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Huygens’s wave propagation principle corrected
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Huygens’s principle that each point on a wave front represents a source of spherical waves is conceptually useful
but is incomplete; the backward parts of the wavelets have to be neglected ad hoc, otherwise backward waves
are generated. The problem is solved mathematically by Kirchhoff’s rigorous integration of the wave equation,
but the intuitive appeal of Huygens’s simple principle is lost. I show that, by using spatiotemporal dipoles in-
stead of spherical point sources, one can recover a simple principle of scalar wave propagation that is correct

whenever the concept of a wave front is meaningful.

Huygens’s principle’ that every point on a wave front
can be considered as a new source of spherical
wavelets is a powerful conceptual tool in under-
standing wave propagation. When combined by
Fresnel® with the principle of interference, this con-
cept explained key phenomena of diffraction. Both
Huygens and Fresnel had to neglect backward parts
of the wavelets arbitrarily, however. Otherwise,
wave propagation in free space cannot be described
properly, because backward waves are generated.
The problem for scalar waves was solved rigorously
by Helmholtz for the monochromatic case® and by
Kirchhoff more generally.* The result can be ex-
pressed through Kirchhoff’s integral theorem, to
which the Huygens-Fresnel approach can be shown
to be an approximation. The standard interpreta-
tion of Kirchhoff’s surface integral terms involves
two types of sources of varying strengths, so the
simplicity of Huygens’s approach is lost. Kirchhoff
then approximated his own rigorous result to obtain
his useful diffraction formula, in which the wavelets
become progressively weaker, for angles 6 to the
normal to the wave front, by an inclination factor
1 + cos 0 (see, e.g., Refs. 5 and 6). There is, how-
ever, no simple physical source that can give rise to
these wavelets. Hence Huygens’s original idea that
wave propagation can be described in terms of sim-
ple effective sources on a wave front appears not to
work. Here, however, I demonstrate that Huygens’s
concept does work, and is rigorously correct, pro-
vided that we use spatiotemporal dipoles rather than
Huygens’s original point sources.” This principle of
scalar wave propagation® is valid whenever the con-
cept of a wave front is meaningful.
Consider a scalar wave equation
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where ¢ is the scalar wave amplitude, ¢ is the veloc-
ity of propagation, and g(r, ¢) is a source term. Sup-
pose that there are sources only within a volume V
bounded by a surface S. Then we can use the tech-

niques of Kirchhoff’s integration of the wave equa-
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tion (see, e.g., Ref. 9) to prove that, for r, outside V,
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Here r = |r; — 1| is the distance from point r; to
the point r, of interest on the surface S in the inte-
gral, and n is the distance parallel to the outward
normal to the surface S. The square brackets de-
note a quantity evaluated at the retarded time
t - rfe.

The meaning of the surface integral is well
known. Instead of having actual sources of waves
inside the volume V, we could have exactly the same
wave for all points outside V (and zero inside V) if
we had an appropriate set of real sources on the sur-
face 8. The value and type of these sources are
given by the terms in the integrand in Eq. (2). - The
first term represents point sources of spherical
waves. The second and third terms together repre-
sent spatial dipoles™ (or doublets®) oriented perpen-
dicular to the surface.

If, however, we restrict S to being a wave front, we
can reinterpret these surface sources. If we choose
three orthogonal Cartesian directions, n (the nor-
mal to the surface), 2, and {3, at any point on the
surface, we can define a wave front" as a closed sur-
face on which
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This condition [relation (3)] allows us to approxi-
mate the wave equation near the surface by a one-
dimensional wave equation with propagation in the
direction n. Hence the wave propagation is locally
perpendicular to the wave front as required. The
general solution of such a wave equation correspond-
ing to an outward propagating wave is f(n — ct),
where f is an arbitrary function. Hence, near the
surface,
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Fig. 1. Wave from a spatiotemporal dipole for plane wave
propagation for the approximate case of finite separation
of the dipole. The position of the two sources is indicated
by the vertical lines. The sources are separated by a dis-
tance d. (a) Waves propagating out from the right source.
(b) Waves propagating out from the left source, which is
delayed by a time 7 = d/c compared with the right source.
(c) Net wave from the two sources. Note that there is no
-resulting wave in the left direction, and the waves do not
cancel on the right-hand side.

For a monochromatic wave with time factor
exp(iwt), and with & = w/c, the condition [relation
(3)] that we put on the surface S becomes
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which is equivalent to saying that the change in
dd/dq over a wavelength A is much less than ¢/), in
agreement with our intuitive picture of a wave
front. Incidentally, the model presented here is ac-
tually exact for uniform spherical or plane wave
fronts, both being ideal wave fronts.

For our monochromatic wave, we now have, from
Eq. (4) 9¢/on = —ike, so that the integrand in
Eq. (2) becomes

LI_1|9) g @ (L) - Lor]od
4;*{ r[(m]er)]{m(r) crﬁn[at]}

_ L] {ik(l + cos ) + ‘—’Oio}, 6)

4r r

where we have used the fact that ar/on = —cos 6,
since 6 is the angle between fi and r; — r, and r de-
creases as we move the source point r, along .

To understand the meaning of the integrand as
given in Eq. (6), consider the following spatiotem-
poral dipole source. This source consists of (i) a
point source of strength +a, located at point d/2 on
the fi axis, and (ii) another point source, of strength
—a, located at point —d/2 on the fi axis, delayed
with respect to the first source by a time 7 = dje,
Le., delayed by the time taken for a wave to propa-
gate from the first to the second source. [Here the
sign convention is that a positive source corresponds

to positive g in Eq. (1).] We will call this a spa-
tiotemporal dipole of strength ad. The wave from
a single (monochromatic) point source of strength
+a exp(iwt) is (a/4wr)expli(wt — kr)], where r is the
distance from the source. Hence simple algebra
shows that the resulting wave from this spatiotem-
poral dipole, in the limit as d goes to zero (but with
ad remaining finite), is

i(wt — kr)

—— {ik(l + cos ) + M} (7
4rr r
However, this is exactly the same as the integrand
in Eq. (2), as expressed in Eq. (6), provided only
that the strength of the spatiotemporal dipoles is
set to ad exp(iwt) = ¢ per unit area. {Note that
¢ exp(—ikr) = [¢].}

Hence we come to the new wave propagation prin-
ciple: For a closed wave front S, the monochro-
matic wave propagation outside S is equivalent to
that from a set of spatiotemporal dipoles, oriented
perpendicular to the surface S, and of strength ¢
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Fig. 2. (a) Exact wave from a (spatial) dipole radiator.
(b) Wave calculated using the proposed wave propagation
principle, using spatiotemporal dipoles on a spherical sur-
face of radius 2.25 wavelengths. The amplitude of the
spatiotemporal dipoles per unit area is chosen equal to the
wave amplitude on the spherical wave front of radius 2.25
wavelengths in (a). The dipoles are oriented perpendicu-
lar to the surface. For visual clarity, the wave amplitude
is multiplied by the distance from the center to remove
the underlying 1/r dependence. A seven-level gray scale
is used. In the region outside the chosen wave front, both
waves are seen to be similar.
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per unit area on the surface S, where ¢ is the wave
amplitude on S.

Essentially, then, we have simply substituted spa-
tiotemporal dipoles, oriented perpendicular to the
wave front, for Huygens'’s original point sources. At
first sight, the spatiotemporal dipole concept is un-
usual. It is, however, easy to understand for plane
waves (Fig. 1). The spatiotemporal dipoles can now
be approximated by two separate sets (or sheets) of
sources, separated by some distance d, in which the
left-hand set has the opposite sign and is delayed
by a time 7 = d/c compared with the right-hand
source. In the limit as d — 0, this becomes exact.
Each source [Figs. 1(a) and 1(b)] generates both left-
and right-propagating waves as shown. Note, how-
ever, that the delay is such that the left-propagating
wave from the left source exactly cancels the left-
propagating wave from the right source, which gives
no net wave in the left direction [Fig. 1(c)]. On the
right-hand side, by contrast, the two waves do
not cancel, so that the net effect is only a right-
propagating wave. Spatiotemporal dipoles also have
several other interesting properties.'?

For direct numerical illustration, in Fig. 2 I have
chosen the wave from an oscillating (spatial) dipole,
which is shown exactly in Fig. 2(a). In Fig. 2(b), I
show the calculated wave that results for a sphere of
spatiotemporal dipole sources oriented perpendicu-
lar to the sphere surface; the strengths per unit area
are given by the wave amplitude on the wave front of
radius 2.25 wavelengths in Fig. 2(a). Outside the
chosen wave front, the calculated waves are almost
identical, even though I have chosen an extreme ex-
ample in which the amplitude on the wave front is
not slowly varying (changing from a positive maxi-
mum to a negative maximum in a circumferential
distance of 2.25m ~ 7 wavelengths). The actual er-
ror is <7% of the peak amplitude on a given wave
front for this relatively extreme case. Note that the
spatiotemporal dipole sources produce essentially
no backward wave, as required, with essentially
no wave amplitude inside the chosen wave front.
Again, the wave inside the chosen wave front is not
exactly zero because this is an approximation, but it
is too small to be visible in Fig. 2(b). Incidentally,
Kirchhoff’s approximate diffraction formula, which
corresponds to dropping the near-field term cos 6/r®
of Eq. (6), does not correctly predict the wave near
the chosen wave front. The current principle is,
however, valid in the near field, as can be seen in
Fig. 2, and can be used in the sense of Huygens’s
original wave propagation idea to calculate one wave
front from the effective sources on the previous
wave front.

The point of the above calculation is to show ex-
plicitly that the proposed principle works, not to
suggest that this is an efficient way to calculate
wave propagation. The aim of this principle is to
understand wave propagation conceptually; it re-
mains to be seen whether it helps directly in actual
calculations.

In conclusion, I have recovered a simple picture of
scalar wave propagation, much like Huygens’s origi-
nal notion, but in which one uses spatiotemporal
dipoles oriented perpendicular to the wave front
instead of Huygens’s simple point sources. With this
one correction, this principle now encompasses
Fresnel’s and Kirchhoff’s mathematical models
for all cases where the concept of a wave front is
meaningful.

I am pleased to acknowledge many helpful com-
ments and corrections from the reviewers of this
Letter.
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