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Novel Analog Self-Electrooptic-Effect Devices

David A. B. Miller, Senior Member, IEEE

Abstract—New circuits and modes of operation for quantum-
well self-electrooptic-effect devices (SEED) are proposed that
allow analog processing of optical images and arrays. Analog
functions performed include addition, subtraction, uniform
amplification, replication, spatial differentiation, convolution,
cross-correlation, and optically controllable weights for ma-
trix-vector processors or neural nets. Many of the devices can
operate with differential pairs of light beams, allowing full bi-
polar analog processing, and other devices can convert between
differential and single-beam representations. Many of the cir-
cuits could be made using the existing SEED array process. The
devices should be sensitive enough to allow direct processing at
video frame rates of scenes under normal room illumination.
Operation up to speeds of nanoseconds is predicted for propor-
tionately higher powers.

I. INTRODUCTION

UANTUM-well  self-electrooptic-effect  devices

(SEED’s) [1], [2] are a family of optoelectronic de-
vices based on the large electroabsorptive mechanisms,
such as the quantum-confined Stark effect [3], seen in such
layered semiconductor structures, and on the concept of
integrating photodetection with such absorption modula-
tion. Both modulators and detectors can be made with the
same structure; the modulator usually consists of a p~i-n
diode with quantum-well layers in the i-region. This in-
tegration, and the low energies required to operate the
quantum-confined Stark effect modulators, allow various
novel optoelectronic devices and functions, with optical
or electrical inputs and outputs. Although some analog
functions have been proposed and demonstrated [4], [5],
SEED’s have been most extensively investigated for dig-
ital systems. The symmetric SEED (S-SEED) [6] has been
particularly useful for systems experiments, in part be-
cause of many features of operating with differential pairs
of light beams. Large two-dimensional (2-D) arrays of
such devices have been demonstrated.

One analog SEED configuration that was successfully
demonstrated was the so-called ‘‘self-linearized’’ modu-
lator [4], [6]. This configuration allows a modulator to be
controlled linearly by a control current or another light
beam power. The present paper extends this concept to
several new configurations. Some of the concepts here are
“‘single-ended’’, that is, operating on light beams singly
as inputs or outputs. Many of the concepts, however, op-
erate with differential pairs of light beams, as inputs, out-
puts or both, or use differences in light intensities as in-

Manuscript received March 15, 1992; revised August 4, 1992.
The author is with AT&T Bell Laboratories, Holmdel, NJ 07733.
IEEE Log Number 9205863.

puts; these devices can be viewed as analog versions or
extensions of the S-SEED. This differential concept opens
up many new possibilities for SEED functions. The use
of differential pairs allows positive and negative values to
be represented and processed, and the differencing of in-
tensities allows various spatial derivatives to be evalu-
ated. Hence these differential ideas offer a solution to the
problem of processing bipolar values in ‘‘incoherent’’ op-
tical analog processing (see, e.g., [7] and [8]). They rep-
resent an alternative approach to many of these analog
functions, compared to, for example, approaches with
photorefractive materials [9].

The basic concepts presented here allow many different
sophisticated analog functions to be performed. Functions
described here include: addition, subtraction, and spatial
differentiation of images; correlation; optically controlled
bipolar matrix-vector multiplication (e.g., for optical
neural nets); amplification of an image by an integer gain;
and replication of an image (with equal powers in each
replica) without beam splitters. In many cases, the de-
vices described here can be made using the same tech-
nology as has been used successfully to make large arrays
of S-SEED’s. The devices should also be able to operate
over a very large range of speeds and powers. These pro-
posed devices therefore offer many new opportunities for
high-performance, sophisticated, analog optical process-
ing of images and 2-D arrays.

In this paper, we will concentrate on device configu-
rations. We will not attempt to give complete architec-
tures for systems, nor will we discuss optics in any detail.
We will however discuss some example device configu-
rations for various potential applications, and these do re-
quire some special optical techniques. Many of the de-
vices are intended to work with pixelated images. There
are several ways of generating these, including simple
masks with holes, or lenslet arrays. Many of the schemes
too require that the pixelated images be ‘‘interlaced’’;
pixels from two different images may be alternated with
one another on the device plane. This can be achieved in
a number of ways also, the simplest being a patterned mir-
ror used as a beam splitter, reflecting the set of pixels
from one array and passing the set of pixels from another
array. Such techniques have been used extensively in dig-
ital systems (see, e.g., [10]), and much of the optics can
be borrowed from the digital case.

The structure of this paper is as follows. In section II,
we briefly summarize the concepts of self-linearized mod-
ulation, which is common to all of the devices discussed
here. In Section III, we introduce the various basic dif-
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ferential SEED circuits that are used to perform many of
the differential functions, and describe how such devices
could be made. In Section IV, we discuss various possible
applications of the basic differential SEED circuits, in-
cluding addition and subtraction, neural net nodes and op-
tically controllable weights, spatial differentiation, and
correlation. In Section V, we introduce the concepts of
integer gain SEED’s for amplification (stacked SEED) and
replication (replicating SEED) of single-ended images or
arrays. Section VI extends the integer gain concepts to the
differential case, including techniques for derivatives and
correlations of pixelated images. Section VII describes the
expected physical performance of these devices, in terms
of their speeds and operating powers and intensities. Con-
Clusions are summarized in Section VIII. An Appendix
derives the design relations for stacked SEED’s.

II. SELF-LINEARIZED MODULATION

To understand all of the devices discussed here, it is
important to understand the concept of self-linearized
modulation with a quantum-well diode. This has been dis-
cussed in detail before [4]. For completeness, we will
briefly summarize the principle here. Fig. 1 shows the
simplest self-linearized modulator circuit.

The p-i-n diode contains quantum wells in the i-re-
gion. Photons absorbed in the i-region generate photocar-
riers. In practice, such diodes can be made so that, over
a wide range of reverse bias, and sometimes even partly
into forward bias, essentially exactly one electron of cur-
rent flows for each photon absorbed in the quantum well
region, i.e.,

e
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where I, is the generated photocurrent, Aw is the photon
energy, e is the electronic charge. The absorbed power P,
is given by

PA=Pi—Pout 2

where P;, and P, are the incident (input) and transmitted
(output) powers, respectively, in the light beam. We as-
sume here that there is no loss in or reflection from the n
or p regions; this is reasonable since the n and p regions
can readily be made from transparent semiconductors and
the surfaces can be antireflection coated. The theory dis-
cussed here could be extended to cover such losses and
reflections.

In such a circuit as Fig. 1 with a quantum-well diode,
the absorbed power depends on the voltage across the
diode because of electroabsorption mechanisms such as
the quantum-confined Stark effect (QCSE). This means
that, for a given input optical power, the photocurrent de-
pends on the voltage across the diode. The photocurrent
in turn will change the voltage because of the external
circuit through which it passes. Hence there is a feedback
mechanism. In most simple circuits, this feedback will be
positive if the absorption decreases with (reverse bias)
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Fig. 1. Simple self-linearized modulator schematic. The p-i~n structure is
a diode containing quantum wells in the i-region.

voltage across the diode [4]. Such positive feedback can
give bistable switching into a high-absorption low-voltage
state with increasing input power. Such bistability can be
seen by operating at a photon energy corresponding to the
zero electric field position of the exciton absorption peak.
All of the circuits to be discussed here operate in the neg-
ative feedback mode. The photon energy is chosen to be
such that the diode absorption and photocurrent increase
with increasing voltage. Such behavior can usually be
found by choosing the photon energy just below the zero
field exciton peak position, because there the absorption
increases with increasing voltage as the optical absorption
edge shifts to lower photon energies with increasing elec-
tric field.

For the specific case of Fig. 1, with the photon energy
chosen for negative feedback, the net result is that the
voltage across the diode adjusts itself so that the generated
photocurrent /, is equal to the current I from the current
generator. (A current generator is simply a source whose
current output is independent of voltage, with a simple
example being a very large resistor connected in series
with a battery of very high voltage.) If the diode was gen-
erating too much photocurrent, there would be a net cur-
rent I, — I that would act to discharge the capacitance
of the diode, decreasing the voltage across the diode, and
hence reducing the absorption of the diode. If the diode
was generating too little photocurrent, the opposite would
happen, increasing the voltage across the diode, and hence
increasing the absorption. Hence the stable state is

IA zlc. (3)

Consequently, we now obtain the very unusual behavior
that the absorbed power is linearly proportional to the cur-
rent generator current, i.e.,
hw
Pi=—1I. @)
e
For a given input power, the output power decreases lin-
early with the drive current. All that is required for lin-
earity is that one electron of photocurrent flows for each
absorbed photon. The limits of the range of linearity are
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set by the maximum and minimum absorption possible for
the given quantum well diode. Such self-linearized mod-
ulation has been clearly demonstrated [4].

III. DiFrerenTIAL SEED CIrcurTs

Some of the success of the S-SEED in digital systems
was due to features of pairs of light beams. For example,
since the device is switched by changing the ratio of the
light beams in the pair, the absolute power in the light
beams becomes relatively unimportant. Hence neither the
absolute power in the beams from the light source nor the
degree of attenuation between the output of one device
and the input of the next is very important. This use of
the ratio of two beam powers also relaxes the require-
ments on the uniformity of arrays of light beams used to
drive arrays of such devices. It is only important that ad-
Jacent light beams be substantially equal in power. Smooth
variations over a whole array of beams do not matter very
much. The use of pairs of light beams also overcomes one
constraint with the SEED’s in practice, which is that it is
difficult to obtain very large contrast of modulation in the
output of the devices. A logic state ““1>> can be repre-
sented by beam A being more powerful than beam B, and
vice versa for a logic ““0’’. Such a representation works
well even with contrasts in power of as little as 2: 1 be-
tween the *‘bright”’ and ‘‘dark’’ states of the beams. For
the particular case of the digital system, the use of pairs
of light beams also allowed substantial gain (so-called
“‘time-sequential’’ gain) without critical setting of any
parameters.

Some of the features of working with pairs of light
beams are also applicable to analog systems. In optics, it
is simplest to represent an analog signal with a single light
beam, but this causes some problems that can be difficult
for practical devices. One problem is that it is difficult to
represent both positive and negative values because the
power in the light beam is always positive. One can ex-
ploit another degree of freedom, such as polarization or
phase, to allow positive and negative values to be repre-
sented. Another option is the present one of using pairs
of light beams. If beam 4 is more powerful than beam B,
the value represented is positive; for B more powerful than
A, the opposite is true. In this case, the analog value could
be represented either by the difference between the two
powers or by their ratio. The use of such pairs of beams
also gives an infinite dynamic range in one sense even
with modulators of finite contrast ratio, since we can rep-
resent values all the way down to zero, corresponding to
equal beam powers.

The differential circuits described here operate on and
with the difference in powers of two beams in a pair, rather
than the ratio. In this case, we do not get all of the desir-
able features found with the ratio, although we do retain
many. We do have good tolerance both to variations in
the absolute power in our power supply beams and to spa-
tial nonuniformity of light beams used to power arrays of
analog devices, just as in the digital S-SEED case. As

long as the two powers in a pair of supply beams are equal,
their absolute magnitude will not change the size of the
differential output power (and hence it will not change the
differential output signal); it will only change the overall
background power. If, however, we have loss between
two stages in the system, the loss will reduce the magni-
tude of the differential signal (which it would not if we
worked with the ratio of the beam powers). The ability to
represent both positive and negative values, and the in-
sensitivity to power supply fluctuations, are, none the less,
very important advantages.

Use of differential pairs of light beams is relatively un-
usual in analog processing. Up to now, there have not
been many devices suitable for this. It is also true that the
optics required for working this way is more complicated,
and many input signals, such as pictorial images, exist
originally in unipolar form. As we will show below, how-
ever, it is not difficult to convert between the two forms
using variations of the basic devices and configurations
used for the differential devices and optics, provided only
that we pixelate the image.

Incidentally, although here we will only illustrate the
operation of the differential devices using transmission of
light beams through the quantum well diodes, all of these
differential devices work equally well if there is a mirror
beneath the quantum-well diodes, and we work in reflec-
tion with the beam passing through the quantum-well
diode, reflecting off of the mirror, and passing back
through the diode. Many of the present SEED arrays are
made in this way.

A. Differential Detectors

It is well known that a conventional photodiode can be
designed to give a photocurrent that is substantially in-
dependent of reverse bias, depending only on the incident
light power. Such a device relies on generating one elec-
tron of current for every photon absorbed. Such photo-
diodes, with light beams shining on them, have been used
successfully as appropriate current sources for self-
linearized modulators before [4], [5]. A simple extension
of this is to use a pair of such photodiodes in series to act
as a current source whose current value depends on the
difference of the light powers shining on the two diodes.
This is illustrated in Fig. 2.

We assume for simplicity for such conventional diodes
that all of the incident power on a given diode gives rise
to photocurrent, with one incident photon giving one elec-
tron of photocurrent. Again, the theory discussed here
could be extended to cover any other constant ratio of
photocurrent to incident power. In the steady state, the
current I flowing into the circuit connected to the output
will simply be the difference of the photocurrents gener-
ated in the two diodes 1 and 2, i.e.,

Ie =2 (P = Py ®)

In Fig. 2, V¥, is a constant supply voltage. For the cir-
cuit of Fig. 2, the current I can be of either sign, al-
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Fig. 2. Differential photodiode detectors as a constant current source.

though the voltage at the output terminals can essentially
only be positive. This is not an important restriction for
the applications we discuss below. This circuit will be the
main optical input circuit for the differential input de-
vices.

Connecting a single reverse biased quantum-well
p-i-n diode across the output terminals as shown in Fig.
3 gives a circuit that converts a differential optical sigial
into a ‘‘single ended’” one through the self-linearized be-
havior of the quantum-well diode. ]

From (4) and (5), we have for the output power P,

out
Po = Py —(Py — Py). 6)

For a fixed optical ‘‘bias’’ P;,, we have therefore per-
formed the differential-to-single-ended conversion. Of
course, the circuit of Fig. 3 can only work if P, is greater
than P, since the quantum-well diode must have a posi-
tive current flowing through it. This is an unavoidable
consequence of converting from a differential represen-
tation back to a single-ended one, since the single-ended
representation must be positive. It may be necessary to
add a bias beam input to diode 1 to “‘level-shift’’ the out-
put so that the current into the quantum-well diode is pos-
itive.

B. Differential Self-Linearized Modulators

Fig. 4 shows the circuit for a self-linearized differential
modulator. In the steady state, it is clear from a simple
application of conservation of current that the difference
in the two photocurrents /; and I, must be equal to the
source current I i.e.,

12 - 11 = Ic. (7)
Hence, the difference in the absorbed powers P,; and P,,,,
respectively, in the two quantum-well diodes is given by

hw
PAz*PM:?IC- (8)

This circuit therefore gives a difference in absorbed
powers that is linearly proportional to the drive current.
It is useful to express the operation of this circuit in terms
of differences in beam powers. If we define the difference
D;, in input beam powers as

Dy, = Py — Pip 9
and the difference D, in output beam powers as
Dy = Py — Pou (10
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Fig. 4. Differential self-linearized modulator circuit.

then we have

hw
Doy = Djy + 71C

11

In one simple mode of operation, the input optical bias
or ‘‘power supply’’ beams P;,, and P;,; would have equal
powers (i.e., Dy, = 0). Then we would have the simple
result that the difference in optical output powers was lin-
early proportional to the drive current.

Of course, the current source in Fig. 4 could be a re-
verse biased photodiode illuminated with a beam of power
Pp as in Fig. 5. In this case, we would have

Dou| = Din + PD (12)

in which the change in D, is the input power Pp. If the
input beams P;,, and P;,, were equal (i.e., D;, = 0), we
would in this case have a circuit to convert a single ended
optical signal to a differential one.

Now we can combine the concepts of Figs. 4 and 2 to
make a circuit with both differential inputs and differential
outputs as shown in Fig. 6. In this circuit for simplicity
we have used the same voltage supply for both pairs of
photodiodes, although this is not a necessary restriction.
Now the output power difference D, is given by

D,, =D, + Dg (13)
where D, and Dj are the differences in the input powers

D,=P, ~ Py, (14a)
and

Dﬁ = PB! - Pﬁz. (14b)
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optical outputs.

VOCj

R
n
p
p
# P Rt P
p2
<, "
P
Pt:.utﬂ

Fig. 6. Self-linearized differential light-by-light modulator. This circuit
also gives a difference in output beam powers that is the sum of the differ-
ences in the two pairs of input beam powers.

In the simple case of equal bias beam powers (i.e., Dy =
0), we have a circuit that transfers the difference in two
input power beams linearly to the output power beams. In
the general case, the circuit adds the differences in the two
sets of beams, as shown in (13).

This circuit will be used to perform various different
functions that we will discuss below. One simple function
of the circuits that it resets the bias level on the differential
signal. For example, the overall input powers P,; and P,
could be large, but have only small differences, as in the
case of two images that are similar. The large common
power can be suppressed in the output by transfering the
difference onto weaker beams P, and Pg,. Another sim-
ple function is to add or subtract two differential input
signals, simply by shining both of them onto the conven-
tional photodiodes. We can imagine that the powers P,
and P, are the total powers from two light beams shining
on each of the conventional photodiodes, i.e.,

Py =P, + Py (15a)
and
Py =P, + P,. (15b)
It is now trivially obvious that
D, =D, + D, (16)

where D, and D, are the differences in input powers

D, =P, - P, (17a)
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and

De = Pél - PeZ' (17b)

Because of the differential representation, we can also
use this circuit for subtraction simply by interchanging the
beams P, and P, , (or by interchanging the beams P,; and
P, depending on the sense of the subtraction desired).
Equivalently, we could leave the beams physically where
they are, but shine them onto two pairs of conventional
photodiodes, electrically in parallel, but with the second
pair rewired to interchange the roles of the two diodes.
Similar addition and subtraction can be performed on the
beam pairs D, and Dg. Hence, by using such circuits in
arrays, with images represented differentially in arrays,
we can perform linear addition and subtraction of images;
we will show example layouts of these circuits also be-
low. .

Notice that in the circuits of Figs. 4, 5, and 6, the re-
sults on the differences in the output beam powers are in-
dependent of the absolute power levels in any of the
beams. Only the difference in power in any pair of beams
matters. Of course, we must stay within the allowable
range of absorption of the modulators, but we have re-
moved any sensitivity to moderate changes in the absolute
power levels by this differential operation.

C. Physical Structure of Devices

There are two approaches that we will discuss here for
implementing arrays of the basic devices discussed above.
One is to construct a special layer structure that allows
both conventional and quantum-well photodiodes; this
would have the most ideal performance. The second ap-
proach is to utilize the existing S-SEED process; this is
easier to make, although it involves some compromises
in the device performance.

1) Structure with conventional and quantum-well
diodes: An example of a special layer structure is shown
in Fig. 7. On the top of the whole structure is a ‘‘conven-
tional’’ p-i-n photodiode in layers 1-3. Layers 1 and 3
would be made of transparent material (e.g., AlGaAs),
and the absorbing layer, layer 2, (e.g., GaAs) would be
designed sufficiently thick so as to absorb essentially all
of the incident light (e.g., 1-2 um). Optionally, a dielec-
tric stack mirror, made of alternating quarter wavelength
thick layers of two different semiconductors (e.g.,
AlGaAs and AlAs) could be incorporated within layers 3
and 4 so as to reflect any light not absorbed in layer 2
back into layer 2 for further absorption. Antireflection
coatings could be applied to both of the exposed surfaces
of layers 1 and 5 to prevent reflection off of the surface
and hence improve the efficiency of absorption. Alterna-
tively, with some restriction on operating wavelength,
these surfaces could be uncoated, or even reflection
coated, to form resonators. The use of resonators can re-
duce the thickness required in absorbing layers, and im-
prove modulation contrast [11]. Self-linearized modula-
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Fig. 7. Layer structure to give conventional and quantum-well photo-
diodes, together with isolating diodes and with optional mirrors.

tors have been demonstrated with such resonator structures
[12].

The quantum-well modulator diode is formed from lay-
ers 5-7. As usual, it would have transparent p and n re-
gions (e.g., AlGaAs), and a quantum-well i region whose
thickness would typically be about 1 um. The circuits re-
quire that the conventional diode and the quantum-well
diode are electrically isolated from one another. One way
to do this would be to grow insulating material between
them. This is not always easy, however. An alternative is
to use a reverse biased diode to isolate them (‘‘intrade-
vice’’ isolating diode). To give such a diode a sufficiently
large reverse breakdown voltage, it would be desirable to
incorporate an intrinsic (i) region in the middle. Layers
3-5 form such an ‘‘intradevice’’ isolating diode. When
connecting two sets of diodes together to make up cir-
cuits, we also need isolation between adjacent quantum-
well diodes. One way to do this is to use an insulating
substrate or insulating epitaxial layers under the diodes,
although again this is not always easy to grow. Another
technique, used in many present S-SEED’s, is ion im-
plantation [13]. A third technique that also works, and
was used in the original S-SEED demonstration [6], is to
use the reverse biased diode isolation; such isolation may
have the lowest leakage current of all of the techniques,
which could be important for analog applications with low
light levels. The example structure in Fig. 7 includes such
an isolating diode (‘‘interdevice’’ isolating diode) in lay-
ers 7-9. Finally, a dielectric stack mirror may also be in-
corporated into layers 7-9 to give a reflective device or a
resonator structure. The double pass in the reflective de-
vice (or the use of the resonator) has the usual advantages
of improved contrast ratio or thinner quantum-well region
(and hence lower voltage), and allows operation in reflec-
tion so that an absorbing substrate (e.g., GaAs) does not
have to be removed.

Fig. 8 shows an example set of connections, using the
layer structure of Fig. 7, to construct the most complex
circuit discussed so far, i.e., the circuit of Fig. 6.

2) Use of existing S-SEED layer structure: There are
three ways in which we can use a quantum-well diode to
substitute for the conventional diode, hence avoiding the
necessity of constructing a separate layer structure for the
conventional diode. Two of these simply use the same
quantum-well diodes simultaneously as the ‘‘conven-
tional’” and quantum well diodes. The third case uses sep-
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Fig. 8. Illustration of the layer structure and connections to implement the
circuit of Fig. 6. The output beams are omitted for clarity, but would either
be reflected or transmitted depending on whether a bottom mirror was used.

arate ‘‘substitute’’ quantum-well diodes biased to a higher
voltage. All three involve some compromise in perfor-
mance, although they are all usable.

The first case is when the input light intended for the
conventional diodes in the circuits in Figs. 2, 3, 5, and 6
is at a short wavelength. The second case is a small-signal
case, where the voltage across the diodes changes little in
operation. The most complex circuit, the equivalent of
Fig. 6, for these first two cases is shown in Fig. 9.

The first case exploits the fact that the absorption of the
quantum-well material is only strongly dependent on volt-
age near to the optical absorption edge or band-gap wave-
length. Although there is some voltage dependence at
some shorter wavelengths, at most such wavelengths this
is negligible. Hence, at these shorter wavelengths, the
quantum-well diode can behave like a conventional pho-
todiode. The best performance would be in the wave-
length region where the p and n regions were still trans-
parent, since then all of the incident light would get to the
i-region for absorption. At short wavelengths, the quan-
tum-well absorption will be stronger, improving the effi-
ciency of conversion of incident photons to current. Such
a scheme can be used, for example, for a visible input in
beams P, and P,,, and the appropriate operating wave-
length near the band gap for beams Py, and Ps,. This is
useful for an input device, but the same concept does not
work in general when using the output from a previous
similar device as the input to this device because the
wavelength is wrong.

In the second case, we presume that we are operating
with total powers in the two quantum-well diodes that are
very nearly equal, i.e., we are making a small-signal as-
sumption, and all beams have the same wavelength. When
the total powers incident on the two quantum-well diodes
are equal, then the absorption A4, in both diodes will be
equal. From the fact that the same current flows through
both diodes in steady state, we know that

(Pu1 + Pg)A; = (P, + Pp)d; (18)

where we have taken the case of equal bias (Pg = Pg, =
Pg). Now we have, from a simple analysis of the trans-
mission of the two diodes,

Doy = Pg(4, — Ay) (19)
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Fig. 9. Version of the circuit of Fig. 6 in which quantum-well diodes sub-
stitute for the conventional photodiodes. This involves some compromises
in performance, but allows simpler fabrication. It works either for short
wavelength input light P,,, and P, or for small signal operation (with some
loss of input sensitivity).

where 4, and A, are the absorptions in the two diodes,
respectively. By a simple substitution from (18), we have

Py,

Do = — 22D,
out Pa + Pal [+2

(20)

So far, we have made no approximations. Now we make
a small-signal approximation, that A, = Ay and P,; <<
Pg, and (20) finally becomes

Dy, = AoD,. 21

Hence we have that the difference at the output is pro-
portional to the difference in the input beam powers, al-
though there is now a proportionality constant A;. We can
still use the inputs to sum or difference more than one set
of beams, as discussed above, all with the same propor-
tionality constant.

The third case biases the quantum well ‘‘substitute’’
diodes to a higher voltage, as shown in Fig. 10, again for
the equivalent of the circuit of Fig. 6. At such high volt-
ages, the quantum-well diode responsivity at the near-
band-gap operating wavelength is not strongly dependent
on voltage because the absorption edge has been shifted
to much longer wavelengths than the desired wavelength
for the modulator diodes [14]. Hence the quantum-well
diodes behave more like conventional photodiodes. The
only compromise is, however, that the absolute absorp-
tion in the input photodiodes will not be 100%, and so
not all incident photons give rise to electrons. Here also,
therefore, we have to derate the difference transferred to
the output by a factor Ay, just as in (21). In this case, Ay
is the absorption of the input quantum-well diodes at the
high operating bias. The difference between the perfor-
mance of the circuit of Fig. 10 compared to the perfor-
mance of the circuit of Fig. 9 is that the circuit of Fig. 10
is not restricted to small signals.

IV. APPLICATION EXAMPLES FOR DIFFERENTIAL
SEED’s

To discuss possible applications, it is useful to describe
the circuits laid out in a plan view. Fig. 11 shows the
nomenclature we will use for this. We will be describing
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Fig. 10. Version of the circuit of Fig. 6 using separate quantum well diodes
to substitute for the conventional photodiodes. In this case, with the sub-
stitute quantum-well diodes biased to a higher voltage, the circuit works
for large signal operation with some loss of overall sensitivity at the input.
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version of A in
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Fig. 11. Nomenclature for plan view circuits. The gray surface represents
the top of the conventional photodiode. The surface shown with horizontal
lines represents the top of a quantum-well diode.

primarily applications of the circuit of Fig. 6, and the de-
scriptions below will be given for the case using both con-
ventional and quantum-well diodes. Of course, quantum-
well diodes may be substituted, as discussed above, with
some restrictions. We will not explicitly show the power
supply connections for the circuit of Fig. 10, but it will
be obvious how to make minor changes to the circuits to
accommodate the low and high voltage power supplies.
The circuits will have input beams, which may be either
single-ended or differential, usually shining on the con-
ventional diodes. The outputs always come from shining
beams through (or reflecting the beams through) the quan-
tum well diodes. The beams that are modulated by the
quantum-well diodes will usually be beams all of the same
or similar intensities, which we will refer to as power sup-
ply beams. These would typically be generated in arrays,
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using methods well known from existing digital systems
[10]. Some of the example circuits work with pixelated
images, whereas others, especially those that evaluate
spatial derivatives of an image, are designed to work di-
rectly with the original ‘‘single ended’’ image without
pixelation.

In the examples here, we will show circuits with dif-
ferential outputs. In every case, it is also possible to take
single ended outputs simply by using the output beam
from only one of the two output quantum-well diodes. We
discussed the biasing problem of differential-to-single-
ended conversion above in Section III-B. In most cases,
it is still desirable to illuminate the other quantum-well
diode (or a conventional photodiode in effectively the
same place in the electrical circuit), because the output
will only be able to deal with one sign of electrical current
output from the input photodiodes. The illumination of
the other diode generates a photocurrent that effectively
biases the output so that it can handle both positive and
negative inputs. This is especially important when sub-
tracting inputs, since the sign cannot be predicted in ad-
vance.

A. Image Addition and Subtraction

Circuits for array elements for addition and subtraction
of images are relatively straightforward. Fig. 12 illus-
trates a simple example of a circuit to subtract the ‘sin-
gle-ended’’ image B from the ‘‘single-ended’’ image A,
giving the result as a differential pair of output beams.
The difference between the output beam powers is the dif-
ference between the powers in the given pixels of A and
B, regardless of the absolute powers in the input images.

The circuits of Fig. 13 add or subtract images in dif-
ferential form. Note the difference between the circuits of
Fig. 13(b) and (c); in the former, the differential pair is
inverted using optics to give the subtraction, whereas in
the latter, the inversion is done by rewiring the electrical
circuit.

B. Neural Net Node

The circuit of Fig. 13(a) can also function as a node or
‘“‘neuron’’ in an optical neural network since it sums all
of the input beams. In this case, it is likely that we would
wish to extend the number of inputs, which can be done
simply by making the conventional photodiode larger.
Beams can of course be overlapped on the photodiodes
provided that they are not mutually coherent; with mutual
coherence, interference can occur which prevents simple
summation of powers. Of course we could also use the
basic self-linearized modulator structure to sum *‘single-
ended’’ signals by shining the many inputs to a given
‘‘neuron’’ onto the conventional photodiode. The differ-
ential circuit has the advantage that it can handle both
positive and negative values at the inputs. These circuits
also have a saturating ‘‘nonlinear’” behavior as desired in
many implementations of neural networks. This satura-
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Fig. 12. Circuit to subtract a pixel of image B from a pixel of image A,
given the result as the difference of output powers in the differential pair

C.

(a)

L

Fig. 13. Circuits for addition and subtraction of pixels in differential im-
ages. (a) Adds two differential images A and B giving the result in the
differential pair of beams C. (b) and (c) subtract the two differential images,
with (b) requiring optical inversion of the beams B, whereas (c) does not
because the electrical circuit is rewired to perform the inversion.
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Fig. 14. Illustration of the form of the input/output relationship between
the total difference in input powers D, to a circuit such as that in Fig.
13(a), and the difference in output powers D,,. The output difference sat-
urates at some power Dg,,.

tion behavior is shown for the differential circuit in Fig.
14.

The difference D;,, is the sum of all of the differences
in the input beam powers incident on the input conven-
tional photodiodes. D,,, is the difference in output beam
powers. There is a limit to the difference in output beam
powers D, which occurs when an output diode reaches
either its minimum or its maximum absorption. The ab-
solute value of D, depends on the magnitude of the power
in the power supply beams. If, for example, the maximum
absorption of a diode is 90%, and the minimum absorp-
tion is 15%, then the value of Dy, will be 75% of the
power in a power supply beam. This means that the sat-
uration point of the nonlinearity in Fig. 14 can be con-
trolled optically, and is not set in fabrication. This also
means that a network built from such nodes can be tested
at low powers, and scaled to high powers.

It might also be of some interest to control the slope of
the saturation curve of the neuron. In the simple imple-
mentation shown here, the slope is fixed, being essen-
tially 45°. The tangent of the slope could be changed by
integer multipliers by using the integer gain or replication
discussed below in Sections V and VI. In this case, a unit
change in input power difference could produce an integer
number of units of change in the output power difference.

C. Optically Controlled Neural Net Multipliers

It is clearly useful in optical neural net systems to be
able to control the ‘‘synaptic strengths’’ in the network
optically. The synaptic strengths are the multipliers or
connection strengths between the output of one neuron
and the input of the next. Optical control of these multi-
pliers would mean that the function of the network would
not have to be built in during fabrication, and the ability
to set all of the multipliers in parallel optically would be
a significant feature for optics compared to many other
implementations of neural nets. The function performed
by such a multiplier is simply that of multiplying one beam
or set of beams by another beam or set of beams, and this
could also have applications in other optical systems. (It
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Fig. 15. Circuit for an optically controlled ‘“weight’’ for an optical neural
system. A powerful control beam P. sets the value of the optical transmis-
sion of the signal beam or beams. The figure shows a differential pair of
beams being modulated, although the circuit will also work for single
beams.

should be noted that this method of making multipliers
does not store the value of the multiplier in the circuit, so
this is not a useful way of making stored weights for a
network that can itself learn.)

One simple way to make a multiplying factor that can
be controlled optically is shown in Fig. 15. This circuit
is electrically the same as that of Fig. 1, but adds a further
control beam P-. The simplest way of using this is to
have the control beam be much more powerful than the
signal beam or beams. Then the amount of absorption in
the quantum-well diode is set by the control beam power.
The absorbed power in the quantum-well diode is simply
given by

P, = PcA 22)

where A is the fractional absorption of the diode. Given
that the transmission 7 = 1 — A, then the ‘‘multiplier’’
is, from (4),

hw IC

T=1-—=

e Po (23)

Of course, the values of T are limited by the minimum
and maximum transmissions of the quantum-well diode.

In Fig. 15, we show the case where a differential pair
of beams P, and Py, is used to represent the signal
being muitiplied by the multiplier, with the result being
the output beams P 4, and Pz,,,. The circuit will of course
work if only a single beam is used. The differential beam
pair has the usual advantage that it can represent positive
and negative values of the signal.

The circuit of Fig. 15 still has the limitations that the
multiplier T can only be positive, and furthermore is re-
stricted by the range of T allowed by the modulator. In
particular, it may be difficult to make T = 0 because of
the finite contrast ratio of the modulator. Both of these
problems are solved by using the circuit of Fig. 16.

This circuit is different from others discussed so far in
that it has two quantum-well diodes in series with a cur-
rent source. We will be discussing other kinds of features
of such circuits below. The circuit also requires copies of
both input beams; ideally, identical pairs of signal beams
land on each diode. The circuit is also straightforward to
analyze. For each diode, the same analysis applies as for
the circuit in Fig. 15. The most obvious difference in Fig.
16 is that the transmissions of the two diodes are now
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Fig. 16. Multiplier circuit to multiply a differential signal by a positive or
negative number. The input differential pair P, is replicated onto both
diodes. The strong powers P, and P, control the transmissions of the
respective diodes.

independently controllable by the control beams P, and
Pc,. To see the full benefits of the circuit of Fig. 16,
however, we need to look at beam power differences.

First, we define T, and T, respectively, as the trans-
missions of diodes 1 and 2, and

Dyin = Pan — Pain (24)

as the difference in the powers in one input beam pair.
For the output of this device, we will add the two output
differences by adding the powers P 4o, and P, on the
input photodiodes of the subsequent neural net node “‘re-
ceiver,”’ to obtain

PAout = PAoutI + PAoutZ (253)
and similarly for the other pair Pz, and P, to obtain
Pﬁout = PZoutl + PZoutZ- (25b)

Hence the net difference D, seen by the neural net node
receiver is

Dnet = PAout - PZout = (Tl - T2)DAin- (26)

The ‘‘multiplier’” now is the difference in transmissions
T, — T,. This can be either positive or negative. Follow-
ing the same analysis as for (23), we have

@n

so that this multiplier is controlled by the powers P, and
Pc,. This control could be done by keeping one control
beam power fixed and varying the other, although greater
dynamic range is possible if both beams are varied.

The scheme of Fig. 16 uses four light beams, and we
could refer to this as a ‘‘quadriferential’’ scheme (Latin
““ferre’’—to bear, ‘‘quadri’’—four). As a result of this
quadriferential scheme, we are able to perform a full bi-
polar multiplication of a differential signal. The optics for
this is little different from the differential or single-ended
schemes. There are several ways in which such circuits
could be laid out in plan view, and one example is shown
in Fig. 17. The final result D, is given by the difference
in optical output powers from the quantum-well diodes.
Although only one quadriferential detector layout is shown
in Fig. 17(c), in an actual neural application many such
receivers might be connected to the same output circuit.
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Fig. 17. Circuits for multiplication of a differential signal by a positive or
negative number, as for a neural net. (a) Output modulators of the preced-
ing stage; each modulator modulates two identical power beams, all four
power beams having equal power. (b) Multiplier, with transmissions of the
two quantum-well diodes set separately by the two control beams C, and
C,; this is the plan view of the circuit of Fig. 16. (c) ‘‘Quadriferential’’
input detectors for the subsequent stage; these detectors give a current pro-
portional to the difference in the two differential inputs.

D. Evaluation of Spatial Derivatives of an Image

The preceding circuits have dealt mostly with pixelated
images; the power of a beam incident on a photodiode
may represent the average intensity within the original
pixel, although variations in intensity across the beam
(i.e., the beam shape) will not in general represent the
variations in intensity across the original pixel. Another
range of applications is possible that works directly with
the unpixelated image to evaluate spatial derivatives. Al-
though the incident image here is not pixelated, the cir-
cuits do sample the image and its derivatives. In this case,
we imagine that we are shining the image directly onto
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Fig. 18. Various input photodiode layouts for evaluation of local deriva-
tives in a nonpixelated image. For simplicity, shading is omitted on the
diodes, and we omit the n and p labels on the photodiode; all diodes are
reverse biased. The arrow indicates the current flowing out of the differ-
ential detector pair to the output circuit. The value of this current is a direct
measure of the derivative. The output circuits themselves are omitted. The

numbers on the detectors show the relative photosensitive surface areas of
the diodes.

the input photodiodes, and that the intensity varies slowly
in space over the size of a photodiode. Now we can use
the differential detector scheme to find spatial derivatives.

Fig. 18 shows various layouts of input photodetectors
that approximately evaluate various spatial derivatives.
These methods of obtaining spatial derivatives by differ-
encing optical powers are essentially the same as those
considered by Trabka and Roetling [7] in other imple-
mentations. Here we envisage that the detectors are con-
nected in circuits like Figs. 3 or 6. The output quantum-
well diodes would be connected to the outputs of the dif-
ferential detectors, and could give either single-ended or
differential outputs. They could be located in the spaces
between the input photodiodes, and the necessary power
supply beams could be interleaved with the (sampled) in-
put image using the same techniques used to interleave
arrays of beams. By this means, we could generate a sin-
gle-ended or differential array of output beams that rep-
resented the local values of the derivatives of the input
image. For derivatives, there are strong advantages to the
use of the differential outputs, since derivatives can have
either sign. Of course, the circuits in Fig. 18 still evaluate
the derivatives even if we choose some other output
mechanism, and they could drive electrical circuits di-
rectly.

The operation of the circuits of Fig. 18(a) and (b) is
straightforward; the difference in the powers landing on

two equal area diodes space some distance apart is a sim-
ple measure of the derivative of the intensity in the direc-
tion of separation of the diodes. Fig. 18(c) and (d) can be
understood by noting that the second derivative is the dif-
ference between two first derivatives separated laterally
in space. We could, for example imagine that the large
diode in Fig. 18(c) was divided in the middle, with the
right half and the rightmost diode forming part a first de-
rivative pair [as in Fig. 18(a)], and the left half and the
leftmost diode forming another first derivative pair that is
oppositely connected; hence the result is a measure of the
second derivative. The circuit of Fig. 18(e) evaluates an
approximation to the Laplacian, and can be understood by
extension of the arguments for the second derivative cir-
cuits. Other layouts of this circuit are possible, including
a hexagonal rather than a square layout of diodes, a *‘pic-
ture frame’’ layout in which the four small diodes are
joined to form a continuous frame around the center large
diode (with both diodes still having equal area), and a
circularly symmetric structure with a center circle and a
concentric annular ring, both of equal area. The circularly
symmetric version is the best approximation to the La-
placian, but the version of Fig. 18(e) is well suited to a
rectangular sampling array, as will be discussed below,
and will serve as a useful and nontrivial example in sev-
eral ways below. The final circuit, Fig. 18(f), evaluates
the ‘‘cross derivative’’, and can be understood by a sim-
ilar analysis.

These kinds of derivative measuring circuits could be
useful, especially in arrays, for image processing. The
first derivative circuits tend to find edges, especially those
of particular orientations. The Laplacian has been used
quite generally in early vision processing (see, for ex-
ample, [15]), and recognizes minima, maxima, and
“bumps’’. The ‘‘cross derivative’’ recognizes saddle
points and corners with particular orientations.

As we increase the separation of the diodes in the cir-
cuits of Fig. 18, we will generally increase the value of
the measured derivative, although we will decrease the
spatial resolution. One interesting extension of this is to
separate the diodes so much that we interleave them with
the diodes of the neighboring elements in an array. This
is shown in Fig. 19 for the example of the Laplacian cir-
cuit of Fig. 18(e). Now let us presume that the incident
image is slowly varying across the diodes within any one
dashed circle. To be more precise, the variation of the
image intensity within one circle is presumed to be much
less than the variation between circles. Now we have a
diode layout that evaluates derivatives through finite dif-
ferences between the values at equally spaced sampling
points S;. This is a more normal sampling scheme for
evaluating derivatives. Similar schemes can be devised
for the other circuits in Fig. 18.

E. Convolution and Cross Correlation in Real Space

The kind of method shown above in Fig. 19 can be
extended to perform a convolution or a cross correlation
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Fig. 19. Diode layout interleaving diodes from adjacent elements in array
of circuits as in Fig. 18(c) for evaluating the Laplacian. The input image
is shone onto the entire array, for example, through a mask with circular
holes corresponding to the sampling circles S;. Insofar as the intensity
within a given circle is approximately uniform, the derivatives evaluated
this way correspond to those evaluated approximately by finite differences
between sampling points. The outputs are taken from the output diodes O;.
The electrical connections are shown for one set of diodes only for clarity.

in real space, with a fixed kernel. To understand this, we
can formally write out the function performed by a circuit
such as Fig. 19. In general, we find for the value of the
(differential) output O; from a given quantum-well pair
(or alternatively for the net current flowing out of the in-
put photodiodes)

Oy Z W S; + K+ (28)

where the ‘‘weights’” wy, are the areas of the photodiodes
and S; is the intensity in a given sampling ‘‘circle’’. For
the specific Laplacian example of Fig. 19, the relative
sizes of the weights are

+1, k=0 1= +1
-4, k=1=0
+1, k=1 1=0

wy = 29

and zero otherwise.

The process described by (28) is in general a convolu-
tion or a cross correlation of the (sampled) image S; with
the kernel wy;. Oy is the convolution of §; with the kernel
w_—1, and O_; _; is the cross correlation of wy, with ;.
We could construct other kernels of weights, and they
could extend over more cells. The weights would still be
set by the areas of the photodiodes within each sampling
area. As for the simple Laplacian example of Fig. 19, the
intensity within each sampling ‘‘circle’’ should not vary
by much within the circle for the process to correspond
accurately to a convolution or a cross correlation.

As is well known [8], a process such as this can be used
to recognize an object, its position, and its amplitude (or
“‘brightness’’); the object to be ‘‘recognized’’ is simply
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related to the pattern wy,. This particular process here will
also give the “‘sign’’ of the object, i.e., it will detect both
positive and negative versions of the desired object, and
will say which it is; in other words, the ‘‘brightness’’ or
amplitude given by O; can be positive or negative.

It is interesting to contrast this with the well known
Fourier-domain optical processors [8]. Such processors
perform correlation or convolution by Fourier transform-
ing the object with a lens, multiplying by a mask in the
Fourier plane (since convolution in real space corre-
sponds to multiplication in Fourier space), and inverse
Fourier transforming with a second lens to give the result
in the output plane. For example, a bright spot will appear
in the output plane at points corresponding to the posi-
tion(s) of the desired object in the input plane. The mask
is simply related to the Fourier transform of the desired
object. The key difference between the function per-
formed by such processors and the present real-space pro-
cessor is that the Fourier processors operate on the optical
electric field amplitude whereas the present processor op-
erates on the optical intensity. One consequence of this
difference is that, as discussed above, the sign of the cor-
relation or convolution shows up directly in the output
power difference here, whereas in the Fourier processors
it shows up in the sign of the electric field (i.e., its phase),
and hence cannot be deduced from the intensity in the
output spot alone. (This follows directly from Babinet’s
principle, since the diffraction pattern of complementary
screens is essentially identical except for the sign of the
field.) A second difference between the two methods is
that it is not necessary to have a coherent source or a co-
herent version of the image for the present method; we
can work directly with a conventional incoherent image
as the input without the need for any spatial light modu-
lator to perform incoherent-to-coherent conversion. There
is also no need to have mutual coherence between any of
the light beams in the system in the present case, so all
issues of coherent images, such as speckle, can be
avoided.

V. INTEGER GAIN SEED’s

If we put several quantum-well diodes in series with a
current supply, then in steady state each one is passing
exactly the same current; as far as the diodes are con-
cerned, there is no difference between this situation and
the situation where, as in Fig. 1, there is only one diode
in series with the current supply. We already encountered
the case of more than one quantum-well diode in series
with a current source for the specific example of the cir-
cuit of Fig. 16. Each one of diode 1 and diode 2 is be-
having as a self-linearized modulator, independently of
the other diode. The only constraints here are that each
diode must be operating within its self-linearized range,
and the current supply must in practice be capable of pro-
viding enough voltage to drive the pair. Hence a current
I passing through several self-linearized quantum-well
diodes in series will result in a power P, = (hw/e)I being
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Fig. 20. Multiple self-linearized modulator quantum-well diodes in series
with a reverse biased conventional photodiode acting as a constant current
source, giving integer optical gain. (a) Replicating SEED, where different
beams pass through each of the quantum-well diodes, giving identical out-
put powers Pg,, from all four diodes. For each beam Pg,, = P, — Pp,.
(b) Transmissive stacked SEED, where the same beam passes though all
of the quantum-well diodes, giving an integer gain (in this case, 4) between
the incident power Pj, and the power P, — Pg,,, absorbed from the beam
Pi,. (c) Reflective stacked SEED, which also shows integer gain (in this
case, 4).

absorbed in each diode. This phenomenon can have two
kinds of consequences, depending on the optical circuit.
Three such optical circuits are illustrated in Fig. 20, where
we have used the specific example of a reverse biased
conventional “‘input’’ photodiode as the current source,
and four quantum-well diodes in series.

Following the same analysis as for the simple self-
linearized modulator with a photodiode input, the ab-
sorbed power in each of the quantum-well diodes in Fig.
20 is equal to the incident power Py, shining on the con-
ventional input photodiode. Hence, in all three cases in
Fig. 20, the total change in output power [adding all out-
put beams in the case of Fig. 20(a)] is n times the input
power Pp, where n is the number of diodes (in this case
n = 4). All that is required for this integer gain is that the
input photodiode absorbs all of the incident power P,, and
that all of the diodes generate one electron of photocurrent
for each photon absorbed.

A. Replicating SEED

In Fig. 20(a), the net result of this kind of circuit is to
generate n identical output beams. (For simplicity, in Fig.
20(a) we only show the case where the input beams to the
four quantum well output diodes are all of equal power,
although it is important to realize that, even if these input

powers are not equal, the power absorbed from each beam
is still the same (provided all diodes remain in their self-
linearized regimes).) The power subtracted from each of
these beams is equal to the power incident on the conven-
tional photodiode, and so we are generating n inverted
replicas of the incident beam Pp; hence we can call this
circuit a ‘‘replicating SEED’’.

B. Stacked SEED

We can refer to both Fig. 20(b) and (c) as ‘stacked
SEED’s’’. For the case of both Fig. 20(b) and (c), “‘trans-
missive’’ and ‘‘reflective’’ stacked SEEDs respectively,
the output power P, is given explicitly by

PSout = Pin - nPD (30)

hence giving optical signal gain of value n.

The choice of layer thicknesses in the stacked SEED’s
needs some care. Clearly, for example, if we make the
top diode too absorbing, there will not be sufficient power
transmitted to the next diode to allow it to generate enough
photocurrent. We discuss a specific design procedure for
both transmissive and reflective stacked SEED’s in the
Appendix. This is based on designing for equal field in
all diodes at the maximum desired absorption of the whole
stack of diodes. Specific designs for a four-diode stacked
SEED are given in Table I. The peak absorbance G,, in
Table I is equal to o,,,,d,,, Where o, is the peak absorp-
tion coefficient that will be allowed or used at the oper-
ating wavelength in the material.

The specific design in Table I illustrates several points.
First, in the transmissive version the layers have to be-
come significantly thicker as we move from the input to
the output. This is because the power landing on the
diodes nearer the output is significantly reduced by the
absorption in the preceding diodes, and hence the absor-
bance must be higher to achieve the same absorbed power.
In fact, for the specific design in Table I the layer thick-
ness in diode 1 is becoming very large, and it may be
difficult to make such a diode that gives one photoelectron
per absorbed photon because of the finite depletion length
in real materials. The situation in the reflective case is
somewhat different. Here, there is a compensation be-
tween the powers in the beams traveling in the two direc-
tions through the structure. The ‘‘forward’’ incident
power Ps, on diode 4, for example, is large because it is
yet unattenuated, but the ‘‘backward’’ incident power P3,
is strongly attenuated. Hence the total incident powers on
all the diodes tend to be more nearly similar in the reflec-
tive case. As a result, the layer thicknesses are more nearly
similar in the reflective case. Also, of course, the total
absorbing layer thickness in the reflective case is half that
required in the transmissive case because the light beam
makes two passes through the material.

Figs. 21 and 22 show the results of some designs for
reflective stacked SEED’s based on the analysis in the
Appendix. Fig. 21 shows the designed layer thicknesses
for four different cases; these layer thicknesses are ex-
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TABLE 1
CALCULATED VALUES OF PEAK ABSORBANCES AND LAYER THICKNESSES FOR
A STACKED SEED MODULATOR DESIGNED FOR A MINIMUM TRANSMISSION
OR REFLECTION OF 0.1, AND ASSUMING A PEAK ABSORPTION COEFFICIENT

OF 5000 cm ™',
Transmissive Reflective
Diode Peak Layer Peak Layer
Number Absorbance Thickness Absorbance Thickness
m G, d,(um) G, d,(um)
1 1.179 2.357 0.349 0.697
2 0.526 1.052 0.313 0.627
3 0.343 0.686 0.266 0.532
4 0.255 0.510 0.223 0.446
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Fig. 21. Peak absorbance G, (or equivalently absorbing layer thickness
expressed in absorption lenghts at the peak absorption coefficient) required
in each diode or absorbing layer m of a reflective stacked SEED for each
of four different peak absorbances (or layer thicknesses) G, in the first layer.

pressed in terms of the peak absorbance G,, = ., d,, of
the quantum-well regions in the diodes. Using these layer
thicknesses gives the minimum reflectivities R,,;, shown
in Fig. 22, for different numbers of diodes in the struc-
ture.

C. Physical Structures for Stacked SEED’s

The stacked SEED’s discussed above could of course
be made with many separate quantum-well diodes, or with
some optical scheme that passed the same beam sequen-
tially through many series-connected diodes in a planar
array. A more convenient alternative would be to grow a
‘“‘stack’” of diodes, one on top of the other. One subtle
problem about such structures is that it is easy to make
undesired parasitic bipolar transistors out of the various
n—p-i-n or p-n-i-p structures that result. Such transistors
can introduce gain to various of the layers of the structure;
such gain might seem to be desirable for various appli-
cations, but it is difficult to control such gain precisely in
the fabrication of bipolar transistors. The gain is also de-
pendent on current density in general, and the gain tends
to vary with the size of the mesas because of surface re-
combination. Certainly, to get the precise kind of opera-
tion discussed above, we need to suppress the transistor
action.
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Fig. 22. Minimum reflection R, of a reflective stacked SEED, using the
layer thicknesses as shown in Fig. 21, as a function of the number of layers
or diodes used, for each of four different choices of peak absorbance G, in
the first diode.

This same problem of parasitic transistors was solved
before in the original integrated diode-based SEED
(D-SEED) [16] by growing a tunnel junction between the
adjacent diodes. A tunnel junction has the property of
‘“‘current conversion’’; when we flow current through a
tunnel junction, hole current flowing on one side of the
junction becomes electron current flowing on the other
side of the junction (obviously, the electrons and holes
flow in opposite directions, but the electrical current flows
in the same direction because of the different charges of
the electrons and holes). If we put such a junction at the
position of the emitter-based junction in a bipolar transis-
tor, we completely prevent normal transistor gain, be-
cause we prevent the process of minority carrier injection
into the base from the emitter. Technically, we reduce the
emitter injection efficiency to zero, giving a transistor with
a current gain of unity.

Structures with integral tunnel junctions can be grown,
as demonstrated specifically with the integrated D-SEED.
There are some technical difficulties with such integral
tunnel junctions. It is difficult to make such junctions with
high current carrying capacity, and hence the speed of
operation of such devices is limited. In the case of the
integrated D-SEED, speed was limited to about 1 us by
the maximum tunnel current. Higher maximum tunnel
currents require higher doping in the junction; too high a
doping can cause morphological problems in the growth,
and can result in undesired doping diffusion into other
parts of the structure. For slower operating speeds, how-
ever, as might be appropriate for real time image pro-
cessing for example, such junctions appear to be feasible.

Fig. 23 shows an example structure. Here we have put
the conventional photodiode on the bottom of the struc-
ture; we will shine a pixel of the input image onto it, and
the optical power will be absorbed in its i region. The
structure of several quantum-well diodes connected
through tunnel junctions is on the top of the structure. In
the middle is a dielectric stack mirror, designed to reflect
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Fig. 23. Structure for a reflective stacked SEED. Here, the input beam Pp
is incident on the conventional diode from the bottom, and the power sup-
ply beam P;, is incident on the stack of four quantum-well diodes from the
top. After passing through the stack of quantum-well diodes, being re-
flected off the dielectric stack mirror, the passing back through the quan-
tum-well diodes, the inverted, amplified output Py, emerges from the top.

the power beam wavelength. Other structures with such a
mirror in the middle have been successfully demonstrated
[17]. This structure will produce an inverted version of
the input image pixel at the output, amplified by the in-
teger gain of the structure (equal to the number of quan-
tum-well diodes). We can imagine an array of such de-
vices, with an input image on one side, and an amplified
output image on the other.

If we use a relatively large number of quantum well
diodes in a structure such as Fig. 23, it may also be pos-
sible to run the whole device without any electrical power
supply; in this case, we may simply connect the top of
the quantum-well diode “‘stack’ (the ‘“—’connection in
Fig. 23) directly to the bottom of the conventional diode
(the *‘+’’ connection in Fig. 23). Such ‘‘self-biased’’
SEED’s have been demonstrated for bistable operation
[18].

The basic principle that allows this self-biased opera-
tion to work is the built-in voltage in the diodes. For thin
intrinsic regions (as would be appropriate for a high gain
device with many diodes), the built-in field can be large
enough to give sufficient bias field for the quantum wells,
and, as we shine light on the quantum wells, they will
start to go into forward bias, collectively generating
enough reverse bias to put the conventional diode into its
desired operating region. This would allow an optoelec-
tronic image amplifier with no electrical power supply.

VI. DIFFERENTIAL INTEGER GAIN SEED’s

We can combine the ideas of the integer gain SEED’s
and the differential SEED’s to make several forms of dif-
ferential integer gain SEED’s. The basic concept here is
to take the circuit of Fig. 6, but to replace each output
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Fig. 24. Differential stacked SEED circuit, analogous to the transmissive
stacked SEED circuit of Fig. 20(b). The difference in output power is an
amplified version of the difference in input power, with integer gain (in this
case, 4).
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Fig. 25. Differential replicating SEED layout. The difference in any pair .
of output beams C; is the difference in the input beam powers 4 and B. (We
assume equal incident powers on all of the output diodes.)

quantum-well diode with a set of quantum-well diodes in
series. We can use this to make differential analogs of any
of the three circuits of Fig. 20. Fig. 24 shows, for ex-
ample, a differential transmissive stacked SEED which is
the differential analog of the circuit of Fig. 20(b). Fig. 25
shows a plan view of a differential replicating SEED, the
differential analog of the circuit of Fig. 20(a).

In these differential cases, incidentally, we can use
quantum-well diodes as the input diodes since we can bias
them with a larger voltage to make their absorption insen-
sitive to voltage, as discussed above in Section ITI-C-2.
In this case, we may not have complete absorption in the
input diode, and hence we will not have strictly integer
gain. We will, however, still have equal replicas in the
output beams from the different output quantum-well
diodes.

A. Differential Stacked SEED

The circuit of Fig. 24 amplifies the difference in the
input powers by the integer gain n (here n = 4), and pre-
sents it as a difference in the output powers. Following
the same kind of analysis as used for the circuit of Fig.
6, we obtain

Dygo = nD, + Dy 31



MILLER: NOVEL ANALOG SEED’s

where Dg, = Psout — Psourn- For Dg = 0, we have a
simple differential amplifier, with differential output. The
same analysis would apply to a reflecting stacked SEED.
As for the circuit of Fig. 6, we may add or subtract dif-
ferential signals by shining the differential pairs onto the
input conventional diodes, and amplify the result. As (31)
shows, we may also add, unamplified, the difference Dg
to the output difference.

B. Differential Replicating SEED

In the plan view of Fig. 25, the input beams 4 and B
correspond to the input powers P,; and P, of Fig. 6. The
difference between the powers in any pair of output beams,
C; and. C; is the same as the input power difference be-
tween beams A4 and B. Clearly we can make analogs of
the circuits of Figs. 12 and 13, each with multiple equiv-
alent outputs. This kind of circuit therefore enables us to
have a kind of ‘‘analog fanout’’. We will be able to drive
the inputs of many circuits with identical analog signals
without relying on the accuracy of the splitting ratio of
any beamsplitter. The outputs are also separated in space,
so we may use simple optical techniques, such as pat-
terned mirrors, to separate the beams and direct them
where we wish..Hence we could, for example, use the
circuit of Fig. 25 to generate four identical replicas of a
pixelated image, separate them optically, and perform four
different operations on the image at the same time in the
following stage of the processing system.

C. Derivatives and Correlations with Pixelated Images

We discussed above in Section IV how to take deriva-
tives and perform correlations on images that have not
been pixelated. The outputs from such circuits are, how-
ever, in general pixelated; the outputs are in the form of
differential beam pairs spaced throughout the area of the
original image. It is not then immediately clear how to
perform further such processing on the outputs.

One valid approach to further processing would be to
convert back to a single-ended representation by masking
off one of the beams in each output pair, and then to per-
form spatial filtering on the output to remove all of the
high frequency components associated with the ‘‘sam-
pling’’ of the output image [8]; this would produce a
‘‘smooth’’ image once more that could be used in further
similar processing stages. Such an approach would re-
quire more optics, and would throw away some of the
power by discarding higher spatial frequency compo-
nents. Here we propose an alternative method for pro-
cessing pixelated images (whether from prior processing
stages or not); it avoids the additional optics and power
loss. The method is suitable for all spatial derivatives,
and for correlations with positive or negative integer
weights.

The methods for performing these functions rely on the
ability to replicate beams. Although it is possible to per-
form some of these functions with single-ended circuits
and representations, we will explicitly discuss only the
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Fig. 26. Illustration of use of replication to perform a horizontal difference
(or derivative) on a pixelated differential image. (a) shows the form of the
output from the previous stage, with replication into two pairs of output
beams V;;. (b) shows the circuit layout to perform the difference operation.
The differential output appears at O;;. Full connections are shown for one
period of the structure, with illustration of how the connections are contin-
ued to successive periods.

differential circuits, which have much greater flexibility.
The concept is most easily understood by example. In Fig.
26, we are performing the 8 /dx horizontal spatial deriv-
ative (or, strictly, the difference between adjacent values
in the x direction). First, the pixels from the differential
input image A are replicated using the circuit of Fig. 26(a)
to give the outputs V. These outputs are then shone onto
the inputs V;; of the circuits in Fig. 26(b). As can be seen
by inspection, the differential outputs O; in Fig. 26(b)
give the difference between the differential inputs V4,
and V;, hence performing the desired operation. Of
course, we could perform this operation without repli-
cation on any two adjacent pixels, but the replication
allows us to repeat this operation for every pixel in the
image, without any need for partially reflecting beam-
splitters.

The scheme of Fig. 26 can be extended to any kernel
with positive or negative integer weights. In Fig. 26, we
obtain a negative weight by changing the power supply
connections of the photodetectors. To obtain a weight of
+m, we simply arrange for m replicas of the output from
the previous stage to land on the same input detector pair.
Hence we can perform arbitrary convolutions of pixelated
differential images provided that the weights are positive
or negative integers. We could in principle handle other
weights through the use of attentuators in the beam pairs.

Many of the kernels of interest have the property that
the sum of the values of the weights is zero; this is true,
for example, for all of the spatial derivative kernels. In a
derivative kernel, this zero sum must be true, otherwise a
uniform image would give a finite result after convolution
with the kernel. It also seems likely that most other ker-
nels designed, for example, for object recognition through
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Fig. 27. A simplified version of the circuit of Fig. 26, needing only half
of the number of beams. Such a scheme works provided all of the power
supply beams on the previous output diodes are equal, and provided that
the sum of all the ‘‘weights’’ in the convolution kernel is zero (as it is for
all spatial derivative operations).

a convolution/correlation operation, can be cast in this
form. Having the object recognition kernels in this ‘‘zero-
sum’’ form would seem to be desirable in many cases,
since it makes the recognition independent of the degree
of background illumination.

When the kernels have this ‘‘zero-sum’’ property (and
when all of the elements are positive or negative inte-
gers), we can cut the number of output diodes and beams
in half. This is illustrated for the very simple example of
the horizontal difference operation in Fig. 27. (In this par-
ticular, almost trivial, case, there is no need for replica-
tion, but in general, the outputs U; will be replicated.) To
use such a circuit, we also require that the powers in all
of the power supply beams to all of the output diodes in
a previous array be equal.

To have a unit positive weighting from a given output
group Uj; to a given result O, we take an output C and
shine it on a ‘‘positive’” input diode (i.e., one connected
to the + supply) connected to the “‘result’’ diodes Oy,; we
could achieve the same result with the complementary
output C connected to a ‘‘negative’’ input diode (i.e., one
connected to the — supply). To achieve a —1 weighting,
we would shine a C output on a ‘‘negative’’ diode, or a
C output on a ‘‘positive’’ diode. We have to have equal
amounts of positive and negative weighting, and equal
powers in all power supply beams, because we are relying
on exact cancellation of the background transmitted power
supply ‘‘bias’’ on the positive and negative diodes. In the
arrangement of Fig. 26, this cancellation is automatic be-
cause it is guaranteed for the diode pair, provided only
that the power supply beams were equal within a given
beam pair.

A nontrivial example of this ‘‘zero-sum’’ scheme is
shown in Fig. 28. Here we are implementing the La-

Fig. 28. Diode layout to evaluate an approximation of the Laplacian of a
pixelated differential image. The previous stage in the system is presumed
to have outputs as in Fig. 25, each consisting of four replicated differential
pairs, as shown by the region within the dashed rectangle in Fig. 25. This
set of eight beams is incident on the corresponding input diodes within the
dashed rectangles in the present figure. The output is given by the differ-
ential pairs of quantum well diodes O;. Electrical connections are shown
for one period of the structure only, and p and n markings are omitted for
clarity; all diodes are reverse biased.

placian kernel, in analogy to the situation shown in Fig.
19 for nonpixelated images. This is meant to operate with
a replicated input like that given by the outputs in Fig.
25.

VII. PHYSICAL PERFORMANCE

The diode circuits discussed here, like many previous
SEED circuits, can be used over many others of magni-
tude in speed and power. The reason for this is that the
operating speed is not set by any intrinsic parameter of
the devices; the devices change from one state to another
by the difference in photocurrents charging the internal
capacitance of the devices. The basic methods of analyz-
ing the dynamics of operation of such SEED circuits have
been discussed [4]. Running at higher powers gives pro-
portionately higher speeds. At the high speed end, the
physical limit on speed is set by absorption saturation and
carrier sweep-out times. At the low speed end, the phys-
ical limit is set by the leakage current of the devices. Pre-
vious SEED’s have operated from intensities as low as a
few hundred nW / cm?, with speeds of tens of seconds [5],
corresponding to operating energy densities (the product
of intensity times time) of the order of 10 uJ/cm’, to
speeds as fast as 33 ps [19] with switching energies of the
order of ten picojoules in devices with areas of a few tens
of square microns, corresponding to similar operating en-
ergy densities. This gives a usable range of as much as
12 orders of magnitude in speed and intensity in this de-
vice technology. The full 12 orders of magnitude range
would be difficult to attain in one device. The slowest
speeds used devices with relatively large mesas; the ratio
of surface area to perimeter length would have been rel-
atively large giving a large ratio of capacitance to surface
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leakage current, and this would have allowed especially
long discharge times. Small devices would likely have
faster leakage times. Leakage is also lowest in devices
with reverse bias diode isolation between the different
parts of the device, and most of the large arrays have used
implant isolation instead (to minimize capacitance over-
all), with a larger leakage current. A usable range of six
orders of magnitude is, however, readily possible in one
device, and designing for larger ranges (e.g., 9 or 10)
seems feasible. The precise energy density required to op-
erate the devices depends on the details of the operating
mode and the operating voltage. In practice, the maxi-
mum speed is usually set, especially for large arrays, by
available optical power.

A. Formal Analysis

The dynamics of self-linearized operation have not been
explicitly discussed before. A full discussion of the phys-
ical performance of these devices is beyond the present
paper; the current in the photodiodes is not accurately lin-
ear in voltage, and hence a full understanding of the dy-
namic response would require simulations. We can, how-
ever, understand the main features from a simple
linearized analysis. The necessary equivalent circuit is
shown in Fig. 29.

In Fig. 29, I. is the drive current, which could be from
a photodiode or the differential current from a pair of pho-
todetectors. I,(V) is the photocurrent from the absorption
in the quantum-well output diode as a function of the volt-
age V across the diode; equivalently, I(V) could be the
difference in photocurrents in a pair of quantum-well
diodes, with V then being the voltage across one diode. C
is the total capacitance of all the diodes, including any
relevant stray capacitance. We will explicitly discuss the
simple case corresponding to the circuit of Fig. 1. We
know from Fig. 29 that

av _Ic — L(V)

dt C (32)

We presume that we are operating in the vicinity of some
“‘equilibrium’’ voltage V,,, at which I, = L,(V,,), and
about which the absorption A4 of the quantum-well diode
changes approximately linearly with voltage, i.e.,

A=A, +yV =V, (33)
where
dA
=—| . 4
Y=y " (34)

Since I,(V) = (e|hw)P;, A(V), where P, is the input op-
tical power on the quantum-well diode, simple algebra
shows that the voltage settles towards ‘‘equilibrium’’ with
an exponential decay time constant

ho C
T=— .
e 7Pin

(35)

695

Fig. 29. Equivalent circuit for analyzing the dynamic response of the self-
linearized modulators.

7 is the characteristic response time of the self-linear-
ized system, at least for small signal behavior. Equation
(35) shows, as we would expect, that larger capacitance
gives slower response, and larger incident power P;, and
larger modulator sensitivity vy give faster response.

If we repeat this analysis for the case of the self-linear-
ized differential modulator (e.g., the circuit of Figs. 4 or
6), the time constant is halved compared to (35) if we put
power P, into each quantum well diode. In the differential
case, it is the difference in the two photocurrents in the
quantum-well diodes that charges the capacitance; this is
larger by a factor of two compared to the single-ended
case because one diode decreases absorption as the other
increases. In fact, however, this factor of two improve-
ment will likely be canceled out by the doubling of the
capacitance in the differential case because of the dou-
bling of the number of diodes. Hence the times for the
two cases are identical for identical diode designs and
identical powers on the diodes. We will therefore only do
the calculation for the single ended case, but the results
apply to both single-ended and differential circuits.

For the case of the integer gain SEED’s, the current
sources for the analysis are identical, but the voltage swing
is magnified by a factor of n for a given -y, where n is the
number of series quantum-well diodes in a set. As a re-
sult, the formula (35) for 7 becomes multiplied by an ad-
ditional factor of n. The capacitance C is the capacitance
seen from the point where the conventional and quantum-
well diodes are connected.

For the case of the replicating SEED, we can presume
that the quantum-well diode design is the same as we
would have for the simple single (i.e., n = 1) quantum-
well diode case. Hence, the capacitance from the quan-
tum-well diodes is reduced by a factor 1 /n, because there
are n diodes in series. However, the capacitance from the
conventional diodes is likely to be unchanged; because
this contribution to the capacitance does not reduce by a
factor n, it is likely to dominate, and the additional factor
of n in 7 will not be canceled. Consequently, the repli-
cating SEED is likely to run of the order of n times slower
than the related circuit with n = 1 (i.e., only one quan-
tum-well diode per set).

In the case of the stacked SEED, the individual quan-
tum well diodes will be of the order of 1/nth as thick as
a single diode would be (especially in the reflective case);
as a result, the capacitance of an individual diode will be
of the order of n times larger, although the set of n series
diodes will end up by having approximately the same total
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(series) capacitance as the case with n = 1. v (the change
in absorption per unit voltage on a given diode) will be
approximately the same size in the thin diodes as it would
have been in the single diode; although the diode is 1 /nth
as absorbing, it is n times more sensitive to voltage. Hence
in the stacked SEED also there is no real cancelation of
the factor of n in 7, and the stacked SEED will also run n
times slower than the related circuit with n = 1. Hence,
in both of the integer gain SEED’s we see a constant gain-
bandwidth product.

There are, incidentally, several methods we could use
to get power gain with these devices. We could, for ex-
ample, use avalanche gain in the input photodiodes. If we
were interested only in binary output, we could use the
methods already used with S-SEED’s in digital systems
[6]. There we shine a pair of shorter wavelength ‘“‘clock’’
beams on a differential pair to force the diode into a bi-
stable state; the state chosen reflects the sign of the cur-
rent into the center of the pair. Such a binary output can
be read out at arbitrarily high power (time-sequential
gain).

B. Calculated Performance

We can calculate some representative values for the
performance of simple circuits. The typical value of C is
about 107'® F//,¢m2 for diodes with about 1 um thick in-
trinsic regions. v can be about 0.03 to 0.1 V™' in typical
modulators. As an example for a simple self-linearized
modulator with 10 X 10 um? conventional and quantum-
well diodes, the capacitance might be about 30 fF (for a
single-ended circuit) allowing for some stray capacitance.
At about 850 nm wavelength (about 1.5 eV photon en-
ergy), we would have response times 7 of the order of
1.5-5 ns for P;, = 300 uW; this is a power level that can
be handled by such diodes, as has been demonstrated in
digital applications. For a response time of 10 ms, as
might be appropriate for analog optical processing in video
applications, the input power levels for the quantum well
diodes would be about 50-150 pW; in this case, input
intensities of about 50-150 W /cm? on the conventional
diode (corresponding to 50-150 pW in the 10 X 10 pm’
diode area) would be sufficient to achieve the maximum
possible modulation of the output. Hence we can expect
useful modulation (i.e., many percent) at video rates with
input image intensities in the range of a few uW/ cm?.
These intensities are comparable to the intensities in the
image plane of a typical camera lens when viewing in nor-
mal room lighting; hence these devices may allow pro-
cessing at video rates directly with ambient illumination
of an input object imaged onto the array with conventional
optics. Present SEED technology with such diode circuits
can successfully fabricate arrays of about 10 000 ele-
ments with quantum-well diodes of these dimensions. The
total of the optical powers P;; required to run an array of
10 000 such devices at this speed would be only 1 uW.
Such a power could be generated, for example, by one
light emitting diode, with some spectral filtering to select

the desired wavelength. The electrical current required for
the whole array would be the order of 1 xA.

VIII. CONCLUSION

We have proposed a new set of circuits and operating
modes for quantum-well self-electrooptic-effect devices.
These proposed devices can operate linearly to add, sub-
stract, replicate, and differentiate analog optical signals,
and multiply the signals by integer gains. Such integer
gain would allow, for example, uniform amplification of
an image. The devices are compatible with existing semi-
conductor technology for 2-D arrays, and many of the de-
vices could be made using the existing process for sym-
metric SEED’s. Arrays can operate on whole images at
once, and can convolute and cross correlate with fixed
patterns. We have also shown circuits that allow optically
controlled bipolar multiplication weights for matrix-vec-
tor multiplication or optical neural nets.

Although many of these devices can work with conven-
tional single-ended optical signals, there are versions of
all of them that work with differential pairs of light beams.
The use of differential pairs allows positive and negative
values to be represented, as required, for example, in im-
age differences and spatial derivatives. Circuits are also
given for conversion between differential and signal-ended
representations. These circuits may therefore allow full
bipolar optical processing without the need for coherent
light. The differential representation is also practically
convenient because it makes the devices insensitive to the
absolute optical supply power and to overall variations in
supply power across an array, and allows the use of mod-
ulators with modest contrast ratios. Many of these con-
cepts of differential representation may extend beyond
these specific devices.

The devices described here have a wide potential op-
erating speed range, and have low operating energies. For
example, operation as fast as a few nanaoseconds is ex-
pected at operating powers of hundreds of microwatts per
device with 10 X 10 um devices. Speeds as slow as sec-
onds may be possible with proportionately lower intensi-
ties. It should also be possible to form an image on the
devices of a scene under normal room illumination, and
process it directly at video frame rates.

These proposed devices therefore offer many new pos-
sibilities for optical analog processing systems.

APPENDIX
DEsiGN OF STACKED SEED’s

A way of approaching the design of stacked SEED’s is
to choose layer thicknesses so that a particular absorption
coefficient all diodes have the same absorption. The ab-
sorption coefficient (at a given wavelength) is only a func-
tion of the field. Hence, with this design approach, there
is a set of conditions for which the field is the same in all
diodes. We could reasonably choose this absorption coef-
ficient to be the largest one we intend to allow, .
which will also correspond to the largest field we intend
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to allow since we want to stay in the regime where ab-
sorption coefficient increases with field. This is not the
only approach we could take, but it is a reasonable one,
and minimizes the total thickness of absorbing material
we require to achieve a given minimum transmission or
reflectivity.

Transmissive Stacked SEED

For the *‘straight through’’ transmissive stacked SEED
[Fig. 20(b)], we may start by choosing the number of
diodes n (i.e., the desired gain), and the desired minimum
total transmission 7},;,, of the stacked SEED. Of course,
at all times when the diodes are in their self-linearized
region, the power in each diode is the same, and is equal
to Pp. We know, therefore, that the total power absorbed
by the quantum-well diodes is nPp, since P, must be ab-
sorbed in each, and hence, for the specific minimum
transmission case

P Dmax
n P— = (1 - Tmin) (Al)
in
where Pp,,,, is the incident power on the conventional
diode that will lead to the minimum transmission being
reached for a given T,,,,. In fact, (Al) defines Pp,,,, for
given n, T,,;, and P;,.
For any layer m with incident power P,,,,, we can read-

ily deduce that the thickness of the layer should be

-1 P
d, = — log <1 - M> (A2)
A max Pinm
so that it absorbs a power Pp,,,.. But
Pinm = Pin - (n - m)PDmax (A3)

since power Pp,,, is absorbed in each layer. Substituting
from (A1) in (A3) and finally in (A2), we obtain

dm=L10g< n—(—m - T
Upnax n— (n - m+ 1)(1 - Tmin)

> (A4)

which gives the desired thicknesses of the layers.

Reflective Stacked SEED

The analysis of the reflecting stacked SEED is some-
what more complex. Specifically, we cannot simply work
from the input P;, to the output Pg,, because the power
absorbed in a given quantum-well diode is the sum of the
power absorbed from both the forward and backward
beams. We can, however, analyze the circuit by starting
from the mirror and working upwards through the diodes.
In this case, once we choose an absorbance, D| = «,,,,d,
for the bottom (i.e., first) diode, we can deduce all of the
absorption thicknesses for the other diodes, and finally
deduce R,,;,, the minimum reflectivity. (Choosing o,,,.d,
is equivalent to choosing Pp,,./Py.)

We can readily calculate the absorbed power in any
diode based on the powers incident on the diode. This
absorbed power is always equal to Pp, when the quantum-
well diodes are all in their self-linearized region, so we
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have for the maximum absorption case

PDmax = (Pm+1m + Pm—lm) (1 - eamw‘dm)' (AS)

(The notation P, refers to the power from the pth diode
landing on the gth diode.) It is more convenient to write
this in terms of the powers on the ‘‘lower’’ side of the
diode since we will be working step by step from the bot-
tom of the stack. Since

Pmm+l = Pm+1me‘umade (A6)
we have, from (AS),
Pomax = (Pam—1 €™ + Py 1) (1 — e 7%=y (A7)

Equation (A7) is a quadratic equation for e _"""‘“d’", which
we can solve to give the layer thickness d,, in terms of the
powers below layer m,

1
dm = —log |:2Pm—1m <(PDmax + Pmm‘l - Pm—lm)

a”lll[

4Pm—lumm—l

-1
. {\/1 i (PDmax + Pmm—l - Pm—lm)2 N 1]) i|

(A8)
Now we may proceed to solve from the bottom of the
structure. We start by choosing ¢, d; (and Py, although
this is only a scale factor of no real importance). We know
that P,y = Py, = Py, since we presume that the mirror
reflectivity is 100% (other reflectivities could readily be
handled here if desired). We then deduce Pp,,,, from (AS)
for layer 1. Then we use (A6) and the similar equation

(A9)

—amaxdm

Pmm+l = Pm—]me

to deduce the powers above diode 1 as input to (A8) for
layer 2, and so on. When we have completed this process
for all of the layers, we know all of the layer thicknesses,
and we know the input power P;, and the output power
Pg,,; at the maximum absorption condition, i.e., we know
R,,in- Results for the layer thicknesses and minimum re-
flectivities for various a,,,d, are shown in Figs. 21 and
22, respectively.
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