Brain-Sensing Tech Developed by Krishna Shenoy and Team

September 2016

Technology developed by Stanford Bio-X scientists Krishna Shenoy (EE) and postdoctoral fellow Paul Nuyujukian, directly reads brain signals to drive a cursor moving over a keyboard. In an experiment conducted with monkeys, the animals were able to transcribe passages from the New York Times and Hamlet at a rate of up to 12 words per minute.

Earlier versions of the technology have already been tested successfully in people with paralysis, but the typing was slow and imprecise. This latest work tests improvements to the speed and accuracy of the technology that interprets brain signals and drives the cursor.

"Our results demonstrate that this interface may have great promise for use in people," said Nuyujukian, who will join Stanford faculty as an assistant professor of bioengineering in 2017. "It enables a typing rate sufficient for a meaningful conversation."

The technology developed by the Stanford team involves a multi-electrode array implanted in the brain to directly read signals from a region that ordinarily directs hand and arm movements used to move a computer mouse.

It's the algorithms for translating those signals and making letter selections that the team members have been improving. They had tested individual components of the updated technology in prior monkey studies but had never demonstrated the combined improvements in typing speed and accuracy.

"The interface we tested is exactly what a human would use," Nuyujukian said. "What we had never quantified before was the typing rate that could be achieved." Using these high-performing algorithms developed by Nuyujukian and his colleagues, the animals could type more than three times faster than with earlier approaches.

 

This article is adapted from the Stanford Report. Read full article.

 

Related News:

Krishna Shenoy's translation device; turning thought into movement, March 2017.

Krishna Shenoy receives Inaugural Professorship, February 2017.