Tom Soh and collaborators create device that could transform medical diagnostics

image of prof H. Tom Soh
January 2021

EE Professor Tom Soh, in collaboration with Professor Eric Appel, and colleagues have developed a technology that can provide real time diagnostic information. Their device, which they've dubbed the "Real-time ELISA," is able to perform many blood tests very quickly and then stitch the individual results together to enable continuous, real-time monitoring of a patient's blood chemistry. Instead of a snapshot, the researchers end up with something more like a movie.

"A blood test is great, but it can't tell you, for example, whether insulin or glucose levels are increasing or decreasing in a patient," said Professor Tom Soh. "Knowing the direction of change is important."

In their recent study, "A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals", published in the journal Nature Biomedical Engineering, the researchers used the device to simultaneously detect insulin and glucose levels in living diabetic laboratory rats. But the researchers say their tool is capable of so much more because it can be easily modified to monitor virtually any protein or disease biomarker of interest.

Authors are PhD candidates Mahla Poudineh, Caitlin L. Maikawa, Eric Yue Ma, Jing Pan, Dan Mamerow, Yan Hang, Sam W. Baker, Ahmad Beirami, Alex Yoshikawa, researcher Michael Eisenstein, Professor Seung Kim, and Professor Jelena Vučković.

Technologically, the system relies upon an existing technology called Enzyme-linked Immunosorbent Assay – ELISA ("ee-LYZ-ah") for short. ELISA has been the "gold standard" of biomolecular detection since the early 1970s and can identify virtually any peptide, protein, antibody or hormone in the blood. An ELISA assay is good at identifying allergies, for instance. It is also used to spot viruses like HIV, West Nile and the SARS-CoV-2 coronavirus that causes COVID-19.

The Real-time ELISA is essentially an entire lab within a chip with tiny pipes and valves no wider than a human hair. An intravenous needle directs blood from the patient into the device's tiny circuits where ELISA is performed over and over.

 Excerpted from "Stanford researchers develop lab-on-a-chip that turns blood test snapshots into continuous movies", December 21, 2020.

Related News