand any (classical) electromagnetic wave in V' in the basis
A,u(rg). We formally choose expansion coefficients a;(¢) that explicitly include
the time-dependent factor exp(—iw?) (and that is their only time dependence). To make
the a;(¢) dimensionless, we can introduce a multiplying factor with dimensions of the
square root of energy, choosing ~/7® (cunningly anticipating a later result). So, formally,

A (0 1) = Vho Y (A (Tr) + af (DAL, (rp)]. (188)
J

Now we can formally evaluate the energy or, equivalently, the (classical) Hamiltonian in
this field using the energy inner product in the receiving volume. That becomes [216]

H = (Ag(rp. 0. Ag(tz. 1) /- = 1) (@O Aursn (F8): a0 Aursn () /5

m,n

= hwY a3 (0)a,()8,, = Y _hoat (ta;(0), (189)
m,n J

where we have used the (energy) orthonormality of the A,,;(rg). We see, not surpris-
ingly, that the resulting (classical) Hamiltonian is just the sum of the Hamiltonians

H; = hwa} (t)a;(?). (190)

We give detailed steps in the resulting quantization of such Hamiltonians below for
completeness in Appendix J, but the results are straightforward. We obtain the familiar
quantum-mechanical Hamiltonian form

N 1
H, = ho (&j&, + 5) (191)
for the jth mode, where the annihilation and creation operators a; and &JT obey the usual
commutation relations and other algebraic properties [see Eqs. (J17)-(J19)]. We can also
write appropriate field operators for the vector potential and the electric and magnetic
fields [see Eqgs. (J14)-(J16)].

10. LINEAR SCATTERERS AND OPTICAL DEVICES

As we have set up the physics and mathematics of our SVD approach to linear wave
systems, we have mostly used the example of a free-space or “uniform medium”
Green'’s function as the coupling operator between the source space and the receiving
space. However, as we discussed in Subsection 6.8, as in the statement (157), any
finite coupling operator D(rz;rg) between finite volumes Vg and V' is a Hilbert—
Schmidt operator (and including even dyadic operators for electromagnetic fields).
Any fixed physical linear system can be described by such an operator, which we
could call a scattering operator or a “device” operator. We can model any fixed linear
scatterers or linear optical devices, or more generally linear “objects,” in this way:
free-space propagation, complex multiple scatterers, waveguide channels, sophisti-
cated linear optical systems or devices, or any object behaving linearly with respect
to the incident field (including those that absorb radiation). Of course, detailed analy-
sis could be complicated, especially for systems involving multiple scattering.
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However, we can draw some conclusions here that apply even without knowing the
details of the scattering or device operator.

10.1. Existence of Orthogonal Functions and Channels

First, we note that all the mathematics of the SVD, following from the Hilbert—
Schmidt nature of any such system, also applies to any finite linear scattering or device
operator. The SVD can always be performed on any such compact operator (see
Subsection 6.7), leading to the existence of orthogonal sets of functions in the source
space and the receiver space. So, we can formally conclude, as mentioned in Section 1,
that any linear optical “device” can be viewed as a mode converter, converting from
specific sets of functions in the input space one by one to specific corresponding func-
tions in the output space. Also, as stated in Subsection 1.4, there is a set of independent
channels through any linear scatterer; that is, there is a set {|y;) } of orthogonal source
functions [y;) that couple, one by one, to corresponding members |¢;) of the orthogo-
nal set {|¢;)} of wave functions in the receiving space (even if we do not know what
these functions are).

These mode-converter basis sets {|y;) } and {|¢;)} and the associated singular values s;
tell us everything that can be known about this scatterer or device based on waves
generated from the source volume and detected in the receiving volume; they are
a complete description as far as these sources and detectors are concerned. They
are sufficient to reconstruct the matrix D corresponding to some scattering or device
operator D for these source and receiver spaces. Note, explicitly, that now that we are
considering wave systems other than just free-space propagation, this approach is
valid even if the system is lossy, as long as that is “linear” loss—that is, the “output”
field amplitude is linearly proportional to the “input” field amplitude—and for sys-

tems with finite linear gain.

10.2. Establishing the Orthogonal Channels through Any Linear Scatterer

Though we might not know the operator D or its matrix D, there are at least two ways to
establish it for any scatterer. One way is simply to measure the scattering matrix from
some set of sources to some set of receiving points (see, e.g., [81,83,85,100]) in some
interferometric optical experiment. Of course for a complex scatterer, this could take
some time, but it is possible, and it is then also possible to perform the mathematical
SVD of that matrix to establish the functions |y;), [¢;), and the singular values s;.

A second approach [12] is to have a physical system find the SVD by a sequential
maximization process. In this case, we can in principle use two meshes of interfer-
ometers as in Fig. 5(a), but with the scatterer in the space between the two meshes, as
in Fig. 28 [217]. By an iterative procedure back and forward between one side and the
other, and based only on single-parameter power optimizations, it is possible for the
meshes to set themselves up so that the one on the left generates the |y;) from
the corresponding single-mode inputs on the left, and couples the resulting |¢);) into
corresponding single-mode outputs on the right, automatically establishing the best
channels through the scatterer. Effectively, the physical system has performed the
SVD of the optical system [218] and has embedded its results in the settings of
the interferometers.

10.3. Bounding the Dimensionalities of the Spaces

If the scatterer or device has some finite volume V', we could think of two separate
problems, especially if we know the coupling operators G, from the source space to
the device volume Vp, and Gpg, from the device volume to the receiving space
(see Fig. 29).
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These might, for example, just be simple free-space Green’s functions. Then solving
for the communications modes of Gy, (from sources to the device) and Gpy (from the
device to the receiving volume) would give us maximum numbers of usable channels
into the device and out of it.

Immediately, for example, such an approach would tell us how many channels we
need to block or emulate to make some object appear “invisible” as seen from some
receiving volume, based on sources in some source volume, limiting the necessary
complexity of any active “cloaking” device [219] around the scattering object.

We could also choose to look at an “internal” device operator D, as one that maps
from the input waves into the device to the effective sources inside the device that
generate the resulting “external” scattered waves. In that case, we could view the over-
all operator coupling D from the original source volume ¥ to the ultimate receiving
volume V' as being the product

D = GprDppGisp- (192)

Figure 28
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Conceptual apparatus for finding the best orthogonal channels through any reciprocal
linear scatterer or optical system at a given frequency (after [12]), nominally described
here by some coupling operator D from left to right, using two interferometer meshes
on either side of the scatterer. To find the most strongly coupled channel, we shine
light into the “red” input waveguide 1 on the left, and adjust the interferometers in row
A on the right to maximize the output “red” power in the output waveguide 1 on the
right. Then we run in reverse, shining the “orange” power (actually, at the same wave-
length as the “red” power—colors here are for graphic clarity only) backwards into the
“output” waveguide 1 on the right, and adjust the row A interferometers on the left to
maximize the “orange” power backwards out of “input” waveguide 1 on the left. We
repeat this “red”/’orange” process forwards and backwards until the system con-
verges, having found the most strongly coupled channel through the system.
Then, leaving row A on both sides set, we repeat a similar process with the “green”
and “purple” beams, now in waveguide 2 on both sides. This will find the second most
strongly coupled channel. We can then repeat for the waveguides 3. (No final “wave-
guides 4” process is required, because it is automatically configured as the only re-
maining orthogonal channel.) The process has found the four most strongly coupled
channels in this system. Technically, this process has effectively found the singular-
value decomposition of the optical system between the waveguide amplitudes at the
“source” dashed line on the left and those at the “receiving” dashed line on the right,
effectively embedding the unitary matrices U™ and V of the SVD of D = VDdiagU* in
the interferometer settings in the meshes on the left and the right. Adapted with per-

mission from IEEE.
|
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Such an approach could then begin to link to approaches to limits to optical devices, as
in [220,221], and also to discussions of the necessary complexity of optical devices, as
in [222], though detailed discussions of these topics are beyond the present work.

10.4. Emulating an Arbitrary Linear Optical Device and Proving Any Such Device Is
Possible —Arbitrary Matrix-Vector Multiplication

We have discussed above that we can approximate linear optical systems by using
sufficiently many “patches” of sources (or waves acting as sources through diffraction
operators) and corresponding “patches” of receivers, or equivalently any appropriate
and sufficient large orthogonal basis sets of sources or input waves and of output
waves. Explicit discussions above were for simple “free-space” propagation, but the
same concepts and limits apply as we want to approximate optical devices.

Suppose, then, that we make some optical apparatus that effectively samples a
“source” light field, such as with grating couplers acting as appropriate “patch” col-
lecting devices, and delivers the output of each such patch into a single-mode wave-
guide to pass into some optical waveguide system, and similarly couples output
waveguides into similar output “patches” to generate output waves. If we can make
the waveguide system in the middle so that it can implement arbitrary linear mappings
between the input waveguides and the output waveguides, then, within the approxi-
mation of the input and output light fields by these patches, we can make an arbitrary
linear optical component.

Figure 30 shows one way of making such an arbitrary linear mapping between input
and output waveguides. Here we exploit the idea of SVD, but in this case using it as a
way to construct a matrix physically [25]. We know from Eq. (E19) that any compact
matrix or operator can be written in the form D = VDdiagU*. So if we can emulate an
arbitrary unitary matrix U', a diagonal matrix Duiag> and another unitary matrix V, in
the correct sequence in some waveguide system, then we physically create a system to
give the effect of an arbitrary matrix or operator D, at least up to the dimensionality of
this waveguide system, and within the approximation of the actual light fields by
“patches” or some other form of sampling or transformation.

In Fig. 30, an input unitary mesh of interferometers (see Fig. 5) implements any U’
(at least up to a dimensionality of three in this simple example). A line of modulators
(with controllable phase and amplitude) implements the singular values (the diagonal
elements of Dy;,,), With gain if needed for singular values greater than 1. Another
unitary mesh implements V. Hence, we can emulate any matrix, up to the dimension-
ality of the mesh (here 3 x 3).

Figure 29
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Configurations to consider either the full coupling operator D from source to receiving
volumes, or a succession of three operators, including an “internal” scattering operator
Dpp that generates effective sources for waves to the receiving volume from the in-
coming waves from the source volume.
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This approach may be practically useful for various linear processing functions
[25,109,110]. Note, incidentally, that, unlike some previous approaches to optical
“matrix-vector” multipliers [223], this approach does not have fundamental “splitting”
loss; unless we want loss so that we can implement non-unitary matrices, this ap-
proach has no loss other than background loss in the components. This class of ar-
chitectures can also be trained directly and progressively using the mode-converter
basis functions of interest to implement the corresponding matrix [25].

Because it gives a constructive proof that any linear optical component is possible in
principle, this approach also gives us an apparatus for thought experiments, as in the
derivation of new radiation laws [7], which we discuss below.

11. MODE-CONVERTER BASIS SETS AS FUNDAMENTAL OPTICAL
DESCRIPTIONS

Note that, for any linear scatterer, device, or “object” with the mode-converter basis
functions [y;) and [¢;)

the only radiation scattered into an “output”
wave |¢;) is from the corresponding input wave

or source |y;) (193)
and

the input wave or source |y;) only scatters into

the corresponding output wave |¢;). (194)

These statements follow automatically from the orthogonality of the sets [y;) and |¢;)
and the “pairing” in the communications mode or mode-converter description. These
sets therefore acquire a “fundamental” status for describing any linear scatterers, de-
vices, or objects, and we can use them to derive some quite basic (and novel) results.

11.1. Radiation Laws

Kirchhoff’s radiation law states that the “absorptivity” and the “emissivity” of an ob-
ject must be equal so that the object can come to thermal equilibrium with other bodies
just by exchanging radiation (see, e.g., [7]). For the total radiation from a body at a
given wavelength, this is straightforward. It is sometimes extended to a “directional”
radiation law, though the proof of that neglects diffraction, and none of these laws
apply to non-reciprocal objects. Using a thought experiment that exploits an arbitrary
linear optical system and the properties of the mode-converter basis sets, new laws can
be derived, including the effects of diffraction and non-reciprocity [7].

Suppose that the object O in Fig. 31 has a specific mode-converter pair of input and
output functions |y ) and |¢;). Suppose also that the optical machine in Fig. 31 is set

Figure 30
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Singular-value decomposition architecture for constructing any matrix (here 3 x 3) in
optics between a set of waveguide input and output amplitudes [25].
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so that any input light at its input port 1 generates such a wave |y ) at the outputs of
the waveguide to free-space converters; we imagine that we have enough of these
“patch” generators to do a sufficiently good job of synthesizing all the possibly
well-connected input mode-converter functions. Similarly, any light in the corre-
sponding mode-converter output function |¢,) is collected and appears at output port

1 of the optical machine.

Note that no light into any of the other ports leads to any scattering into this mode |¢;)
by Eq. (193), and none of the light from |y ) is scattered into any other output mode
by Eq. (194). Indeed, we can simply connect the other output ports of the machine
back around to the corresponding input ports. There is no interaction between these
channels through scattering.

Now we presume that the black body B; emits and absorbs light only through a single-
mode waveguide. A circulator separates forward and backward light. So, any light
emitted by B, appears as light in mode |y ). Some of that light may then be absorbed
by the object O. Any light that is not absorbed is then scattered into |¢; ) and sent back
to B;. But to establish thermal equilibrium between the black body and the object, we
therefore require that an amount of light is emitted from the object into |¢,) that is
equal to the amount absorbed from |y;). Hence,

the absorptivity of the mode-converter input
mode |y;) is equal to the emissivity into the

corresponding mode-converter output mode |¢,), (195)

establishing a previously unknown “modal” radiation law (Law 1 of [7]). Note that
this law includes all effects of diffraction, and it is also valid even if the object O is
non-reciprocal.

From this modal law, we can algebraically derive three other laws of thermal radiation,
one of which (Law 3) is essentially the original law for total absorptivity and emis-
sivity, and another (Law 4) is a correct (and much more general) version of the
“directional” law:

Figure 31
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for reciprocal objects, the absorptivity of any input beam is equal to the emissivity
back into that same beam.

11.2. Modal “A&B Coefficient” Argument—the M Coefficient for Emission and
Absorption

Following an approach related to that used for the above radiation laws, we can con-
struct an argument similar to Einstein’s classic “A&B” coefficient argument (see, e.g.,
[211]), relating absorption, spontaneous emission, and stimulated emission based on
thermodynamic and statistical mechanics arguments; now, however, we construct it
directly for a mode-converter pair. We give details of this argument in Appendix K.
Now we presume we have some quantum “two-level” system inside some otherwise-
lossless optical environment, which can be anything we want—e.g., free space, a res-
onator, or a waveguide—and we establish the corresponding mode-converter basis
sets {|y;)} and {|¢;)}, or at least some pair or pairs of interest. Specifically, we con-
clude the following:

If a quantum system has probabilities P, and P;
of being in its upper and lower states,
respectively, and if the probability per unit time
that a photon in the mode-converter input

mode |y;) is absorbed by the quantum system

is M P, then if there are n, photons in input
mode |y;) the probability per unit time that a
photon is emitted into the corresponding

mode-converter output mode |¢;) is(n, + 1) MP,. (196)

Now, instead of the A and B coefficients, we only have one coefficient, M, for a given
mode-converter pair [224]. This simple result works mode by mode. We have avoided
using the free-space density of states and any fictitious boxes or resonators we might
use to construct that. The modal basis is derived entirely based on the actual optical
configuration of the quantum system and any otherwise-lossless optical system in
which it is embedded, thereby giving a more general result.

11.3. Mode-Converter Basis Sets as Physical Properties of a System

Necessarily, much of the discussion so far has centered on the mathematical process of
SVD for establishing the communications modes and mode-converter basis sets.
However, an important point is that these can be established entirely physically,
at least in principle, without any mathematics. We already made this point in
Subsection 10.2, showing how to establish these mode pairs by maximization of trans-
mission through a scatterer. With the radiation laws, we have another option in prin-
ciple: we could establish by some iterative process just what input mode leads to the
largest absorption in some (partially) absorbing object, thereby establishing |y).
If necessary, then we can find the corresponding |¢;) by looking at the thermal emis-
sion and establishing the best possible mode power collection (e.g., into a single-mode
fiber). We could use a similar apparatus to that in Fig. 28, and that would then let us
progress to finding the next such pair, using the second waveguide on each side, and
so on. This is not necessarily a very practical approach, but it emphasizes that these
modes are physical properties of the systems that can be established by measurement.
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12. CONCLUSIONS

The idea of considering modes as pairs of functions determined from SVD is a useful
and powerful approach for understanding waves in communications and in linear scat-
tering and optics more broadly. It is supported by rigorous mathematics and by deep
physical concepts in waves generally, including for full vector electromagnetic waves.
This approach is applicable in acoustics, in wireless communications, and in optics,
and provides a unified framework for such problems.

This approach clarifies the number and specific nature of orthogonal channels in com-
munication with waves—the communications modes—including rigorous counting of
these channels, and shows how to establish them—mathematically, in calculations,
and in practice. It introduces and rationalizes many “heuristic”” behaviors of numbers
of usable channels. It provides the “best” modal basis sets for describing any optical
component or wave scatterer. Those mode-converter basis set pairs are the most eco-
nomical ones for describing and analyzing any such component or scatterer, and they
lead to fundamental physical laws that apply one by one to these mode pairs, including
new and more general radiation laws and a new compact version of the fundamental
argument relating absorption, spontaneous emission, and stimulated emission of
quantum systems.

These approaches are valid for any size scale of object or system, from large imaging
optics to radio antennas and nanophotonic devices. As such they complement and com-
plete the many existing approaches—from conventional ray-tracing imaging optics,
through Fourier optics and standard families of functions and beams, to direct solutions
of wave equations—that are useful separately at different scales and complexities of
systems. We might expect these communications mode and mode-converter basis
set approaches to be particularly useful for systems that are too large for convenient
direct wave calculations and too small for the simpler Fourier and ray-tracing ap-
proaches. At any scale, however, they can offer the most economical description in
terms of the modes that matter most.

We can hope that the ultimate simplicity, clarity, and rigor of these approaches will be
practically useful, fundamentally significant, and stimulating to new insights into
waves and how we can use them.

APPENDIX A: HISTORY AND LITERATURE REVIEW OF COMMUNICATIONS
MODES AND RELATED CONCEPTS

A.1. Early History of Degrees of Freedom in Optics and Waves

By the 1950s, the idea of quantifying communication and information was developing
rapidly [225], including the idea of the sampling theorem, as discussed, e.g., by
Shannon [225-227]. Following on from the sampling theorem, the idea that there
should be some bound on degrees of freedom in optics was proposed by both
Gabor [150,228] and Toraldo di Francia [229]. Gabor, based on a Fourier-optics view,
gives a heuristic approach based on the number of approximately non-overlapping
Gaussian spots one could form on a second surface from source or waves on a first
surface. Toraldo di Francia [230] works directly from the sampling theorem. Both
of these approaches lead to results essentially equivalent to our paraxial heuristic num-
bers [Egs. (59) and (64)]. Sampling theorem approaches have continued in the literature,
with other useful results (e.g., for spherical surfaces and bounding volumes [230,231]).

Use of the sampling theorem in optics and in waves is generally based first on some
physical argument on a maximum “transverse” component to the wave vector that
would be encountered or supported in some configuration of source and receiver
spaces (in our notation); this therefore gives a maximum transverse spatial frequency,
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which becomes the analog of bandwidth. Second, these approaches presume some
maximum physical extent of an aperture or apertures (which becomes the analog
of the time window).

Such sampling theory approaches are useful in paraxial situations with regular aper-
tures (usually one-dimensional or rectangular) and where Fourier optics [191] is al-
ready a good approximation, and in some other far-field situations (e.g., spherical
[230]). They are not going to work well in situations with irregularly shaped surfaces
and with most volumes—there is then no simple way to choose the “aperture”. With
small surfaces or volumes, there is no obvious clear “cutoff” spatial frequency; for
sources in particular, a small source needs to be described by continuous functions,
with continuous spatial-frequency spectra. Such problems are well known mathemati-
cally [226] and in the context of optics [33,232].

A.2. Eigenfunctions for Wave Problems with Regular Apertures

Getting past these problems of the sampling theorem requires a change in the math-
ematics. A key step was the mathematical realization that an obscure but known set of
functions—the prolate spheroidals—had remarkable “eigenfunction” properties rel-
evant to these problems with finite “windows” [233], with specific consequences
for optics [33,34,232]. The first optical realization here was that these were the correct
descriptions of the modes of confocal laser resonators [34] (in the paper that proposed
those resonators); they correctly give the beam shapes on the mirrors. Later laser res-
onator work (see, e.g., [35]) would replace those with Hermite—Gaussian and
Laguerre—Gaussian approximations, which are much easier to work with mathemati-
cally. For lasers, this approximation is generally valid because only the modes with
vanishingly small amplitudes at the edges of the mirrors are going to have low enough
loss to oscillate, and in those cases there is little or no difference compared to the
(correct) prolate spheroidal functions. Another property of these Hermite—Gaussian
and Laguerre-Gaussian beams is that their shape does not change as they propagate,
other than for changes in size; that can unfortunately lead to the false inference that
modes are generally beams with this “constant shape” property, which we have seen is
not the case in the actual communications modes in, e.g., Section 5.

A key mathematical property of the prolate spheroidals is that they are eigenfunctions
of the finite Fourier transform for the “linear” prolate spheroidals (which is relevant
for linear and rectangular apertures) and of the finite Hankel transform for the “cir-
cular” prolate spheroidals (for circular apertures) (see, e.g., [33]). So, in a Fourier-
optics paraxial approximation, they are the input wave functions or sources in a finite
rectangular or circular aperture that will produce waves of the same shape in a cor-
responding aperture in the Fourier domain; extending to a second (or inverse) Fourier
transform (and such a pair of transforms is essentially one way of looking at imaging),
the same shape will be reproduced (inverted) at the image plane also. They are there-
fore also eigenfunctions of imaging viewed in this way. So, even allowing for the
effects of finite apertures, these are functions that will be imaged perfectly through
a paraxial system. See also [161] for continued discussion of such imaging.

Though this early work does not use the terminology of SVD, these prolate spheroidal
functions can also be viewed as SVD functions in the sense we discuss in this paper,
and the “coupling strength” eigenvalue associated with these eigenfunctions is then a
singular value. These prolate spheroidals are a special case of SVD in two senses:
(1) as communications modes, the source function and the received wave are identical
(which is not generally the case for communications modes); (2) these solutions only
work for source and receiving surfaces of the same specific type of shape (rectangular
or circular).
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A key result, though, of this move to an eigenfunction problem, even if only for some
special cases, is that, essentially for the first time, it removes the mathematical prob-
lems mentioned above of a sampling theorem approach. There are indeed now infinite
sets of functions, both for sources and received waves, not finite ones, but the effective
number of degrees of freedom comes from the behavior of the eigenvalues: up to some
effective number, they are all essentially the same (which is our “paraxial degen-
eracy”), and then they drop off so rapidly that, below some practical threshold, they
can be neglected. As we have also illustrated more generally, this effective number, at
least in these simple cases of large, regular apertures in a paraxial approximation,
agrees with the heuristic results of the sampling theory approach.

It was likely known to these early authors that they were dealing with Hilbert—Schmidt
operators, which in turn are compact and therefore have “good” eigenfunction proper-
ties. Surprisingly, however, the idea that these singular values were also obeying a sum
rule (which comes from the Hilbert—Schmidt norm) does not seem to have been used
or exploited until much later, in the more general work on eigenfunction and SVD
approaches [5,37,38] as communications modes.

A.3. Emergence of Communications Modes

The idea of communications modes, as presented here, as the general answers to the
orthogonal “best” channels, including continuous sources and with volumes as well as
surfaces, was introduced first in 1998 in [37] and extended in 2000, first in the scalar
wave case [5], and then for electromagnetic waves in [38]. The electromagnetic analy-
sis in the present work formally supersedes [38] by reducing the problem to one only
requiring the magnetic vector potential, and hence removing any remaining ambiguity
about how many independent fields are required for communications problems.

A.3a. Wireless Communications

Ideas of SVD, especially for finite matrices, have been routine as mathematical tech-
niques for many decades, at least back to the 1960s, with fundamental work from the
late 19th century. The use of SVD is common in signal processing and statistics. In
wireless, as MIMO emerged in the 1990s, the channel matrix / between different
spatial sources and receivers became one on which SVD could be performed to evalu-
ate the best channels. There are certainly references to the corresponding operator
HHT and its eigenvalues by 1998 [234]. Normally, though, the full channel matrix
may not be known to both the transmitter and the receiver, and the use here is to
calculate the channel capacity [42,43], not the optimum transmit and receive modes.
In wireless systems, the matrix is usually a finite one, based on finite numbers of
transmit and receive antennas.

Following [5,37,38], a body of work emerged in the wireless literature either explicitly
using communications mode concepts or using related results on degrees of freedom
in spatial channels and/or spatial multiplexing (see, e.g., [13,39-51]). The text [13]
refers to what we call the communications modes as “eigenmodes of the channel” or
“eigenchannels.” Beam forming for MIMO can use SVD of the channel matrix to form
the modes, which would then formally be communications modes in our notation.
Optical techniques based on optical modes could also be used to set MIMO modes
in beam forming [235].

A.3b. Electromagnetic Scattering and Imaging

The ideas of communications modes have been used extensively in scattering of ra-
diation, including [54—-64]. The kinds of behaviors of singular values illustrated in
Section 5 are also seen extensively in much of this work. Recent work analyzes
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imaging with electromagnetic beams with SVD [52], and such techniques have also
been proposed for near-field scanning [53].

A.3c. Optics

Communications modes have been applied directly to the analysis of many optical
systems [65-72]. Reference [73] re-establishes communications modes based on
an optimization approach. Reference [74] analyzes x-ray waveguides using them.
The optical case is also extended into noise-limited systems in a modern analysis us-
ing communications modes [75]. Reference [18] compares communications modes
and other beam forms for free-space communications. The concept of communica-
tions modes can be extended to partially coherent fields [71].

A body of work usefully analyzing optical systems of various kinds uses the terminology
of “optical eigenmodes” [76-80]. These seem to correspond to the communications
modes in the present paper, or, for more complex optical systems, the mode-converter
basis sets. For example, the “optical eigenmode” input and output functions in [76] are
orthogonal sets in the input and output spaces, coupled with “intensity” strengths asso-
ciated with an eigenvalue that appears to be the modulus squared of the communications
mode or mode-converter singular values in our notation. Since such sets are unique
(within geometric degeneracies), these are the same sets as those in our terminology.
This work goes on to count the number of degrees of freedom by counting these sets
(e.g., in [76]), though the authors do not appear to link their work to the communications
mode formalism or to the earlier work on degrees of freedom discussed above. The
general statement of these optical eigenmodes includes the explicit extension to what
we describe as weighted or operator-weighted inner products [see [77] Egs. (1) and (2)].

A.4. Complex Optics, Matrix Representations, and Mode-Converter Basis Sets
There has been growing interest in being able to characterize and/or controllably
propagate through complex optical systems. These systems include strongly scattering
media [82-98] and multiple-mode optical fibers for communications [81,99] and im-
aging [100-105]. Such work typically employs spatial light modulators (SLMs) to
characterize the matrix that relates input modes to output modes, or at least to establish
one or more strong channels through the scatterer (sometimes called “transmission
eigenchannels” or “optical eigenchannels,” which are the same as our mode-converter
basis sets or communications modes through the scatterer). The matrix in such work is
often called a “transmission” matrix (see, e.g., [97]) or, sometimes, a “transfer matrix”’
[81]. In the terminology of the present paper, we would call this a “device” matrix or,
generally, a “scattering” matrix. All such systems in which the matrix is fully char-
acterized can be analyzed using the SVD approach (our “mode-converter basis sets”)
to establish the best channels. Reference [236] similarly uses the SVD approach to
analyze arbitrary polarization components.

If we want to be able to use more than one such channel at a time without incurring
simple beamsplitting losses, we need to go beyond simple single SLMs to “multiple
layered” approaches to generate and/or separate overlapping but orthogonal modes of
the system. There are two known controllable approaches, one using multiple planes
of SMLs or diffractive optics elements [106—108], and the other using meshes of in-
tegrated Mach—Zehnder modulators [12,24-29,109-119]. Such meshes can also be
used to synthesize any linear optical component or matrix up to the dimensionality
of the mesh; the general scheme to accomplish that relies on the SVD architecture, so
the device is directly emulating the SVD of the desired matrix [25].

Overall, we can see that this field of using eigenfunctions and spatial “channels” in
optics and wireless communications has grown over a substantial period of time, with
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several areas of work developing somewhat independently towards the more compre-
hensive understanding that we have hopefully been able to present and bring together
coherently in this paper.

APPENDIX B: APPROXIMATING UNIFORM LINE OR PATCH SOURCES
WITH POINT SOURCES

Suppose we divide a source surface or line into “patches” of area 4, (for a surface) or
width d,, (for a line). Our question is whether there is much difference between con-
sidering a point source of amplitude / in the middle of the patch or considering a
uniformly distributed source over the entire area or length of the patch, with source
(areal) density 1, = h/A,, or source (linear) density n; = h/d,.

We can consider the most distant point P from this source on the receiving surface, at
some distance L,,, from the (center of the) patch (see Fig. 32). If there is no difference
in the wave amplitude at P between a source at one extreme end of the patch and one at
the other, then we can consider that it makes no difference whether we consider the
point source or the equivalent source density spread over the entire area or width of the
source patch.

We presume that the linear dimension of these patches is much smaller than the sep-
aration L between the source and receiver surfaces, so there is negligible difference in
the “1/r” factor in the Green’s function between these two extreme points. However,
we do have to consider the phase difference between these two extreme source points
for waves arriving at P. In Fig. 32, we illustrate the case of a “line” source patch. We
can consider that our approximation will start to break down if the difference in the
two lengths L, from the “top” point and L, from the “bottom” point reaches ~4/2,
because then we will have destructive interference between the waves from these two
extreme sources.

From Fig. 32, L; = Ly + (d),/2) sin Oy and Ly = Ly — (d),/2) Sin Oy, 80
Ly — Ly =d, sin O,,. (B1)
So, keeping this below 1/2 requires
d, < A/2 sin Oy (B2)

The situation for an area “patch” is slightly different in that the most extreme distance
difference would be between the diagonally opposite corners of the patch, so possibly
up to +/2 larger than the largest linear dimension. However, for this simple heuristic
we neglect that minor difference, and conclude that the spacing of our point sources

Figure 32
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(in either direction for area patches) should satisfy the approximate limit of Eq. (B2) if
they are reasonably to approximate uniform patches.

If the source and receiving surfaces are approximately the same size (with a linear
dimension w) and are centered on a common axis, then tan ,,,, = w/L. For paraxial
situations, so where w < L, then sin(fp,x) = tan(0p,,x), so we have d, < AL/2w,
which is the result Eq. (70) in the main text.

APPENDIX C: LONGITUDINAL HEURISTIC ANGLE

To understand the effective “diffraction angle” from a longitudinal line of sources, we
can construct an argument based on two point sources, A and B, spaced a distance 2Az
apart in the z direction, as in Fig. 33.

Suppose the relative phase of the two sources is such that they add constructively
along the z direction (i.e., the direction from A or B to P). As we move away from
P in a direction perpendicular to z, such as by some amount dy in the y direction to
some point Q, the relative distance to the points A and B will change. Specifically,
the distance from A to Q is syp =[(z, + Az)?> 4+ 5*]'/? and from B to Q
iS SBQ = [(Zo — AZ)2 + 5)/2]1/2.

We can also think of the separation between P and Q as an angle 0. Presuming
0y < z,, then 0 ~ §y/z,, or equivalently §y = z,6. Writing
AS:SBQ_SAQ (C1)

and dropping terms « (Az/z,)? as being relatively too small as we let z, become arbi-
trarily large, we have

As=z{[l — (2Az/z,) + 07]'/> —[1 + (2Az/z,) + 67]'/21. (C2)

Using [237] /1 + e=~1 + (¢/2) — (¢*/8), after some algebra, As ~ —2Az + Az6>.
But sgp — s,p = —2Az. So the change in the relative distance from points A and B as
we move from P to Q is

Os = (SBQ—SAQ)—(SBP—SAP)EAZQZ. (C3)

We are interested specifically in the angle 6, by which this relative distance has
changed by 4/2, corresponding from a change from constructive to destructive inter-
ference, and hence a minimum in the intensity. So, for s = 1/2, we have what we call
the longitudinal heuristic angle 0; = \/A/2Az, which is the desired result [Eq. (71)
in the main text].

Figure 33

Two point sources A and B spaced 2Az apart along the z axis at a very large distance z,
from a point P. Point Q is spaced a relatively small distance oy away from P in the
y direction. @ is the angle subtended by the line segment PQ relative to the midpoint

between A and B. (Not to scale; z, > 2Az.)
____________________________________________________________________________________|
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APPENDIX D: SPHERICAL HEURISTIC NUMBER

We can rationalize the approximate effective number of channels for a spherical
source as follows. Consider some small lateral line AB of length d on an outer “re-
ceiving” sphere of a very large radius R (Fig. 34), and consider two point sources P
and Q on the extreme sides of the source sphere and in the same plane as AB and on a
line parallel to AB.

We ask that d is small enough such that the distance difference Al = /; — [, from the
two point sources changes by just 1/2 as we move from the middle (point C) to one
end (point B) of this line, so we could move from constructive interference to can-
cellation. So,

A=+ d/2)? + B = \[(r = d/2) + R

N 1 (r+d/2)\? L (r—=d/2\?\ rd _2
A (P )y

So d = RA/2r. We can reason similarly in the other direction (out of the “paper”)
leading to a patch of area d*> = R?A?/4r>. The total number of such patches on the
surface area 47R? of the receiving sphere is therefore Ny = 4nR?/d* = 167r? /12,
which is the result Eq. (74) in the main text. Note that this result depends only on the
radius 7 of the source sphere. Reference [230] derives a number equivalent to this by a
“sampling” argument.

APPENDIX E: SINGULAR-VALUE DECOMPOSITION OF COMPACT
OPERATORS

For a compact (but not necessarily Hermitian) operator A that maps from a Hilbert
space Hg to a Hilbert space Hy (which will be the source and receiver spaces in our
physical problems), the operator AA maps from Hy back into Hg, and the operator
AA" maps from Hy back into Hy. We know that both of these operators are then
compact and Hermitian [see Eq. (127)], so by the spectral theorem for compact
Hermitian operators (129), the set of eigenfunctions {|y;)} of ATA is a complete
set for Hy, and the set of eigenfunctions {|¢;)} of AA" is a complete set for Hp,
and we will choose these sets to be orthonormal in their spaces. In SVD, we are in-
terested in both of these sets of eigenfunctions, and the corresponding eigenvalues.

Both ATA and AAT are also positive operators by Eq. (134) [or Eq. (136)]. So, by
Eq. (136), their eigenvalues are also positive (non-negative). So, we can choose to
write the eigenvalues of ATA as ¢; = |s;|>. The eigen-equation for A'A is then

ATAly) = [s;Plw). (E1)

So, using the expansion of the form Eq. (131) for ATA, we have

Figure 34
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ATA = 15w (- (E2)
J=1
So,
1AW, 1> = (w,ATAly,) = |s,|>. (E3)
Then
1AW, [l = Is,l. (E4)

So for all non-zero eigenvalues s, we can construct a set of functions {|¢,)} in Hy
(where we have used a notation that anticipates the answer—we have not yet proved
that these are also the eigenfunctions of AA"), which we define as

b = A, (€5)

n

This set of functions is, first, normalized; that is,

1 ¥ |Sn|2
(¢n|¢n> == (Wn'A A|Wn) == = 1, (E6)
SnSn nSn

and we have

(Puldn) = =l ATAly) = o (vl (D sl w;){ w,>|wn>
1
- Z|s| (Wl s lwra) = lel (Wonlw)5;
m nj=1
s,,2 s,,2
=l ey =5, =6, (E7)
smsn SmSVl

so this set {|¢,)} is also orthonormal.

Now suppose we consider an arbitrary function |y) in Hg. Then we can expand it in
the orthonormal set {|y;)}, as in Egs. (86) and (87), to obtain

) =D (wilw)lw). (E8)

J
So, using (E5), and the associative law (109) for products in Dirac notation,

Aly) = A (wilw)lw) = (wilw)Alw,) = Zs (wilw) o))
J

J
—Zs 1)) wilw) = (Zs ) w,) (E9)

Since y was arbitrary, we can therefore write

A=Y sldn) wil. (E10)
J
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which is the SVD of the operator A from a space H g to a possibly different space H .

The complex numbers s; are the singular values. Note that this definition can be for
infinite-dimensional spaces.

Finally, it remains only to verify that the {|¢;)} are the eigenfunctions of AA". From
Eq. (E10) and the general algebraic identity for Hermitian adjoints of vector—vector
products [238],

AT = st lwe) (el (E11)
k

So from Eq. (E10),
Af = Z(Sjlqﬁj)(wjl)(szIl//k)(fﬁkl) = ZS;S;’EI@)(%IW)(%I

—Zssqub, ¢k|—2| 5,10 (- (E12)

Hence

AAT|g;) = |5 1) (E13)

So the {|¢;)} are indeed the eigenfunctions of AAT, and note that they have the same
eigenvalues as ATA [239]. Note, finally, from Eq. (E10),

Alwi) = sl wilwe) =D il = selébi). (E14)
J J

So the operator A maps one by one from the set of orthogonal functions {|y;)} in H g to
the corresponding member of the set of orthogonal functions {|¢;)} in with coupling
amplitude s; in each case. There is also a complementary mathematical relation that
we can s1m11arly deduce from Eq. (E11):

Al = silyi)- (E15)

We can also formally rewrite the SVD, Eq. (E10), in matrix form. To do so, we can
write a matrix that is diagonal on some basis {|y;)} as

Daing = »_sil1;) (7l (E16)
J

where s; are the diagonal elements, and we can define two matrices

U=>lw)rl and V=> |¢,)(r,l, (E17)
P q

both of which are technically unitary [240]. Then

VD, U™ = <Z|¢q><yq|> (Zsjly,wjl) (mew)
: .

= Z|¢q S0 Wyl = ZS ) (w;| = (E18)

4.J,p

Hence, an equivalent form for writing SVD is the “matrix” version
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A = VD, Ut (E19)

with U and V as in Eq. (E17). In this case, we can view |¢;) as being the columns of V
and (y;| as being the rows of U' (or ly;) as being the columns of U).

APPENDIX F: HILBERT-SCHMIDT OPERATORS WITH WEIGHTED INNER
PRODUCTS

Suppose we have two possibly different weighting operators W (rz) and Wy(rg) in
source and receiving spaces, respectively. We can now follow through an argument
similar to that in Subsection 6.8. Instead of Eq. (149), we can write the operator-
weighted inner products

(usoishw, = /V 3 (E) W (s () P, (F1)

(s 1w, = /V W (r )W () e (e . (F2)

We also formally presume that, for finite functions ug, #g, 4z, and 7z, these inner
products are finite. So, for some coupling operator (which may be a Green’s function),

D(rp;ts) = Y dyg (s arp)yy, (@sgr Iy, = O _dpganp (bR, (rs).  (F3)
2 p.9q

We can find the dj; as usual by premultiplying by a,(rg), postmultiplying by ag;(rs),
and integrating with the weighting operators as in

dy = /V /V (1) W (r) D(r: 1) [ Wi (rs)as (k) lrdrs.  (FA)

Here we have used square brackets [- - -] to indicate explicitly that the weighting op-
erators only have to operate on the function to their immediate right. Now consider the
integral

S = /V /V[Ws(l’s) D' (rg; rp)[Wr(rg) D(rg; rg)]d’rpd’rs, (FS5)

where

Df (rs:rp) = denaRm(rR)aSn(rs) = D*(rp: ). (F6)

By presumption, Wy (rz)D(rg:rs) and W(rg)D'(rg;rg) are finite. So the integral
(F5) of finite functions over finite volumes is finite. Then,

[Wi(rs) D* (rg; TR)[Wg(rg)D(rg; r)]

{den [Ws(rs)as, (rs)laj, (rR)} {Z WR(rR)aRp(rR)]a§q<rS>}

= Z dynd asq (ro)[Ws(rg)as, (rs)]ag,, (rz)[Wg (rR)aRp (rp)]. (F7)

m,n,p,q

Formally integrating Eq. (F7) over the two volumes, as in Eq. (F5), gives
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SD = Z d:mdpq5qn5mp = Z|dpq|2’ (F8)
p.q

m,n,p,q

which, since we know Sp is finite, proves that this is a Hilbert—Schmidt operator.

APPENDIX G: ELECTROMAGNETIC GAUGE, GREEN’S FUNCTIONS, AND
ENERGY INNER PRODUCT

Here we derive Green’s functions and energy inner products for electromagnetic fields
in uniform media. The electromagnetism background is relatively standard (see, e.g.,
[126,187,193,241-243]. However, we need a new ‘“gauge’: the “M-gauge.” This
gauge lets us write all fields of interest just using the magnetic vector potential
and clarifies that there are altogether only three independent field components for
communications. That then allows a single, novel dyadic vector potential Green’s
function and a novel “energy” inner product for the electromagnetic field.

G.1. Background Electromagnetism

We presume an isotropic uniform medium, so with constant, scalar permeability y and
permittivity e. We consider a free charge density p and a corresponding “conduction”
current density J of that charge. Then, we can write Maxwell’s equations as

M1) V- ¢E = p, (G1)

(M2) V-B =0, (G2)

M3) VxE =2, (G3)
(M4) VX@[)_lB:J—{—é‘%. (G4)

We can also explicitly write out the charge conservation condition

_ %
VI=-—. (G5)

We want to know how many independent field components we need to describe com-
munication. To reduce from the nominal six different scalar field quantities required to
write the vector components of E and B, we first change a description using the mag-
netic vector potential A and a scalar (electric) potential ®. To relate these to E and B,
we follow several standard steps. Since for any vector field F,

V- (VxF)=0, (G6)
then, since V-B = 0 (M2) [Eq. (G2)], we can write
B=VxA, (G7)

where A is the (magnetic) vector potential. Next, from (M3) [Eq. (G3)], we now have
VxE= 9 (VxA)
ot ’

so, presuming we can interchange the order of differentiations, we can write
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0
Vx|E+—A) =0. (G8)
ot
Now we also have the vector calculus identity

V x (VF) =0 (G9)

for any scalar field F'. So, we can argue that any such field E + 0A /df whose curl is
zero can always be written therefore as the gradient of some other scalar function, i.e.,

E+%A= —Vo (G10)

for some scalar field @, which we call the scalar potential. Rewriting Eq. (G10),
we have

d
E=-VO—_A. G11
py (G11)

These two equations (G7) and (G11) describe the magnetic and electric fields in terms
of these two potentials. Using Eq. (G11) in (M1) [Eq. (G1)] gives (with constant
isotropic ¢)

V. <V<I>+£A> =_°, (G12)
ot e

Noting that V - (VF) is just another notation for V2F for any scalar field F, and inter-
changing the order of the derivatives, gives

0
V2o + 2 (v.A) =~ (G13)
ot €
From (M4) [Eq. (G4)], and using Eq. (G7) for B and Eq. (G11) for E, we have

0 0
—1 — _ R
V x (4) VxA—J+£at< Vo atA). (G14)

Interchanging the order of the derivatives and rearranging gives

’A ovVd
\Y -y x A — =
X (u) XA +e P + € B

J. (G15)

Since we are presuming that & and p are simply constants, Eq. (G15) becomes

A ovVo
VxVxA — — =ul. G16
XVxXAtep—st+ep—, uJ (G16)
Using the vector identity
Vx (VxF)=V(V-F) - V°F, (G17)

it is common to rearrange Eq. (G16) to obtain



Tutorial Vol. 11, No. 3 / September 2019 / Advances in Optics and Photonics 787

*A oD
VZA—g,uW—V<V-A+€,uE> = —ulJ, (G18)

though we will deliberately not take this approach below.

These equations (G13) and (G16) [or (G18)] are still coupled between the two po-
tentials A and ®. To simplify further, we need to choose a gauge for these potentials—
i.e., the specific choice of A and @ for given E and B fields. To understand why we
need to make a choice, note, first, that we could represent a specific B field using a first
or “old” choice A4, with B = V x A4 as in Eq. (G7). Because of the vector calculus
identity V x (VF) = 0 [Eq. (G9)], we could add the gradient of some scalar function
VY, called the gauge function, to A,y to create a new vector potential

Anew = Aold + V¥ (G19)
without making any change to the magnetic field B; specifically,
B=Vx Aold =V x Anew. (G20)

However, if we make no further changes, we see from Eq. (G11) that the new vector
potential would add a term —oVW/ 0t to the electric field E. To avoid this, therefore,
we can add a term —dW/0dr to the potential ®; that is, we write

oY

Do = Doig — E . (G21)
We can check this explicitly by calculating E using ®,.,, and A, ; that is,
0 oY 0
E=-Vo,, - EAnew =-V (q)old - E) 5 (Agg + V¥)
0 M 0 0
=—VO,4 — EAold -V o + Fy VW = -V, — &Aolm (G22)

where we presume that we can interchange the order of temporal and spatial deriv-
atives. So, Eq. (G22) shows explicitly that we are free to choose the gauge function ¥
as long as we use the transformation rules Egs. (G19) and (G21). A new choice of
gauge function V¥ gives a gauge transformation.

G.2. Choosing a Gauge for Communications Problems

We want to choose a gauge that leaves only the minimum number of field components
so that we can count modes properly. The Coulomb and Lorentz gauges are particu-
larly common (see, e.g., [193,241,242]). Typically, a gauge is set in practice by some
choice for V - A. For the Coulomb gauge (with subscript “C”), that choice is

V-Ac =0, (G23)
and for the Lorentz gauge (with subscript “L”),

1 09,
VA =—_""£, G24
L CZ ot ( )
Many other choices are possible (see, e.g., [244,245]). Using each such choice in the
wave equation (G18) leads to four “scalar” equations or their equivalent, one wave
equation for each vector component of A, and another equation for the scalar potential
®. In the Coulomb and the Lorenz gauges, the driving source terms are the charge
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density p and the current density J. Immediately, this tells us that there are no more
than four independent functions required to specify any field that we would create as a
result—one for p and one each for the three vector components of J. However, the
charge density p and the current density J are linked by conservation of charge,
Eq. (GS5), so even these four may be too many. There are also technical problems
with the Coulomb gauge in particular [214,215] as we describe waves coming from
sources.

G.2a. Gauge for Communications—the M-Gauge

We are interested here in sending changing fields from a source. We can, without
significant restriction, suppose that before some time ¢,, all electric and magnetic
fields have been constant, and that we have a known charge density p,(r) that has
been fixed up to this point. (We can also presume that all effective magnetic currents
J,,(r) have been stable and fixed, and that we have had other fixed “solenoidal” cur-
rent densities J,(r), i.e., ones for which V - J, = 0.) So, before time 7,,, we have some
electrostatic field E,(r) that we could obtain by a solution of Maxwell’s first equation
(M1) with this charge density p,(r), as well as possibly some magnetostatic field
B,(r) from Maxwell’s fourth equation (M4), with some (fixed) J,(r) and J,,(r).

Now we presume that, after time 7,, we have some new additional current density
J(r, 7). These new currents give changes Ap(r, ) in charge density that necessarily
and only result from such currents, so we should not need an additional independent
driving term corresponding to the change in charge density. The changes in the
electromagnetic field, and any propagating components of that, should result only
from these currents J(r, ¢).

Now our task is to construct a new gauge, which, using the “M” from
“coMmunications,” we call the “M” gauge [246], with the only time-dependent driv-
ing terms being from the three vector components of the current density J(r, 7). The
key to this gauge is to choose the scalar potential as being associated just with the
original fixed charge density p,(r), so it obeys a simple, fixed Poisson equation

V20, (r) = —”OT(r), (G25)

which, within an arbitrary additive constant, has the solution

() = 5 8/ O(r) (G26)

Ir —
Because neither p, or ®;, has any time dependence, we therefore have

oD,

=0, G27
5 (G27)
and, trivially,
0D,
V——=0. G28
5 (G28)
We have, as usual in any gauge [Eq. (G11)],
0A
E=-Vd, — a—tM (G29)

With the fixed electrostatic field
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E, = —V®,, (G30)
we could write
E=E, +E, (G31)

with E); = —0A,, /0ot [Eq. (164)] with E,, containing all the time-varying and propa-
gating electric fields [247]. Similarly, we could write

B =B, +B, (G32)

with By, = V x A, [Eq. (165)] as usual for gauge potentials.

Generally, a gauge is practically defined by the choice of V - A, and we need this result
later. We give the formal derivation of this below in Appendix H, with the result

t r
V-Ayr,) = é / / V- J(r,¢")dr"dr . (G33)
’=t, Ji"=t,

G.2b. Wave Equations in the M-Gauge
Now returning to Eq. (G16) and using Eq. (G28) to eliminate the term eu(oV®/dr)
because it is zero in this gauge, we obtain the wave equation

P Ay _
or*

VXVxXAy+eu ul, (G34)

which lets us define what will be the phase velocity v = /1/eu [Eq. (168)].

Often we are most interested in monochromatic fields—that is, fields whose time
dependence can be written in the form sin(wt), cos(wt), exp(iwt), or exp(—iwt),
or linear combinations of these, with some specific choice of the angular frequency
w. In this case,

PA,,

= Ay (G35)

For definiteness and simplicity, for such monochromatic fields we can use the form

Ay (r,t) = A, (r) exp(—iot) + A}, (r) exp(iot) = A, (r) exp(—iowt) + c.c.,
(G36)

where “c.c.” stands for “complex conjugate.” The addition of the complex conjugate
ensures that the field A,/ (r,?) is real. In Eq. (G36) A,;,(r) is in general a complex
amplitude function (which therefore holds any phase information for the fields). As is
common, we perform the algebra for the field A, (r) exp(—iwt). If necessary to get
back to real fields, we can formally repeat the calculation with the complex conjugate
of the form in Eq. (G36), and add the two. In the monochromatic case, therefore,
instead of Eq. (G34) we have V x V x A, — k*A; = uJ,, [Eq. (166)], with k? =
o’ep = w* /v* [Eq. (167)], and J(r, ) = J,,(r) exp(—iwt) + c.c. [Eq. (169)].

So, the answer to the number of independent functions required to specify an electro-
magnetic field is that there are three such functions of space and time for all com-
munications purposes, plus other functions of space only to specify background
static fields. Our choice of gauge has separated these out, as desired. The consequent
price is that is that the resulting wave equation (G34) has a V x Vx spatial derivative
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rather than a more common V?2 one [248]. However, this is manageable and even
useful, as we show below.

G.3. Dyadic Green’s Function for the Vector Potential in the M-Gauge

Approaches to the mathematical Green’s function solutions for A for equations of the
form of (G34) or (166) can be repurposed from discussions of “dyadic” Green’s func-
tions that can be derived directly for E and B in electromagnetism [126,187,249-252].
A dyadic Green’s function expresses the fact that the resulting vector field or vector
potential function may not be parallel to the vector source that generates it [253]. We
give a brief tutorial introduction to dyadics [254], together with some necessary
identities, in Appendix I below.

G.3a. Derivation of General Form for Monochromatic Waves

In part because the vector and dyadic calculus becomes somewhat involved here, we
will consider the monochromatic version of the wave equation, Eq. (166), first. We
now propose a dyadic Green’s function G,,,(r;r’) that, starting from some vector
“point-source” element at position r’, will lead to some vector wave (not necessarily

in the same vector direction) at position r. Following the usual approach with Green’s
functions, we write in this dyadic case

Aou(r) = u [/ G (157) - J, (1) &r, (G37)

and we formally write the corresponding wave equation for the dyadic Green’s
function as

V XV x G,y — kG = I6(r —1). (G38)
Note the presence of the idem factor (unit dyadic) 7 on the right in Eq. (G38), as
required to make the right side a dyadic entity to match the left side. Taking the di-
vergence of both sides of Eq. (G38), and noting that the divergence of the curl of a
function is necessarily zero (a result that also works in dyadic form [249]), we have
K2V -Gy = V- (I5(r —1)). (G39)

So, using the identity Eq. (I17) and rearranging, we have [255]

V-G = — % Vo(r —r). (G40)

Now, using the identity Eq. (G17), which also works in dyadic form [249], Eq. (G38)
becomes

V2ﬁmM - V(V : E(uM) + k2ﬁmM = _?5(1. - I',), (G41)

and we can substitute using Eq. (G40) for V 'ﬁwM to obtain, after rearrangement,
= = 1
(V2 + k)G, = — (1 +2 vv) S(r—r). (G42)

Now let us propose a form for 5(01\4, and check to see whether it can be a solution to
Eq. (G42), and hence to Eq. (G38). Specifically, we propose
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EwM(r; r) = —<? + %VV)g(r; r'), (G43)

where g(r;1’) is a scalar function to be determined. Substituting this into Eq. (G42)
gives

= 1 = 1
(V2 + k%) <I + z VV)g(r; r) = <I + EVV> 6(r—r). (G44)
Exchanging the order of terms and derivatives on the left gives
= ] = 1
(I + PVV) (V2 + kH)g(r;r)] = <I + pVV> S(r—r). (G45)
This equation can be satisfied if

(V2 +K)g(r;r) = 6(r —r'). (G46)

But this is just the Green’s function equation for a scalar wave equation,
as in Eq. (4), so

Lexp(iklr —r))

4w |r—r| (G47)

grr) =G, (rr) = -
So, substituting back into Eq. (G43), we have

= (=1 L= exp(ik|lr—r'|)
Gou(rr) = <I—|—k2VV>Gw(r,r)—4ﬂ<1+k2VV) r—r] (G48)

Hence, we now have a relatively straightforward expression for the Green’s function
of the “V x Vx* wave equation (166) [256,257].

G.3b. Explicit Form for the Dyadic Green’s Function for Monochromatic Waves

In the Green’s function in Eq. (G48) the only variable is R = |r — r'|, which we can
regard as a radius variable in spherical coordinates around the fixed point . So, with
no dependence on the € and ¢ coordinates,

d
VG, (r;r') = {— G,,)(R)} VR. (G49)
dR
Now
d 1 d |exp(kR)| 1 (ik 1 oo ]
a7 ® = 1rar { R ] I <R R2> exp(ikR) = <’k R) GoB).
(G50)
So, from Eq. (G49), and using the identity VR = R [Eq. (I122)],
1 N
VG, (r;r) = <ik — 1—2> G,(R)R. (G51)

Continuing,
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o (1 R
VG, (i) = V| (ik = 7 ) Go(R) R+ ik — 7 ) G, (RIVR, (G52)

where we use VR =1 [see Eq. (I23)]. We can now progressively work out the
remaining parts of this expression (G52):

| 1 .
v sz_ﬁ) Ga,(R)] — G, RV (E) n (l"—ﬁ) VG, (R)

R /. 1)\2 . 1?1 R
(G53)
where we have used the result V(1/R) == —R/R? [Eq. (124)]. Substituting using

Eq. (I125) (VR = (1/R)I —RR)) and Eq. (G53), we can therefore rewrite
Eq. (G52) as

VVG, (1Y) = PR R S R AL, S - Vo
o= {[(e- ) s o) -

- [—szui + % (7-3RR) — % (7-3R ﬁ)} G,(R). (G54)
So, finally, using Eq. (G54) in Eq. (G48) gives
f— , = A A = A A 1 = A A
G,y (1) = _[ ~RR+ (T =3RR) — 5 (T - 3RR)] G, (R)
:—[:—ﬁﬁ—l——(i—kiR)(?—ﬂA{R)]} G, (R). (G55)

We see from Eq. (G55) that we have two different kinds of terms. Specifically, writing
GmM = GH,MP + G,,,MN [Eq. (172)], we can define a “propagating” Green’s function

Gour = —I—RR)G,(R) (G56)

and a “near-field” Green’s function

G =~ (1= 1) T = SRR G (@57)

The magnitude of the propagating Green’s function G,y falls off as 1/R, from
the 1/R dependence of the scalar Green’s function G,(R), and its behavior is
characteristic of a propagating wave. The “near-field” Green’s function, by contrast,
consists only of terms whose magnitude is falling off as 1/R? or 1/R?, which are
characteristic of near-field fields, not propagating ones.

We can usefully rewrite these Green’s functions Eqs. (G56) and (G57) by rewriting the
unit dyadic 7 using a coordinate direction R and two other directions, given by unit

vectors €, and €,, which are perpendicular to each other and to R, giving [as in
Eq. (110)]

7=RR+é,6, + &8, (G58)
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so, substituting Eq. (G58) in Eq. (G56) gives G,y p=—(&,&, +&8&,)G,(R)
[Eq. (170)].

So, in this propagating Green’s function there is never any component of the vector
potential in the direction of propagation (the “radial” direction R) (i.e., there is no
“longitudinal” propagating vector potential wave); all the propagating vector potential
waves are “transverse’.

By contrast, the “near-field” Green’s function actually has a larger magnitude in the
“longitudinal” radial direction R than in each of the other two transverse directions €,
and &,; specifically, substituting using Eq. (G58) in Eq. (G57) gives [Eq. (173)]

Qll

L/ 1 Aoa
woMN = [ﬁ (l —ﬁ) (CRR —€,€; — &,8,) |G, (R).

G.3c. Green’s Functions for General Time-Dependent Waves
We can follow through a similar analysis for the full time-dependent case, based on a
scalar retarded Green’s function

16(t—=¢—1r—0|/v
G(r,t;r’,t’):—a ( |r—|r’| / ). (G59)

For reasons of space, we omit the detailed derivation here, but the dyadic aspects are
all similar. The resulting Green’s function of the full time-dependent wave equation
Eq. (G34) can also be usefully written [also using the notation of Eq. (G58)] as a sum

Gy = Guyp + Guy (G60)
of a propagating term

Gup(t, v, ¢) = (1/4zR)I — RR)S(t — ¢ — R/v) = —(I — RR)G(r, ¥, 1)
= —(&,& +&¢&,)G(r,1;r,7) (G61)

and a near-field term
5MN(I', t;l",t’)
:ﬁ(f—ﬂiﬁ) {@(t—t’—|r—r’|/v) +£:(t—t’— |r—r’|/v)}

v Cagral A A A A ’ 1 vv— ’ ’
= —W(QRR—elel —&,6,)) [G)(t—t —|r—r'|/v) +E_.(l—l —|r—r |/v)},
(G62)

where ©(a) and E(a) are the Heaviside and “ramp” functions, respectively, defined as

I, a>0 ~ , a>0
@(a)z{o Z<O and c(a):{g Z<0’ (G63)

and we use the formal results

/ S, — 1 —R/v)di, = Oty —{ — R/V), (G64)
ta=t,
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/t /tb o(t, —t —R/v)dt,dt, = /[ O(t,—t —R/v)dt, =E({—1 —R/v).
ty=t, Jt,=t, tp,=t,
(G65)

Just as for the monochromatic case, the propagating term gives “transverse” vector
potential waves.

G.3d. Green’s Functions for the Electric and Magnetic Fields

The Green’s function formalism we have set up so far for the vector potential in the
M-gauge is complete for describing the electromagnetic field resulting from (time-
varying) current sources (and any corresponding changing charge distributions). It
can therefore be used to derive dyadic Green’s functions for the electric and magnetic
fields, based on the relations Eqs. (164) and (165) that give the electric and magnetic
fields from the vector potential in this gauge. For reasons of space, we omit this here.
Also, these can be derived directly from Maxwell’s equations (see, e.g., [126,249]). As
we would expect, the choice of gauge does not make any difference to the result for the
electric and magnetic fields. The point of our approach with the M-gauge is to clarify
how many independent variables and fields there are and to give an inner-product form
that is directly suitable for use in functional analysis, which we derive next.

G.4. Energy Inner Product for the Vector Potential

Using the M-gauge, we can conveniently set up an inner product for the electromag-
netic field, and this can be an “energy” inner product. With this inner product to define
orthogonality and energy, the total energy of a field is the sum of the energies of its
orthogonal components.

G.4a. Expressions for Energy Density in Electromagnetic Fields
General time-dependent form: A standard expression for the energy density in an
electromagnetic field is ([241], p. 259)

u=(1/2)(E-D+B-H). (G66)

In a lossless, uniform, isotropic medium with dielectric constant € and magnetic per-
meability g, this can be rewritten as u = (1/2)(¢E-E + y~'B - B) [Eq. (177)].

Monochromatic form: If we are considering a monochromatic field at angular fre-
quency w, we can write

E(r,7) = E,,(r) cos(wt + 0,), (G67)

B(r,7) = B,,(r) cos(wt + 0,,), (G68)

where 0, and 6,, are phase angles [258], and where both E,, (r) and B, (r) are real
[259]. Then the energy density of Eq. (177), now considered to be averaged over a
cycle (which introduces a factor of Y2) [260], can be written

U= (1/4)(€E0w ‘Eop + /"_]Boa) ‘Boy)- (G69)
However, we also can conveniently write [261] (e.g., for work in quantum mechanics)

E(r,t) = E, (r) exp(—iwt) + EZ (r) exp(iowt) = E, (r) exp(—iwt) + c.c., (G70)

B(r,?) = B, (r) exp(—iwt) + c.c., (G71)
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where E,, and B, are complex numbers, incorporating the phase shifts, i.e.,

E,(r) = (E,(r)/2) exp(—if,), (G72)

Bm(r) = (Bom(r)/z) exp(_lem) (G73)

We will then get the same answer as in Eq. (G69) for the (time-averaged) energy
densities if we write with our new E, and B, instead of Eq. (G69),

u= EE;Z : E(n + /’t_lBZ) : Bm' (G74)

Below we will need the monochromatic forms of the vector potential. We make similar
definitions to those for the electric and magnetic fields. So, with a real monochromatic
vector potential that we could write, analogously to Eqgs. (G67) and (G68),

Ay (r, ) = A, (r) cos(wt + 0,) (G75)

for a phase angle 6,, (which may also be a function of position) and, analogously to
Egs. (G70) and (G71), we can write Eq. (G36) (A, (r,t) = A, (r) exp(—iwt)+
c.c.), where, analogously to Eqgs. (G72) and (G73),

Aou (1) = (A (r)/2) exp(—ify). (G76)

G.4b. Inner-Product Form

Our goal here is to construct an inner product that works with the electromagnetic field
expressed through the vector potential. Using the vector potential in the M-gauge, we
can deduce the entire electromagnetic field responsible for any communications, as
expressed by E;, and B;,.

General time-dependent form: Now, immediately from Eq. (177), and using the
expressions for the electric field, Eq. (164), and the magnetic field, Eq. (165), in
the M-gauge, we have

o= (o[-0 |2 s v iy T xan)). (@7

Now, in component form, with

Ay =X04p + XAy + X34y, (G78)
then
_M — — G79
ot VR VR (G79)
and
04 04 04 04 04 04
VXAM:ﬁl M3_ M2 +§2 Ml_ M3 —|—ﬁ3 MZ_ M1 ] (GSO)
0x ) dx 3 ax 3 ()x 1 dx 1 OXZ

So, now we can construct a 6 x 3 matrix, which we will call /U for a reason that will
become apparent later. The idea of this matrix is that it will operate on the three vector
components of A;,, expressed as a three-element column vector, to generate a six-
element column vector whose first three elements are the three vector components
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of E (weighted by 1/&/2) and whose second three elements are the three vector com-
ponents of B (weighted by +/1/2u). This matrix then becomes

[—Ve2 0 0
0 —ﬁ% 0
o] 0 0 &2
U=— 1.0 1 0 (G81)
V2| 0 Fe e
1 0 0 =10
JH 0x3 H 0x,
=1 0 1 0 0
L JH 0x, JH 0x, ]
Then, with
EM = ﬁlEMl —+ ﬁZEMZ + ﬁ3EM3, (G82)
BM = ﬁlBMl + ﬁZBMZ + ﬁ3BM3, (G83)
we have
[ VeEui
y VEEyp
M1
1 VEE ;3
VU4 | =— = [VUA,,|. G84
M3
(1/V/#)Bu
L (1/ /1) Bus |

Here we use a notation [v/UA,,] with the square brackets to indicate that this entity
should be thought of as a mathematical six-element column vector. Now, we can con-
struct a transformed inner product with respect to this operator ~/U, as discussed in
Subsection 6.6b. For two non-zero vector potential fields, u(r, ) and #(r, ¢), this inner
product is written

(17 y5 = (VUpVUn), (G85)

and this defines an energy inner product for electromagnetic fields. For two (non-zero)
electromagnetic fields, the inner product will be zero if and only if the two fields are
orthogonal with respect to this energy inner product. See the discussion given above
[around Egs. (180) to (182)] explicitly for the monochromatic case above for how to
complete the construction of this inner product as an integral over space. The only
differences in the full time-dependent case are that the inner product (u,7), g is for-

mally completed at some time ¢, and that we use /U rather than the monochromatic
version /U,,.

When formed between a vector potential field A, and itself, we obtain the total energy
U at some time ¢ of the electromagnetic field (neglecting static fields) in this volume V:

U = (A Ay = (VUAY, VUA ). (G86)

Expressed as a transformed inner product [262], as in Eq. (G85), we have our desired
energy inner product for the electromagnetic field in a volume V' at a time .
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Monochromatic form: For monochromatic fields at angular frequency @ [so with
implicit time dependence of the form exp(—iwt)], d/dt - —iw. We also need to work
with the energy density as in Eq. (G74), which leads to the elimination of the factor of
15 compared to the full time-dependent version, so the monochromatic version of the
operator becomes as in Eq. (179) above.

APPENDIX H: DIVERGENCE OF THE VECTOR POTENTIAL
IN THE M-GAUGE

Generally, a choice of gauge formally results from a choice of the divergence of the
vector potential, and we establish this here for V - A,,. Formally, we establish the
gauge function W, that transforms from the Coulomb gauge to the M-gauge. In
the Coulomb gauge, by choice [Eq. (G23)], V- A = 0. Now the wave equation
(G13) becomes the Poisson equation

Vo, = 7. (H1)
E

That is, the potential @ is simply the (“instantaneous”) electrostatic potential asso-
ciated with the charge density p (hence the name “Coulomb” gauge). Presuming we
know p and its behavior in space and time, then we can solve Eq. (H1) to obtain

p(r',1)
r—r'|

1
(Dc(r, t) = 4—775' d3r,, (H2)

where the integral is over all the volume containing any charge density. We can check
this solution Eq. (H2) by taking V2 of both sides (noting that this is with respect to the
non-primed position variables, such as r).

Now, we formally define the difference Ap(r, ) between the actual (free) charge den-
sity at any given place and time, p(r,#) (which can change after time ¢,), and the
original (fixed) charge density, p,(r):

Ap =p—p,. (H3)

Explicitly, then, using the form as in Eq. (G21), we can write

oY
@) = De—— -, (H4)
ot
and using Eqgs. (G26), (H1), and (H2), we can therefore write
¥y p(r',1) / (r') L [Ap(r',1)
=0, -] dr — ° d*r
ot M= 471'6' Ir — r| dre |I‘—l‘| " dne Ir—r'| r
(H5)

The charge density Ap(r, ) results entirely from the currents J(r,¢) that flow after
time ¢,, and so the charge conservation equation (G5) becomes

0A
v.yo %%

5 (H6)

So, from Eq. (H5) we can write

a4 1 O0Ap(Y 1) /ot 1 V. t
at2CM — 4_ ﬁ'(r r,)|/ d3r/ — 4 | J(ll"| )d3r’. (H7)
TTE — e
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Integrating once with respect to time therefore gives us

Meyrr) 1 [ [ / v ir.r) )d3r’] ar, (H8)
4

ot dre Jp— [r —r’|

where for clarity now we are also explicitly showing the spatial integral is over the
volume V containing currents. Integrating a second time with respect to time gives us

v =g [ [0 |t e v

which is therefore the gauge function that transforms from the Coulomb gauge to the
M-gauge. Now Eq. (G19) becomes

Ay =Ac+ V¥ (H10)
Since V - A- = 0 [Eq. (G23)], we therefore have
V-Ay = VW¥ey. (H11)
Hence, from Eq. (H9), and using the identity

1 1
Sr—r)=——V?
(r—r) 4z |r—r|

: (H12)

we obtain

V- Ayt = ——V2/ / [/Vv |rJ_(rr |t )d }dt”dt’
"=t
/ / [ / VI, )V —— ]dt”dt
4”8 ’=t, Jt'=t, Ir —
= —/ / [/ V- J@, )e(r — r’)d3r’} d"dr’
€ Ji=t, J'=t, LIV

1 [t t
=- / / V- J(r, ¢)dr"dr, (H13)
& Jr=t, J'=t,

which is the result quoted above [Eq. (G33)].

APPENDIX I: DYADIC NOTATION AND USEFUL IDENTITIES FOR GREEN’S
FUNCTIONS

A dyad is pair of vectors, written as ab, with no symbol between the vectors a and b. a
is a vector that is “waiting to operate on (or be operated on by)” a vector from the left,
and similarly b is a vector that is “waiting to operate on” a vector on the right. So, for
example, with two vectors ¢ and d, and with¢-a = sand b - d = w, where s and w are
scalars, then

c-(ab)-d=(c-a)(b-d) = sw. (11)

Now we see why there is no symbol inserted between a and b in the dyadic; once these
dot product operations have been performed to the left and the right, we have a simple
scalar multiplication in the middle. For a vector operation to the left, such as a cross
product, then we are left with a dyad fg in this case, i.e., with f = ¢ xa and
g=bxd,
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cx (ab) xd = (¢ xa)(b xd) = fg. (12)

A dyadic is an extension to sums of dyads, such as the sum of three dyads, typically
written using the unit vectors in the coordinate system. So with three orthogonal co-
ordinate directions with corresponding unit vectors X, X,, and X,, we could write three
vectors (or vector functions), one in each coordinate direction:

3
F, = ;f,ﬁci. (13)

So, with j = 1,2, 3, we could write one dyadic,

3
F=3) FX=3 > f%%; (14)

where conventionally the dyadic is notated with a double line above it. Formally, we
can define appropriate products for dyadics. For some vector a, we can define the
following:

_ 3 33
anterior scalar product a - F = Z(a ‘F)X; = Z Za,ﬁjf{j, (15)
=1 i=1 j=I
_ 3 33
posterior scalar product F-a = ZFj(ﬁj -a) = Z a;fX;, (16)
j=1 i=1 j=1
_ 3
anterior vector product a x F' = Z(a x F))X;, (17)
=1
_ 3
posterior vector product F' x a = Z F;(X; x a). (18)

J=1

The result of the scalar products is a vector in both cases, and the result of the vector
product is a dyadic in both cases.

The unit dyadic or idem fact0r7 leaves a vector unchanged in either scalar product, i.e.,

~ll
~ll

a- -a = a, (19)

so we can think of it as the dyadic “identity” operator. We could also write
I=) %% =%% + %k + Rsks, (110)

which is therefore the sum of the three dyads XX, X,X,, and X3X3.

I.1. Vector Calculus Extended to Dyadics

To extend vector calculus to dyadics, we build on the anterior scalar and vector
products. Specifically, the divergence of a dyadic function can be defined, using
Eq. (I5), by
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V.F= Z(v F)%; :ii%ﬁj, (111)

and the curl can be defined, following from Eq. (I7),

3 3
VxF = Z(v x F))% Z D (Vfy x %)%, (112
i=1 j=1

Jj=

where we have used the vector calculus identity (for a fixed vector X)
V X (f(r)X) = Vf(r) x X. (113)

We can also usefully define the gradient of a vector function. Specifically, for some
vector function F(r) with components f;(r), i.e.,

3
F(r) = Z fO%;, (114)
j=1

we can choose to write the dyadic

3 3
VF(r) = Z(v];(r) )R, = ZZ%@ X, (115)

Note that, just as the divergence of a vector function gives a scalar function, the di-
vergence of a dyadic gives a vector. Similarly, just as the curl of a vector function gives
a vector function, the curl of a dyadic gives a dyadic, and just as the gradient of a scalar
function gives a vector function, the gradient of a vector function gives a dyadic.

We can also introduce here two other relations we need. First, for a dyadic of the form

F =7, (116)

then

o _ 3
V-F=V-(f0D) =Y V- (%)} = Zaf(r)x =v/. (17

J=1 J=1

Second, for this same form of dyadic, Eq. (I16), we can consider VV .F. From
Eq. (I17),

3 3 2
=3 v(G08) = S s = ve. we

which is effectively introducing and defining a new operator, “VV”. Viewed as an
operator in its own right (so, without the “dot” in “VV-”), VV is an operator that
takes a scalar function, here f'(r), and creates a dyadic. Note that we must nof notate
it as V2, which is the Laplacian (equivalent to V - V).
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I.2. Useful Derivatives for Dyadics and Green’s Functions
Several derivatives are useful in working with dyadics. First, with

R=r-r, (119)
then
R=|r—r]|, (120)
and we can write R in terms of Cartesian coordinates as
R = xX; + %%, + x3%;. (121)

(Note that we are now using x;, x,, and x3 as the components of R, not of r.)

The gradient of R, which also obviously depends only on R (and not on spherical
coordinates 6 and ¢), is simply (by definition) R—the unit vector in the r — r’ radial
direction of interest—and we can write this formally as

N —-r R
VR=R='1"T -2 (122)
r—r| R
Then from Eq. (I15) and the definition Eq. (110),
SENE R =
VR=3 > Si%% =) %% =1 (123)
i=1 j=1 i j=1
(which we see, incidentally, gives us another expression for 7 ). We also have
1 1 R
Vi-]| =—-VR=——. 124
<R> R? R? (124)
So,
5 R\ VR 1\ I R 1= A
VR=V|(—-)=—+RV|(—- ) =———=VR=—-(—-RR). 12
(R> R + <R> R R? R( ) (123)

Note carefully that Eq. (I23) is for the vector R, whereas Eq. (125) is for the unit vector
R. Expressions (123) and (I25) are particularly useful in working with dyadic Green’s
functions. We also need three other related derivatives. First,

R\ 1. . A~ /1N 1= A~ R 1= ..
— )] ==VR+RV(=)=—=(UI—-RR)—R—==—=({-2RR 12
v(R) vk v(R> 0 —RR)~R = (1-2RR),  (26)
and noting, second, that
1 2 2R
V(F) = _FVR: — R (127)

we have our third required derivative,

ﬁ 1 A A 1 1 = A A Aﬁ 1 = A A
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APPENDIX J: QUANTIZATION OF THE ELECTROMAGNETIC FIELD
IN THE M-GAUGE

The algebraic steps in the quantization of the field in the M-gauge are similar to those
in the common “transverse” Coulomb gauge approaches (see, e.g., [211,212]), but we
avoid fictitious resonators or boxes, the formal problems of the Coulomb gauge
[214,215], and any separation into “longitudinal” and “transverse” fields. Our ap-
proach can proceed for arbitrary volumes and can include all near-field terms if
we wish.

Our basis functions or “modes” are any (energy) orthogonal set of monochromatic
vector potential fields A, (rg) (which satisfy Maxwell’s equations) in the volume
V . We can expand a monochromatic field in them, as in Eq. (188), with expansion
coefficients a;(#) that explicitly include the time-dependent factor exp(—iw?) (and that
is their only time dependence), and we can write a classical Hamiltonian Eq. (189) for
the field. Still in a classical view, for one such “mode,” we formally propose a pair of
“canonical” variables—a generalized “position” g; and a generalized “momentum” p;
given by

q;(1) = \/h[2w[a;(t) + aj (O] and p;(1) = =i/ ho/2]a;(t) — a;‘(t)]. (J1)

We note in passing that these expressions are readily inverted to give

a; = \/1/2holog; +ip;] and af = \/1/2hw|wg; — ip). (J2)

Because of the exp(—iwt) time dependence of a;(7), we have

0q;(1)/0t = p;(1) and  dp;(t) /ot = —w*q;(1). (J3)

We can formally rewrite the Hamiltonian Eq. (189) as

H=(1/2))_[p}0) + @*¢0)]. (J4)
J

These variables then satisfy Hamilton’s equations

oH _ 04 . OH _ 0y

_ = an —_ . J5

dp; ot aq; ot (J5)
So, we can take a typical approach in quantum mechanics and quantize the “oscillator”
by postulating that we can replace the variables p and ¢ with operators p and ¢ that will
in turn lead to appropriate commutation relations, which we postulate to be

[(}'\Im’ﬁn] = gmﬁn _ﬁn@m = ihémn’ (J6)

[n>3,] =0 and  [p,, pu] = O. W7)

(Note, incidentally, that we will use a “hat,” as in § and p, to indicate a quantum-
mechanical operator as distinct from its corresponding classical quantity.) These
commutation relations are consistent with a typical presumption of replacing p; with
p; = —ihd/dq; and using g; as its own operator g, as is appropriate in a “position”
representation of quantum mechanics, for some (generalized) position g;. The corre-
sponding proposed Hamiltonian becomes, from Eq. (J4), the operator
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H=(1/2)) [p(1) + 0?3 (). (J8)
J

We can define the annihilation operator a;
operator 21;':

a; = \/1/2hw|wg; + ip;] and &; = \/1/2holwg; — ip;] (J9)

for “mode” j, where these two operators are Hermitian adjoints of one another, as the
notation suggests. Note that these expressions in Egs. (J9) are operator analogs of those
in Egs. (J2). Correspondingly, then, we can directly write the inversions of these as

g = \/h/20la;+a]] and p; =i\/hw/2[a —aj), (J10)

and the commutation relations for the annihilation and creation operators then become

and the corresponding creation

[y @) = Gyl — Gy = Sy (11)

[a,,4,] =0 and [a},a}] = 0. J12)

Rewriting Eq. (J8) using this notation gives 4 = (hw/ 2)y 4 &’ + 4 j] which we
can write using the commutation relation Eq. (J11) in the more farmhar form [263] as

H= Zha)(ATA + (1/2)). V13)

Note that, though we have proceeded here based on the M-gauge description of electro-
magnetism, and without the usual assumptions of the Coulomb gauge approach (i.e.,
“transverse” sources, fields and potentials, and “pretend” resonators), we have come to a
familiar result. We can now develop the consequences of this approach further.

Because of the analogy between a; and @; and between aJ and a a , we merely need to
substitute the operator a; for a; and the operator a for a; in Eq (188) to obtain the
corresponding vector potentlal field operator

Ay (. 1) = Vha Y [2;(0)A ,1(xg) exp(—ieot) + h.cl], J14)
J

where we have written a;(f) = a;(0) exp(—iwt) and we use the terminology “h. ¢.” to
stand for “Hermitian conjugate” (which is the same as Hermitian adjoint), and we note
that the Hermitian adjoint of a scalar function is just the complex conjugate of that
scalar function. Using Eq. (164) (E;; = —0A,,/0t) and Eq. (165) (B, = V x Ay),
we can write the analogous electric and magnetic field operators as, respectively,

EA:(UM(I'R, t) = iwvVhw Z[&j(O)AwMJ(I‘R) eXp(—la)t) - h.C.] (J15)
J
(note the “—" sign before the “h.c.”’) and
ﬁwM(rR, 1) = Vho Z[&j(O)[V X A, (rr)] exp(—imt) + h.c.]. (J16)
J

Obviously, from Eq. (J13), we can divide the Hamiltonian into a sum of
Hamiltonians, one, /;, for each “mode” or basis function A,,;(rz). Specifically
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A

H = hw(&;aj + (1/2)) [Eq. (191)], and we have the usual properties of the annihi-
lation and creation operators for the mode (see, e.g., [9]). Specifically, the eigenstates
of these individual mode Hamiltonians are the number states or Fock states |»;), where
conventionally #; is interpreted as the number of photons in the mode, and the energy
eigen-equation is

Hln) = hoo(n; + (1/2))n,), (J17)
where we can also if we wish define a number operator
with N;[n;) = n;|n;). (J18)

The commutation relation Eq. (J11) gives the standard “raising” and “lowering”
properties
/\Tl

al

; n

with 4;[0) = 0.

APPENDIX K: MODAL “A&B” COEFFICIENT ARGUMENT

We presume we have a quantum-mechanical system that has a probability P; of being
in a lower state, and a probability P, of being in an upper state. We presume this
system (or an ensemble of identical systems) is sitting in some optical environment
that is otherwise lossless, such as some resonator, waveguide, or other dielectric
environment.

In thermal equilibrium with a heat reservoir with which the system can exchange en-
ergy, as usual the ratio of these probabilities P, and P, is given by the Boltzmann

factor
P, E,,
. - K1
p, = P ( o T>, (K1)

where F,; is the (positive) energy separation of the states, 7 is the temperature, and kp
is Boltzmann’s constant.

Now we consider a specific one |y;) of the mode-converter input modes for this
optical system, which will have a corresponding mode-converter output mode |¢;).
We presume the photon energy in this mode is approximately Aw =~ E,;.

We presume that the probability per unit time that a photon in this mode-converter
input mode |y;) is absorbed by the quantum system can be written as

R12j = MlePh (K2)

where M ,; is some constant that is characteristic of the quantum system and its in-
teraction with light in |y;) (and therefore at frequency w); specifically, we presume
that this constant does not itself depend on temperature.

Using the Planck distribution, the number of photons in this mode in thermal equi-
librium at some temperature 7 is

1

n = . K
/ exp(Ey /kgT) — 1 (K3)
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So the total absorption rate of photons from this mode in thermal equilibrium is
Wiy = nRyy = niM 5Py (K4)
For emission into the mode-converter output mode j, we presume a rate
Wi = LaiiPy + niMyiPs. (K5)

Here we are proposing what will be a spontaneous emission term (L,,;P,), which is
independent of the number of photons in the mode, and what will be a stimulated
emission term (n;M,;P,) that is proportional to the number of photons in the mode.
Again, we presume that L,;; and M,,; are constants that are characteristic of the quan-
tum system and its interaction with light in this input mode j and that do not them-
selves depend on temperature.

This argument is closely analogous to Einstein’s A&B coefficient argument (see, e.g.,
[211]). The M, and M, coefficients are close analogs to the B, and B,; coefficients
in Einstein’s argument. Because we have avoided having to define densities of modes
in free space, we do not have a direct analog to the 4 coefficient in Einstein’s argument
(which assumed free-space modes), but the coefficient L, is taking on the analogous
role in the argument for the mode of interest.

Now, as noted above [Eq. (194)], any power not absorbed from [y;) is scattered into
the corresponding mode-converter output mode |¢;). So, if the arrival rate of photons
in the mode-converter input mode |y;) in thermal equilibrium is Q;, then the scattering
rate into the mode-converter output mode |¢;) is

So, the total number of photons per unit time emitted and scattered into the mode-
converter output mode [¢;) is

Wrorj = S;+ Wy = Q5 — Wiy + Wayj. (K7)

Now, as discussed above in Subsection 11.1 in the derivation of Law 1 in [7], in ther-
mal equilibrium, the total number of photons arriving at the system in mode-converter
input mode |y;) must equal the total number emerging (so, the sum of emitted and
scattered photons) from the system into mode-converter output mode |¢;). This is
because we can construct an optical machine that couples these, and only these,
as the output and input light for a single-mode black body, with which we much
be able to come to thermal equilibrium. Notably, in this approach, no light in any
other orthogonal input modes is coupled by scattering into the mode-converter output
mode |¢;) [see Eq. (193)], so we have accounted for all possible output light here.
Therefore, in thermal equilibrium,

WTOTj = Qj- (K8)
So, from Eq. (K7),
W12j = W21j~ (K9)
So, from Egs. (K4) and (K5),
My Py = Ly iPy + niMy;P,. (K10)

Then, using Eq. (K3),
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L P Ey; P
oo fo) ol o

Now, using Eq. (K1),

—E
My = Ly + (Myy; — Lyy)) exp< k,;)' (K12)

Now, by assumption, all of My, Lyj;, and M, are independent of temperature.
Hence, the only way the expression on the right-hand side can be independent of
temperature is if

My = Ly, (K13)
in which case, from Eq. (K12), we are left with
My = Lyy;. (K14)
Finally, we can summarize the overall result, which is that
My =My =Ly, =M. (K15)

In other words, these coefficients for absorption, stimulated emission, and spontane-
ous emission are identical for any mode-converter pair of input and output functions.
We can therefore use one coefficient for all three processes. We can restate this as
above [Eq. (196)].

APPENDIX L: NOVEL RESULTS IN THIS WORK

Though our primary goal here is a tutorial introduction and review, to give a complete
picture, we have included some apparently novel work. It would be unethical to pass
off either existing work as novel or new work as established fact. To avoid both errors,
we list here what may be novel. Electromagnetism in particular is a subject that has
been investigated for many years by many researchers, and we ask the reader’s for-
giveness if we have missed priority by others.

L.1. Minor Extensions of Prior Work and Introduction of New Terminology

The mathematics in Section 3 is standard for the algebra of finite matrices. The em-
phasis on the sum rule, Eq. (36), is less common in that algebra, but the concept is
implicit. The discussion on the constraint on the choice of coupling strengths in
Subsection 3.9 is mathematically obvious, but may not be generally understood
yet in waves and optics.

All the explicit numerical examples in Sections 4, 5, and 8 were performed for this
paper. The mathematical technique used there for point sources and receivers of es-
tablishing the optimum (communications mode) channels by performing the SVD of
the resulting finite coupling matrix is likely now obvious to many working in radio-
frequency wireless theory, though may not be obvious in optics or acoustics. Working
out the actual communications modes and their behavior and the resulting beams
(other than for the special case of prolate spheroidal wave functions in paraxial ex-
amples) is less common, though we have discussed this before [5,23,38]. The explicit
behaviors of the weakly coupled modes, as shown, for example, in Figs. 10 and 12, do
not appear to have been presented before.

That the singular values are essentially constant up to a specific number is well
known for the specific case of the prolate spheroidal solutions for rectangular or
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circular apertures, but the clarification that this is a general property of paraxial prob-
lems for surfaces or volumes of uniform thickness is a new generalization that also
justifies our introduction of the term “paraxial degeneracy” to describe this.

Heuristic arguments based on approximate cutoff positions or angles (by which in-
terference from extreme points in a source area or volume transitions from originally
constructive interference to being destructive) are not new in themselves—we have
used them before in [5], for example. The specific versions of these for terms that we
have introduced here—the paraxial heuristic number(s) [Egs. (59) and (64) in
Subsection 5.3d], the longitudinal heuristic angle [Eq. (71) in Subsection 5.4a], and
the spherical heuristic number [Eq. (74) in Subsection 5.4b]—are new for this work.

The discussion, in general terms of communications modes, of the difficulty of pass-
ing the diffraction limit is somewhat novel, though the core idea is well known to
some, at least in the special case of prolate spheroidal functions (e.g., [167]).

The mathematics of functions, operators, and vectors in Section 6 is all technically
standard in functional analysis. The explicit notion that we would have different
“underlying inner products” (a term that we have introduced here) in different
Hilbert spaces in the problem (in our case, source and receiving spaces) is not
common, even though nothing has to be added to the functional analysis mathematics
to support this idea (other than some notation to distinguish these inner products). As a
result, the explicit discussion of making what we call an “algebraic shift” to Dirac
notation using these underlying inner products may be novel, though again it is
all implicit in the underlying mathematics.

The discussion of inner products involving operators in Subsection 6.6 involves no
actual new mathematics, but the explicit discussion is not common, and we have in-
troduced the terms “operator-weighted inner product” and “transformed inner prod-
uct” to clarify specific classes here.

The issue that OAM beams do not generally introduce new degrees of freedom for
communications is further clarified here (Subsection 7.2).

The term “M-gauge” is also introduced in this work, though the concept and its con-
sequences may be more substantial than a minor extension, so we discuss this fur-
ther below.

L.2. Novel Observations

It is well known that many of the Green’s functions used with waves are Hilbert—
Schmidt operators (see, e.g., [187])). The general statements (157) and (158) may
go beyond such discussions, however.

The clarification of the size scales for the transition in directionality from being from
longitudinal extent to being from transverse extent [Eq. (73) and Subsection 5.4a]—a
transition from a longitudinal “antenna” view to an “optics” view—may be novel.

The observations for spherical shell source and receiver spaces (Subsection 5.4b) that
the “well-coupled” communications mode singular values asymptote to a straight line,
and that line intersects the axis at the spherical heuristic number, are both new, and
await an analytic explanation.

It is known for the specific case of prolate spheroidal functions (which are necessarily
in a paraxial approximation) that the singular values past the paraxial heuristic number
drop off essentially exponentially (see [155—-158] and Subsection 5.3d). The general-
ity of this exponential behavior, however, as seen in paraxial and non-paraxial cases,
and for many different shapes of source and receiver volumes, is a new observation
that also awaits a clear explanation. The observation that, in the far field,
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the corresponding waves are not evanescent but propagating (Subsection 5.3d) may
also be novel.

That transverse-polarized electromagnetic waves show simple diffraction behavior
similar to that of scalar waves is, of course, well known. The observation
(Subsection 8.4c¢) that such diffraction behavior also holds for longitudinally polarized
(and hence “non-propagating”) electromagnetic waves may be surprising and novel.

L.3. Substantial New Concepts and Results

L.3a. Introduction of the M-Gauge for Electromagnetism

The M-gauge (Section 8 and Appendix G) and its consequences are significant new
concepts introduced here. First, this resolves that there are only three independent
vector components for the electromagnetic field for all problems involving changes
in the field (as in communications), which can then be completely represented by the
magnetic vector potential A in this gauge. The resulting vector wave equation is then
solved with a Green’s function that is a mathematical analog of the conventional
dyadic Green’s function of the electric field E, but applied here, apparently in a novel
manner, to A. (This approach avoids the conventional separation into so-called “longi-
tudinal” and “transverse” field components that have various formal problems.) This
use of A then allows a novel energy inner product for the electromagnetic field
(Subsection 8.4d and Appendix G.4), which then allows the full power of functional
analysis to be exploited, including the construction of orthogonal sets of waves with-
out any restriction to specific volumes (such as cuboidal boxes).

L.3b. Novel Quantization of the Electromagnetic Field

The possibility of constructing “energy-orthogonal” sets of electromagnetic fields for
any volume in turn allows a novel quantization of the electromagnetic field (Section 9
and Appendix J), now on a rigorous basis of functions in any volume of interest,
avoiding the “longitudinal/transverse” field separation and any restriction to
“plane-wave” modes.

L.3c. Novel “M-Coefficient” Modal Alternate to Einstein’s “A&B” Coefficient Argument
With the use of the mode-converter basis functions, the novel “M-coefficient” argu-
ment (Subsection 11.2 and Appendix K) can replace Einstein’s “A&B” coefficient
argument with a simple result that applies mode-by-mode and for a quantum system
in any otherwise-lossless dielectric environment, not just in free space.
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Specifically, I presume basic algebra and calculus, elementary real analysis
(including convergence and limits), basic linear algebra including matrices
with eigenvectors and eigenvalues, differential equations including elementary
partial differential equations and eigenfunctions and eigenvalues, integral equa-
tions at least up to elementary Green’s functions, vectors, elementary vector
calculus, basic notions of sets including the usual sets of numbers (integer, real,
complex), basic wave equations, and electromagnetism up to and including
Maxwell’s equations in differential form. Such mathematics is covered well
by a text such as [127]. I specifically do not presume any knowledge of
functional analysis (which would be relatively uncommon for physical scientists
and engineers), and I do not require advanced knowledge of electromagnetism,
such as the use of vector potentials and gauges. The advanced electromagnetism
and the functional analysis needed are covered later in this work and in
Ref. [122].
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The various mathematical properties of finite matrix eigenproblems can, how-
ever, be deduced from the results of functional analysis; a finite matrix is then
a special case.

D. A. B. Miller, “An introduction to functional analysis for science and engineer-
ing,” arXiv:1904.02539 (2019).

The pulses in a general time-dependent field would have to be square-integrable,
but physically that essentially corresponds to finite energy, which we would
expect anyway.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal
modes: a complete framework for quantum information science,” Phys. Rev.
X 5, 041017 (2015).

D. V. Reddy and M. G. Raymer, “High-selectivity quantum pulse gating of
photonic temporal modes using all-optical Ramsey interferometry,” Optica 5,
423-428 (2018).

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE, 1994).
G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for
Physicists, Tth ed. (Elsevier, 2013).

It is convenient algebraically to pretend that the time dependence of the wave is
of the form exp(—iwt) and to work with complex amplitudes. Classical waves
are, however, real, but we can always get back to that by adding the complex
conjugate at the end.

We will introduce a somewhat more general definition of adjoint operators be-
low, but for matrices, this definition is sufficient.

G. Strang, Linear Algebra and its Applications, 3rd ed. (Harcourt Brace
Jovanovich, 1988).

R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. (Cambridge University,
2013).

We postpone the definition of a compact operator since this is, unfortunately,
rather technical. However, as we will argue below, the coupling operators asso-
ciated with wave equations are Hilbert—Schmidt operators, which are all com-
pact. The important results we discuss here are therefore going to apply very
generally in wave problems.

To be quite technically correct here, if any of the eigenvalues is zero, then the set
is not necessarily complete, but it can always be extended, for example, by a
process such as Gram—Schmidt orthogonalization, to be complete.

If Ng and Ny are not equal, then all of the “extra” singular values formally as-
sociated with the larger of the two matrices are identically zero. That is, if Ny
is the larger of Ng and Ny and N, is the smaller of Ng and N, then all of the
“extra” singular values s; from j = N + 1 t0 j = Ny are zero. Formally,
also, we are free to generate orthogonal eigenfunctions associated with these
extra “0” singular values that are orthogonal to all of the first N, eigenfunc-
tions and to each other, by some process such as Gram—Schmidt orthogonaliza-
tion. These “extra” eigenfunctions do not participate at all in communicating
with waves between the sources and the receivers and, other than being orthogo-
nal to one another and to the first N, eigenfunctions, their choice is relatively
arbitrary because they are also solutions of a degenerate eigenproblem, all shar-
ing the same eigenvalue of zero.

At least, the sets are complete for discussing communications between the volumes,
and they can be extended beyond that if necessary. See notes [133] and [134].
Note, incidentally, that such degeneracies are always finite for eigensolutions of
compact Hermitian operators.

Note that, quite generally, S = Tr(G_TgRGSR) = Tr(G SRGER). The trace of a
matrix does not depend on the complete orthonormal basis set(s) used to
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represent it and is therefore also the sum of the eigenvalues of the matrix
[because we could represent the matrix on the eigen (or SVD) basis set(s)].
Note that the eigenvectors of both the G§RG sz and GgpGL, operators are each
arbitrary within a unit phase factor (e.g., of the form exp(i6) for some angle ). In
practice, this may mean that we make some choice of phase for each of the ei-
genvectors that is convenient for us, and if or when we need the singular values s;
rather than just the squared modulus |sj|2, we can formally establish the phase
factors by computing, say, Ggglys;) = s;l¢g;), as in Eq. (31).

Somewhat higher numerical precision is needed to see this orthogonality
precisely.

Other configurations of the phase shifters in the block are possible and ultimately
equivalent; for example, we could use one phase shifter on the top arm of the
interferometer to control the split ratio and a second phase shifter on, say, the top
output waveguide to control an additional phase. See [24-28].

For example, as discussed in [24] and [25], for an input signal in the top Eg,
guide, we can progressively set the S11 and S22 blocks and the S31 phase shifter
to give the desired power splitting and output phases for the first channel (i.e., the
vector |wg;) of output amplitudes). For the second channel, with input in the
middle Eg;,, guide, because we know the settings of the S11, S22, and S31 el-
ements, we can readily calculate what outputs are required from the S12 and S22
elements to achieve the |y,) set of output amplitudes at the right and hence we
can calculate how to set those elements. We might think that we do not have
enough elements to allow us to specify |y, ), but we do because it is guaranteed
to be orthogonal to |yg;), which reduces the number of required independent
parameters by two. For the final Egy,; input, because |yg3) must be orthogonal
to both |yg,) and |y, ), the only remaining independent parameter to set is the
phase shift.

The half-wavelength spacing clarifies the behavior of the resulting waves be-
cause at spacings of half a wavelength or shorter, additional “diffraction orders”
are eliminated, so there are no spurious additional beams to confuse the pictures
of the waves.

The phase of the source and receiver modes is arbitrary, as is generally the case
with such eigenmodes; multiplying an eigenmode by a complex factor still
leaves it as a solution of the same (linear) eigenproblem. Furthermore, these ei-
genproblems only give us |sj|2, which similarly leaves us free to choose the phase
of s; to be whatever is convenient.

Because these sources are actually in three-dimensional space, they are also
transmitting in the directions in and out of the plane, and, indeed, actually
equally well in all directions in the horizontal plane.

D. A. B. Miller, “Huygens’s wave propagation principle corrected,” Opt. Lett.
16, 1370-1372 (1991).

It is, incidentally, interesting to see how and why these pairs of sources work.
Note, first, that in the calculations to generate the modes we made no prescription
about the relative amplitudes and phases of the two different lines of sources. The
resulting amplitudes and phases result entirely from the solution of the eigen-
values and eigenfunctions of the relevant matrix (GgzGJy or Gz Gig). In estab-
lishing the best possible source amplitudes, the numerical solution has “found”
an approach that can be called a “spatiotemporal dipole” [145]. An ideal such
spatiotemporal dipole would have equal and opposite amplitude for the two
sources in the dipole (one on the “left” and one on the “right”) but with a phase
lag on the “left” source that corresponds to the time taken for the wave to travel
between the two sources in the pair. That leads to at least partially constructive
addition on the “right” but destructive interference on the left. In this case,
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we see numerically that the amplitudes of the left and right sources in each pair
are indeed approximately equal in magnitude, and the left source does indeed lag
to the right by approximately the right phase [90° (z/2) for sources separated by
a quarter wave]. Note again that the solution of this problem “found” this desir-
able behavior automatically; we did not “tell” the mathematics to find such spa-
tiotemporal dipole solutions. Such spatiotemporal dipoles are also a particularly
elegant way to restate Huygens’ principle [145], giving much better numerical
results than the simple point sources of Huygens’ original proposal and elimi-
nating unphysical backward waves.

So far, for simplicity, we presented SVD with equal numbers of source and receiver
points, which resulted in a square matrix for Ggp. In fact, though, such equal num-
bers are not necessary for SVD, and, correspondingly, SVD can be performed on a
matrix that is not square. In our present case, though we have doubled the number of
source points to Ng = 18, we can keep the number of receiving points at N = 9.
In such a case the matrix Ggy is a 9 x 18 matrix rather than a square one. In this
case, the matrix G;RGSR is an 18 x 18 matrix, whereas the matrix GSRG§R is9x9,
which might seem to give a contradiction. Solving the G;RG sr eigenproblem would
give 18 eigenfunctions, whereas solving the G SRGE x €igenproblem would give only
nine. The resolution of this paradox is that the eigenvalues (and the singular values)
for the additional nine eigenfunctions in the G},Giy case are mathematically iden-
tically zero [134]. The corresponding source functions have mathematically abso-
lutely no coupling strength to the receivers. In our numerical calculations, the power
coupling strengths of these additional modes are approximately 10~ times as small
rather than being exactly zero, with this finite but small value presumably reflecting
rounding errors and limitations in the numerical calculations.

The mode in Fig. 7(a) is actually also the second most strongly coupled mode,
though its coupling is smaller than the most strongly coupled mode only by a
very small amount. The other two strongly coupled modes are analogous to those
of Fig. 6(a) (a “two-bumped” mode) and Fig. 6(c) (a “three-bumped” mode), and
these have very similar coupling strengths to one another in this case also. The
percentages of the corresponding sum rule S for each of these three modes for
the source and receiver arrangement of Fig. 7 are ~28.04%, ~28.51%, and
~26.24%, for the “one-,” “two-,” and “three-” “bumped” modes, respectively.
Note, incidentally, that these power coupling strengths |s; |? are not formal power
coupling efficiencies between sources and receivers, nor are they necessarily
even proportional to the power coupling efficiencies. We are not formally evalu-
ating the total power emitted by the sources. These |Sj|2 are the relative powers in
each beam when starting with source functions of unit amplitude, but those unit
amplitudes do not necessarily all correspond to unit emitted power.

D. Gabor, “Light and information,” Prog. Opt. 1, 109-153 (1961).

There is a small imaginary component left near the ends of the line of receiver
points, so the wave is not exactly confocally curved there, though the real part is
still quite a good representation of the overall wave amplitude there.

We are introducing the term “paraxial degeneracy” here.

Note that the sum rule S is different for each of these cases, and it would be
wrong to conclude that the coupling strengths are generally reducing in magni-
tude as we make the volume thicker, even with non-uniform shapes. Generally,
increasing the thickness (while correspondingly increasing the number of points
in the volume) increases the absolute coupling strength. As we increase thickness
non-uniformly, as in ellipsoidal source volumes, for some of the modes, the in-
crease in coupling strength is more than for others.

If we increase the length of the line of receivers and correspondingly increase the
separation between the sources and the receivers, so the angle subtended by the


https://doi.org/10.1016/S0079-6638(08)70609-7

818 Vol. 11, No. 3 / September 2019 / Advances in Optics and Photonics Tutorial

155.

156.

157.

158.

159.
160.

161.

162.

source line at the receivers is essentially constant, then the “knee” in the curves
here moves closer to N Hy—that is, the factor that here is 0.985 moves closer to 1.
The form of the curve, explicitly including the exponential decay rate, does not
change, however, with the singular values falling off exponentially with the same
exponent.

In this rationalization, we presume that we can approximately “factorize” the
modes into a product of “horizontal” and “vertical” mode forms, like those seen
with “line” sources and receivers. Up to n ~ Ny, both the horizontal and vertical
forms are for modes below the corresponding Ny, and Ny, limits. However, for
n > Ny, one or the other of the horizontal or vertical forms must exceed its
corresponding Ny, and Ny, limits. So, there will be a set of Ny, “horizontal”
modes that correspond to the first “vertical” mode past the limit, and similarly a
set of N, modes that correspond to the first “horizontal” mode past the limit. So
we expect to see a “step” with ¥Ny, + Ny, modes with approximately equal
singular values. A similar argument for successive weaker modes in one or the
other direction leads to a subsequent step, and so on. Because there is a number
of such modes on each step that is therefore proportional (in this square case) to
Ny, = Ny, = /Ny, we divide by /Ny, in the exponential. Of course, this is
not quite a complete counting of all the possible weakly coupled modes, because
there will also be modes in which both the “horizontal” and “vertical” modes are
both “weak,” so this rationalization is not a complete description, but it does give
some sense as to why we can see “steps” and the /N factor in the denominator
in the approximate exponential.

The general behavior of singular values for prolate spheroidal functions is well
known [157] and expands this discussion for the weakly coupled values in a
general “Fourier-transform™ approach, showing that the number of “degrees
of freedom” increases only logarithmically as the minimum acceptable singular
value is decreased {[157], Eq. (2)}, which is consistent with an exponentially
decaying strength of the singular values. Reference [158] extends this to more
dimensions. Insofar as these Fourier-transform approaches are valid, which may
hold in the limit of large structures separated by even larger distances, they give
some explanation for this phenomenon.

H. J. Landau and H. Widom, “Eigenvalue distribution of time and frequency
limiting,” J. Math. Anal. Appl. 77, 469-481 (1980).

M. Franceschetti, “On Landau’s eigenvalue theorem and information cut-sets,”
IEEE Trans. Inf. Theory 61, 5042-5051 (2015).

C. A. Balanis, ed., Modern Antenna Handbook (Wiley, 2008).

We used a “spiral” approach to obtain an approximately uniform distribution
of points on the spherical surface. See E. B. Saff and A. B. J. Kuijlaars,
“Distributing many points on a sphere,” The Mathematical Intelligencer 19,
5-11 (1997), in our case using a “golden section” ratio angular increment
7(3 — +/5). A pseudo-code version of this algorithm is as follows for distributing
Nsp points on a sphere of unit radius, returning arrays x, y, and z of the corre-
sponding x, y, and z values for each point. Here, “;” is a statement separator,
and x; is the kth element of the array x. g:=0; dz:=2/Nsp; s:=1 —dz/2;
dg=m(3 — +/5); For k:=1 to Nsp ri=+/1 — s%; x;:=r cos(g); yy:=r sin(g); z3:=s;
s:=s — dz; g:==g + dg.

M. Bertero and E. R. Pike, “Resolution in diffraction-limited imaging, a singular
value analysis,” Opt. Acta 29, 727-746 (1982).

The modal amplitudes used were chosen somewhat arbitrarily, but with suitable
values for modes 12, 13, and 14, to illustrate the key points without also showing
extreme behavior (such as very large source amplitudes at specific sources).
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The actual modal amplitudes in this example for the desired received field are (to
three significant figures), in order for modes 1 to 14, 0.183, 0.143, 0.148, 0.346,
0.445, 0.207, 0.188, 0.395, 0.469, 0.198, 0.247, 0.104, 0.178, and 0.099. The
phases of the modes were chosen randomly with a uniform distribution over all
phases from —x to x; explicitly, those phases, for modes 1 to 14, are z times the
following values: 0.823, 0.912, —0.668, —0.235, —0.141, —0.353, 0.678, 0.749,
—0.919, 0.711, —0.098, —0.170, 0.935, and 0.325. (All numbers are quoted to
three significant figures, though the actual values used had higher precision.)
J. Lindberg, “Mathematical concepts of optical superresolution,” J. Opt. 14,
083001 (2012).

G. de Villiers and E. R. Pike, The Limits of Resolution (Taylor and Francis,
2016).

K. Piché, J. Leach, A. S. Johnson, J. Z. Salvail, M. 1. Kolobov, and R. W. Boyd,
“Experimental realization of optical eigenmode super-resolution,” Opt. Express
20, 26424-26433 (2012).

M. R. Foreman, S. S. Sherif, P. R. T. Munro, and P. Torok, “Inversion of the
Debye-Wolf diffraction integral using an eigenfunction representation of the
electric fields in the focal region,” Opt. Express 16, 4901-4917 (2008).

F. M. Dickey, L. A. Romero, J. M. DeLaurentis, and A. W. Doerry, “Super-
resolution, degrees of freedom and synthetic aperture radar,” IEE Proc. 150,
419-429 (2003).

G. Lerosey, F. Lemoult, and M. Fink, “Beating the diffraction limit with positive
refraction: the resonant metalens approach,” in Plasmonics and Super-
Resolution Imaging, Z. Liu, ed. (Pan Stanford, 2017), pp. 33-90.

E. Kreyszig, Introductory Functional Analysis with Applications (Wiley, 1978).
D. Porter and D. S. G. Stirling, Integral Equations: A Practical Treatment, from
Spectral Theory to Applications (Cambridge University, 1990).

J. K. Hunter and B. Nachtergaele, Applied Analysis (World Scientific, 2001).
In (IP2), for good reason, we choose a notation convention here that is the other
way around from most (but not all) mathematics texts. Common mathematical
notation for (IP2) would have (ay,a) = a(y, @), which, with (IP3), would give
(y,aa) = a*(y, ). Our choice corresponds better with the order we encounter in
our “algebraic shift” to Dirac notation, and gives a natural form of the associative
property of multiplication as in matrix-vector notation.

This term “underlying inner product” is one that I am introducing here for clarity.
Note that this is technically a reuse of a notation; we already used (a, f) with
such ordinary braces for the inner product. Such reuse is unfortunately rather
common in mathematical texts.

Unfortunately, this “infinitely long” aspect of a given sequence may well not be
stated clearly or explicitly in functional analysis.

In a metric space with a metric d(a, ), a sequence (a,,) is said to be Cauchy (or
to be a Cauchy sequence) if for every real number € > 0 (no matter how small)
there is a number N (a positive integer or natural number) such that, for every
m,n > N, d(a,,,a,) <e.

This use of “complete” in a “complete set” is different from the idea of a
“complete” space; this confusion is unfortunate, but is unavoidable because
of common usage.

Technically, the supremum is the smallest number that is greater than or equal to
all the numbers being considered.

In a notation like this with this “dot”, it is best to view these inner-product oper-
ations as “waiting to happen”; just how much of the inner-product operation we
are effectively writing down here can be somewhat vague in mathematics texts.
However, we will take the approach that both any “operator weighting” and any
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195.

integral for the inner product are “waiting to be applied” and in that sense are not
yet part of this expression.

In its more common use in quantum mechanics, Dirac notation is not required to
deal with the sophistication of different underlying inner products, though we see
here that, with careful definitions, it can handle this extension.

Quite generally, a form such as |f;),, (| is an outer product. In contrast to the
inner product, which produces a complex number, and which necessarily only
involves vectors in the same Hilbert space, the outer product generates a matrix
from the multiplication in “column-vector row-vector” order, and can involve
vectors in different Hilbert spaces.

The same problem does not arise in finite-dimensional spaces; if we construct an
infinitely long sequence made up from just the finite number of basis vectors in
the space, we will have to repeat at least one of the basis vectors an infinite
number of times, which gives us at least one convergent subsequence—the
(sub)sequence consisting of just that basis vector repeated an infinite number
of times. In fact, we can prove [122] that it is sufficient that an operator has
finite-dimensional range for it to be compact. A corollary is that operators de-
scribed by finite matrices are compact.

Note that there is some variation in notation in mathematics texts. Kreyszig [169]
uses this definition for a positive operator, for example, and if the “>” sign is
replaced by a “>" sign in Eq. (133), he would then call the operator positive-
definite. Others, however, such as [170], would give Eq. (133) as defining a non-
negative operator, using “positive operator” only if the “>” sign is replaced by
a “>” sign.

Both “operator-weighted inner product” and “transformed inner product” are
terms we are adding here; I know of no other standard names for these concepts.
Incidentally, note that, unlike many basis transformation, there is no requirement
here that this transform is unitary.

In fact, it is not even necessary with such a “1 /7= integrand that the volumes do
not overlap; the result of such an integral will be finite even if the resulting
“1/r*” singularity is included. See the discussion in [187], p. 140 and p. 173.
G. W. Hanson and A. B. Yakovlev, Operator Theory for Electromagnetics
(Springer, 2002).

Here, as noted in the discussion after Eq. (105), we have made the notational
choice to leave the integrals over ry and rg out of this part of the mathematics,
including them later when we perform the actual inner products.

C. Huygens, Traité de la Lumiere (Leyden, 1690). [English translation by S. P.
Thompson, Treatise on Light (Macmillan, 1912).]

The full solution for scalar waves requires two kinds of sources, which can be
written as point sources and spatial dipoles, but can also be written as spatio-
temporal dipoles [145]; only one kind of such spatio-temporal dipole is typically
required, however, for “slowly varying” wavefronts, allowing a return to a simple
view of effective sources on the wavefront, and hence a simple Green’s function
with an obliquity factor included.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company,
2005).

J. A. Stratton and L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys.
Rev. 56, 99-107 (1939).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

T. A. Beu and R. I. Campeanu, “Prolate radial spheroidal wave functions,”
Comp. Phys. Comm. 30, 177-185 (1983).

A. Karoui and I. Mehrzi, “Asymptotic behaviors and numerical computations of
the eigenfunctions and eigenvalues associated with the classical and circular

299
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prolate spheroidal wave functions,” Appl. Math. Comput. 218, 10871-10888
(2012).

A. Karoui and 1. Mehrzi, “Spectral analysis of the finite Hankel transform and
circular prolate spheroidal wave functions,” J. Comp. Appl. Math. 233, 315-333
(2009).

G. Walter and T. Soleski, “A new friendly method of computing prolate sphe-
roidal wave functions and wavelets,” Appl. Comput. Harmon. Anal. 19, 432-443
(2005).

C. Flammer, Spheroidal Wave Functions (Stanford University, 1957).

Using a notation after [198], the nth such eigenfunction solution in the y direction
in a given source or receiver aperture is of the form Sy,(c;, \/ky/L), where the
parameter ¢; = (x/2)N p,, with Np, being the paraxial heuristic number in the
y direction. A similar set of solutions will exist in the x direction.

If we try to derive solutions with transverse boundaries at infinity using integral
equations (as in our Green’s function SVD approaches), the corresponding sin-
gular values are all identical (there is no “loss” in the propagation because no
wave “misses” the receiver space), so the eigensolutions are completely degen-
erate and any orthogonal basis is equally good, so the solution becomes math-
ematically trivial. Hermite—Gaussians will be solutions in one direction, for
example, but so will any other set of complete functions. There is also a physical
contradiction in such solutions without finite boundaries because we are violat-
ing the paraxial approximation by allowing the boundaries to extend arbitrarily
in the transverse direction.

Beams with a specific “orbital” angular momentum correspond to a phase varia-
tion in azimuthal angle ¢ with an integer “quantum number” m in the form
exp(img). If the solutions with exp(im¢) and exp(—im¢) are degenerate, then
we are free to construct the linear combinations with phase variations of the form
cos(mep) = (1/2)[exp(imep) + exp(—im¢)] and sin(m¢p) = (1/2i)[exp(im¢p)—
exp(—img)]. These new solutions, each being equal sums of solutions with equal
but opposite “orbital” angular momentum, have zero “orbital” angular momen-
tum. It is then a matter of taste whether we want to work with positive and neg-
ative m and exp(im¢) solutions (with net “orbital” angular momentum), or
positive m with cos(m¢) and sin(m¢) solutions (with no net “orbital” angular
momentum). The total number of orthogonal functions available up to some spe-
cific |m| is exactly the same.

M. Tamagnone, C. Craeye, and J. Perruisseau-Carrier, “Comment on ‘Encoding
many channels on the same frequency through radio vorticity: first experimental
test’,” New J. Phys. 14, 118001 (2012).

M. Tamagnone, C. Craeye, and J. Perruisseau-Carrier, “Comment on ‘Reply to
Comment on’ Encoding many channels on the same frequency through radio
vorticity: first experimental test’,” New J. Phys. 15, 078001 (2013).

R. Gaffoglio, A. Cagliero, G. Vecchi, and F. P. Andriulli, “Vortex waves and
channel capacity: hopes and reality,” IEEE Access 6, 19814-19822 (2017).

J. Xu, “Degrees of freedom of OAM-based line-of-sight radio systems,” IEEE
Trans. Antennas Propag. 65, 1996-2008 (2017).

C. Shi and X. Zhang, “Reply to Miller: misunderstanding and mix-up of acoustic
and optical communications,” Proc. Natl. Acad. Sci. USA 114, E9757-E9758
(2017).

In my opinion, [206] is incorrect in every substantial criticism made of my response
[23] to those authors’ earlier paper on acoustic “orbital” angular momentum beams
[22]. T used the term “optical angular momentum,” which is one of the terms in the
field (see [31]), and I have not confused acoustic and optical communication. In my
opinion, my paper [23] stands correct as written. See [208] for specific comments.
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I 'have calculated with the scalar Green’s function, which is a first approximation in
optics, but is the right approach for these acoustic waves, and it is acoustic chan-
nels that I calculated. With my approach, using communications modes, I achieved
more channels, with fewer transmitters and receivers, and, contrary to these au-
thors’ statements, my approach has no crosstalk in principle, not the —7.7 dB as-
serted by these authors (the —7.7 dB refers to channel strengths, not crosstalk).
Just to construct an orthogonal basis set A ,(rz) in Vg, it is not strictly nec-
essary to choose subsequent J,,(rg) to be orthogonal to all preceding ones
Jwpm(Ts); linear independence would be sufficient to allow construction of
orthogonal A, (rg). But choosing the J,;,(ry) to be mutually orthogonal
means that in this process we also usefully generate an orthogonal basis for
the source functions.

Note that there are few restrictions on what form these current sources take—
they are not functions that have to obey Maxwell’s equations, for example.
Overall, we would require conservation of charge, but that will be automatic
if these are monochromatic, and therefore purely oscillatory, functions. These
orthogonal current sources could be as simple as small uniform patches on a
surface. We would of course have to choose vector directions for such current
patches, and if we want the resulting set to be complete, we should include ver-
sions with the currents in three vector directions that are at right angles.

R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Oxford
University, 1995).

H. Haken, Light (North-Holland, 1981), Vol. 1.

O. L. Brill and B. Goodman, ““Causality in the Coulomb gauge,” Am. J. Phys. 35,
832-837 (1967).

A first problem with the Coulomb gauge is that the equation for the scalar po-
tential is unphysical in that any change in charge density in any region of space
results in instantaneous changes of the potential @ everywhere in space. This
apparent inconsistence with relativity does not result in actual violations of the
velocity of light propagation of the fields E and B [214,248], but it is at least
awkward. A second problem with the Coulomb gauge is that in wave problems
we typically proceed by separation into “longitudinal” and “transverse” current
densities. In free space, with no actual current densities anywhere in space, this
causes no additional problems, but if there is indeed any current density at any
point or finite region in space (and we expect to have source densities in our
problems), the resulting longitudinal and transverse effective source current
densities actually extend through all space [244].

Note, incidentally, that, though we are just using the “exp(—iw?)”A,,;(rg) parts
in performing this calculation of energy, the resulting energy is the energy of the
total real field Az (rg, f) because of the way we set up the energy inner products.
We have drawn this with grating couplers in vertical lines at the ends of the wave-
guides, but this is just an example. We can have any optics between the “source”
waveguides on the left and the “receiver” waveguides on the right, and in two-
dimensional arrangements, not just these vertical lines.

For this particular approach to work, the optical system has to be reciprocal.
D. A. B. Miller, “On perfect cloaking,” Opt. Express 14, 12457-12466 (2006).
D. A. B. Miller, “Fundamental limit for optical components,” J. Opt. Soc. Am. B
24, A1-A18 (2007).

D. A. B. Miller, “Fundamental limit to linear one-dimensional slow light struc-
tures,” Phys. Rev. Lett. 99, 203903 (2007).

D. A. B. Miller, “How complicated must an optical component be?” J. Opt. Soc.
Am. A 30, 238-251 (2013).
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C. M. Verber, “Integrated optical architectures for matrix multiplication,” Opt.
Eng. 24, 19-25 (1985).

Note that we need make no distinction between spontaneous and stimulated pho-
tons because we are only considering one mode at a time here, and there is indeed
anyway no distinction between stimulated and spontaneous photons in a given
mode.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.
27, 379-423, 623-625 (1948).

D. Slepian, “On bandwidth,” Proc. IEEE 64, 292-300 (1976).

One statement of the sampling theorem, due to Shannon (see [229]), is “using
signals of bandwidth 7 one can transmit only 2T independent numbers in
time 7.”

Though [150] was only finally published in 1961, it is the text of a 1951 lecture
that had been distributed informally earlier.

G. Toraldo di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45,
497-501 (1955).

O. M. Bucci and G. Franceschetti, “On the spatial bandwidth of scattered fields,”
IEEE Trans. Antennas Propag. 35, 1445-1455 (1987).

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered
fields,” IEEE Trans. Antennas Propag. 37, 918-926 (1989).

G. Toraldo di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. 59,
799-804 (1969).

D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analy-
sis, and uncertainty—I,” Bell Syst. Tech. J. 40, 43-64 (1961).

C.-N. Chuah, J. M. Kahn, and D. Tse, “Capacity of multi-antenna array systems
in indoor wireless environment,” in GLOBECOM 1998 (IEEE, 1998), Vol. 4,
pp. 1894-1899.

D. W. Prather, S. Shi, G. J. Schneider, P. Yao, C. Schuetz, J. Murakowski, J. C.
Deroba, F. Wang, M. R. Konkol, and D. D. Ross, “Optically upconverted, spa-
tially coherent phased-array-antenna feed networks for beam-space MIMO in 5G
cellular communications,” IEEE Trans. Antennas Propag. 65, 6432-6443
(2017).

T. Tudor, “Nonnormal operators in physics, a singular-vectors approach: illus-
tration in polarization optics,” Appl. Opt. 55, B98-B106 (2016).

We need to retain terms up to ~&” to get a non-zero result in the algebra.
(la)(B)" = (B (|a))" = B){al.

There is a minor formal point that we have only proved these results for functions
corresponding to non-zero eigenvalues (or singular values). For our communi-
cations problems, we can disregard any channels with zero coupling strength, so
functions associated with zero singular values are of no interest. As far as the
Hilbert spaces are concerned, we could either restrict them to using as basis sets
only those eigenfunctions corresponding to non-zero singular values or extend
the basis sets by a process such as Gram—Schmidt orthogonalization to construct
basis sets for the larger spaces. None of those additional basis functions in either
space will participate in the “communication” between the spaces, so it is of no
consequence in our problem which of these formal approaches we use.

A unitary matrix B is one for which B'B = |, the identity operator. Quite gen-
erally, for any complete set {|y,)}, we can write |, = Zp|yp)(yp| (such an ex-
pansion operating on any function in the space simply returns the same function).

For our matrix here, we have = ,lvy) yp|)T(Z lwy) (vql) =

Zp q|yp (wylwy) vyl = Eph/p (rpl = Iop, and s1m11ar1y for VIV
J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999)

D. J. Griffiths, Introduction to Electrodynamics, 4th ed. (Pearson, 2013).
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U. S. Inan, A. S. Inan, and R. K. Said, Engineering Electromagnetics and Waves,
2nd ed. (Pearson, 2015).

J. D. Jackson and L. B. Okun, “Historical roots of gauge invariance,” Rev. Mod.
Phys. 73, 663-680 (2001).

J. D. Jackson, “From Lorenz to Coulomb and other explicit gauge transforma-
tions,” Am. J. Phys. 70, 917-928 (2002).

The subscript “C” is already in use for the Coulomb gauge, and the next letter
(“0”) in the word “communications” has too many other uses, so we use the third
letter, and continue in using uppercase letters for gauges, leading to the subscript
“M” for this gauge (which also distinguishes it from the use of “m” for “mag-
netic,” as in J,, earlier).

The gauge in which the scalar potential is set completely to zero is known as the
Hamiltonian or temporal gauge (see [149]). Here we retain a fixed scalar poten-
tial [as in Eq. (G30)] to deal with the static fields, which makes this M-gauge
different from that Hamiltonian or temporal gauge.

It is possible with this M-gauge to write scalar wave equations for each of the
vector components of A,,, and driven by the corresponding vector components
of an effective current density J;,. However, the physical interpretation of this
effective current density is somewhat involved and not particularly illuminating.
C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd ed. (IEEE,
1994).

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).

R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, 1991).

W. C. Chew, M. S. Tong, and B. Hu, Integral Equation Methods for
Electromagnetic and Elastic Waves (Morgan and Claypool, 2009).

Such behavior is, of course, also well described by tensors; a dyadic can in gen-
eral just be viewed as a second rank tensor for a three-dimensional space and a
dyadic can be written as a 3 x 3 matrix, with the three dimensions corresponding
to three orthogonal unit vector directions.

Dyadic notation can also be viewed as an extension of vector and vector calculus
notation, allowing obvious generalization of theorems and identities in vector
and vector calculus algebra.

We presume that V&(r — r') is meaningful, which it will be if we approximate the
delta function by an appropriate but very “sharp” function with continuous deriv-
atives and formally take the limit as the function becomes “sharper.”

There is a very subtle point about Green’s functions for such a vector wave equa-
tion if we are looking at waves at points where there are also source current den-
sities. In that case another “depolarization dyadic” term has to be added [257],
equivalent to including an additional delta function term in the Green’s function
itself. Since our sources are in one volume and the waves of interest to us are in
another, we do not have to consider this term here, however.

A. D. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc.
IEEE 68, 248-263 (1980).

This statement with an amplitude E,, (r) or B, (r) is consistent with E(r,¢) =
Re(E,,, (r) exp[i(wt + 0,)]) or B(r, ) = Re(B,,,(r) expli(wt + 6,,)]). Such state-
ments are common in electromagnetism textbooks (e.g., [242,243]).

Note too that 6, and #,, may vary with r.

The time average of cos?(wt + 6) over a cycle is Y.

This form is also implicit for any particular frequency if the fields are Fourier-
transformed and the frequencies in the Fourier transform are presumed to run
over positive and negative values [241].

We could continue to write this same inner product as an operator-weighted inner
product by multiplying out U = (+/U)"+/U (which gives a dyadic operator as a
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result, hence the notation). In that case, we could formally write the inner product
at some time 7 as (u, ’7)ﬁ =(u,Up) = [y ur(x,t) .U - 5(r, t)d’r. This operator U
could be written as a 3 x 3 matrix operating to the right on the mathematical
column vector of components of the vector potential field z, and on the left
on the Hermitian adjoint of the mathematical vector of components of the vector
potential field u. However, that requires that we have the unusual situation of
some derivatives operating to the left instead of to the right; that is mathemati-
cally straightforward, but it requires a correspondingly unusual notation, so for
simplicity we omit it.

Note the similarity of this expression to the classical one in Eq. (189). Indeed, if
we were to “symmetrize” a; (t)a; (1) — (1/2)[a;(1)a; () + a; (t)a;(1)], rewrite the

a’s” as operators, and postulate the commutation relation Eq. (367), we would
get Eq. (369).
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