research

image of Asst. Professor Ada Poon
October 2014

Ada Poon, a Stanford assistant professor of electrical engineering, is a master at building miniscule wireless devices that function in the body and can be powered remotely. Now, she and collaborators in bioengineering and anesthesia want to leverage this technology to develop a way of studying – and eventually developing treatments for – pain.

Chronic pain costs the economy $600 billion a year and the two most common treatments have significant drawbacks: narcotics are addictive and surgery is costly and carries considerable risks.

"What we will be able to look at is a more natural measure of pain relief," Poon said. They could assess whether a treatment allows mice to return to normal activities by tallying time spent on an exercise wheel or socializing.

This collaboration is one of 22 projects recently funded by the Stanford Bio-X Seed grants, which Carla Shatz, the director of Bio-X, calls the "glue" that brings interdisciplinary teams together. This project is typical, with an electrical engineer, a bioengineer and an anesthesiologist, all of whom are Bio-X affiliates, working together to solve a biomedical problem. Bio-X has so far brought together more than 600 interconnected faculty members from across campus.

"When you combine people with different skills you will come up with something with truly high impact," Clark said.

For the full story, visit news.stanford.edu/news

Image: L.A. Cicero

 

S. Fan
July 2014

Scientists may have overcome one of the major hurdles in developing high-efficiency, long-lasting solar cells – keeping them cool, even in the blistering heat of the noonday Sun.

By adding a specially patterned layer of silica glass to the surface of ordinary solar cells, a team of researchers led by Shanhui Fan, an electrical engineering professor at Stanford University, has found a way to let solar cells cool themselves by shepherding away unwanted thermal radiation. The researchers describe their innovative design in the premiere issue of The Optical Society’s  new open-access journal Optica.

Solar cells are among the most promising and widely used renewable energy technologies on the market today. Though readily available and easily manufactured, even the best designs convert only a fraction of the energy they receive from the sun into usable electricity.

Part of this loss is the unavoidable consequence of converting sunlight into electricity. A surprisingly vexing amount, however, is causesd by solar cells overheating.

Under normal operating conditions, solar cells can easily reach temperatures of 130 degrees Fahrenheit (55 degrees Celsius) or more. These harsh conditions quickly sap efficiency and can markedly shorten the lifespan of a solar cell. Actively cooling solar cells, however – either by ventilation or coolants – would be prohibitively expensive and at odds with the need to optimize exposure to the sun.

For the full story, visit engineering.stanford.edu.

Pages

Subscribe to RSS - research