SystemX

Towards Chip-Scale Power Management: A Circuits Perspective

Topic: 
Towards Chip-Scale Power Management: A Circuits Perspective
Abstract / Description: 

Full integration of power management circuits has been a vision and a goal of the power electronics and integrated circuits communities for many years, if not decades. However, while exponential semiconductor scaling has had a profound impact on data processing, storage, and communications, the same has not been true for circuits that process and delivery energy. On one hand, this is because power delivery circuits are constrained by the size and efficiency of passive components – inductors and capacitors – and thus by Maxwell's equations and fundamental material properties. Yet, a host of applications, spanning portable computing, IOT, automotive, and renewable energy demand small, lighter, cheaper, and more efficient solutions.

This talk will address some of the current trends relating to advances in active and passive components, as well as new circuit architectures and design paradigms that are positioned to open the pathway to mm-scale in monolithically-integrated power conversion. A particular focus will be on the switched capacitor approach – more specifically on switched capacitor circuits and architectures that can be operated in resonant modes or hybridized with a small inductive impedance. These circuits leverage the fundamental advantages of capacitors compared to inductors, such as much higher energy-density and better scalability. Yet, compared to a pure SC approach, the use of a small amount of magnetic energy storage can dramatically improve power-density, efficiency, and add capabilities for variable regulation.

The talk will present a generalized framework for comparison of arbitrary converter topologies based on a charge-multiplier approach. This will be used to highlight which topologies – some well-known, some yet to be explored – have good prospects for high-density integration. Several past integrated circuit prototypes will be highlighted that achieved records for efficiency and power density in bulk CMOS.

Date and Time: 
Thursday, June 8, 2017 - 4:30pm
Venue: 
Allen 101X

A multimodality CMOS cellular interfacing array for holistic cellular characterizations and cell-based drug screening [SystemX Seminar]

Topic: 
A multimodality CMOS cellular interfacing array for holistic cellular characterizations and cell-based drug screening
Abstract / Description: 

Cells are highly complex systems that often exhibit multi-physics responses under external stimulus. To achieve holistic cellular characterizations, it is essential to create interfaces that can provide (1) single-cell resolution, (2) multi-modality interfacing with cells, (3) real-time two-way communication (sensing and actuation), (4) compatibility with high throughput massively parallel operations, and (5) possibility of production at commercial quantities. The nanometer-scale complementary metal-oxide semiconductor (CMOS) process is a potential candidate to realize cell-microelectronics interfaces. Electronics-based computations and signal processing, such as machine learning methods, may drastically relax the requirement on the physical interface and lead to further pixel miniaturization.

In this talk, we will present several fully integrated multi-modality CMOS cellular joint sensor/actuator arrays with multiple sensing modalities in every array pixel to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. Each pixel also contains electrical voltage/current excitation for cellular stimulation. These reported CMOS cellular joint sensor/actuator arrays is composed up-to 22k multi-modality pixels on each chip with spatial resolution down to 17um*17um/pixel, achieving single-cell resolution. Multi-modality cellular sensing at the pixel level is supported, which enables holistic cell characterization and concurrent joint-modality physiological monitoring on the same cellular sample. Comprehensive biological experiments with different living cell samples demonstrate the functionality.

Date and Time: 
Thursday, June 1, 2017 - 4:30pm
Venue: 
Allen 101X

Calibration and Dynamic Matching in Data Converters [SystemX Seminar]

Topic: 
Calibration and Dynamic Matching in Data Converters
Abstract / Description: 

In the early days of integrated data converters, calibration was limited to factory adjustments made with programmable fuses and lasers. As integration levels increased, on-chip recalibration outside the factory became possible. Initially, such on-chip calibration operated only in the foreground, interrupting the conversion of the desired input. Later, calibration expanded to allow operation in the background, that is, during normal conversion. Both foreground and background calibration were done at first by making adjustments to the analog circuits. A breakthrough occurred with the realization that analog-to-digital converters with redundancy can be calibrated entirely in the digital domain. This approach shifted design complexity to the digital domain and took advantage of the rapid scaling of digital circuits. Recently, dynamic matching techniques, which have been used effectively in oversampled converters, have been combined with digital background calibration in Nyquist converters. In practice, error-insensitive analog circuit design, calibration, and dynamic matching are all important. The designer's job is to find the best combination of these techniques to meet the requirements of a given application, often focusing on minimizing power dissipation. This talk will describe issues related to all of these techniques.

Date and Time: 
Thursday, May 25, 2017 - 4:30pm
Venue: 
Allen 101X

Engineering Hope with Biomimetic Systems [SystemX Seminar]

Topic: 
Engineering Hope with Biomimetic Systems
Abstract / Description: 

Biomimetic system (neural prosthesis) research has progressed rapidly in the recent years fueled by the unique interdisciplinary efforts fusing engineering, medicine, and biology.  Biomimetic systems will offer viable solution and thus hope to those suffering with neural disorder diseases, which currently do not have curable solutions but potentially affect very large population of people worldwide. This talk will present the works of neural implants in Biomimetic Research Lab (BRL) at UCLA, including 1) to regain the eyesight for the blind; 2) to restore the motor function for the spinal cord injury; 3) to recover the cognition. I’ll particularly discuss about the creation, technical challenge/barrier, clinical trials, and regulatory approval of the retinal prosthesis.  The success of the retinal prosthesis suggests that the technology could be applied to other physiological problems.

Date and Time: 
Thursday, May 18, 2017 - 4:30pm
Venue: 
AllenX

Neuromorphic Computing with Resistive Switching Devices [SystemX Seminar]

Topic: 
Neuromorphic Computing with Resistive Switching Devices
Abstract / Description: 

Neuromorphic computing is a promising concept for low-power, energy-efficient spiking networks with the capability of self-learning, adaptation, and recognition of speech, gesture, and objects. Development of the neuromorphic computing technology is currently facing 2 main barriers: First, there is no comprehensive understanding how the brain really works; and second, there is no consensus about what technology might provide synaptic and neural circuits at the best tradeoff between cost, power consumption, and performance. The resistive switching memory (RRAM) is one of the main contender for neuromorphic components, thanks to its low current operation, small area and tunable resistance. Demonstration of brain-inspired learning feature with RRAM synapses may pave the way for future high performance, low cost neuromorphic processor and brain-in-a-chip.

This talk will report on the recent advances on neuromorphic hardware for unsupervised learning of visual patterns. First, I will describe a RRAM synapse capable of spike-timing dependent plasticity (STDP) with one-transistor/one-resistor (1T1R) structure. Second, I will show the learning and recognition capability of a neuromorphic chip with a microcontroller neuron and an array of RRAM synapses. Learning of single/multiple patterns, tracking of patterns, and recognition will be shown in hardware. These results support RRAM as a promising technology for future neuromorphic processors.

Date and Time: 
Wednesday, May 17, 2017 - 4:30pm
Venue: 
AllenX

Dynamics of Exponentials in Circuits and Systems [SystemX Seminar]

Topic: 
Dynamics of Exponentials in Circuits and Systems
Abstract / Description: 

Astonishing progress in semiconductor devices, circuits, and manufacturing has prompted an unprecedented revolution in electronics. "Things" are getting smarter and more connected, with higher semiconductor content. Smart personal electronics, autonomous systems, and smart factories are prime examples.

These impressive developments are fueled by the power of exponentials: CMOS scaling, efficiency of semiconductor manufacturing, the bandwidth efficiency of communication systems, and total network capacity have all been doubling almost every two years! The sheer scaling of CMOS has dominated the challenges and promises of advanced IC design. Advanced digital-intensive designs count on denser, faster, and cheaper switches. Along the way, analog and RF designs have creatively embraced the challenge of implementing analog topologies on digitally-optimized processes.

The present slowdown of the CMOS scaling trend brings exciting opportunities for "multidimensional innovations" in circuits and systems: The continuing demand for higher performance, in many applications, will further tilt solutions toward creative system and circuit topologies. Many emerging complementary technologies such as MEMS-based sensors and timing references, III-V devices, high-performance SiGe devices, and silicon photonics, will not necessarily integrate with CMOS monolithically. However, they enable opportunities for system repartitioning and new circuit topologies in applications such as sensing, power, high voltage, high-performance RF, and precision timing.

CMOS is here to stay for the foreseeable future! It will simply coexist synergistically with emerging technologies. This talk will discuss opportunities in "multi-dimensional innovation" that will make the future of the field less predictable.....but even more interesting and exciting!"

Date and Time: 
Thursday, May 4, 2017 - 4:30pm
Venue: 
AllenX Auditorium

Secrets of Successful Technology Start-ups that B-schools may have missed [SystemX Seminar]

Topic: 
Secrets of Successful Technology Start-ups that B-schools may have missed
Abstract / Description: 

Start-up companies offer entrepreneurs fulfillment for their innovative product concepts, not to mention recognition and the promise of monetary rewards. However, no matter how well conceived or financed, most perish. Not because they lack great ideas, or aren't passionate enough or committed to their company and its products. Many of these companies succumb to the inexperience of the founding team and the people they subsequently bring aboard. Business schools have certainly helped distill the lessons of many successes and failures into a formulistic guideline for those intent on venturing forward. One wise sage offered, "A short cut to success is to emulate those who have succeeded". Today we will sample some insights and factors that propelled five consecutive Semiconductor startups towards success. All the companies built sizeable businesses and were rewarded by going public in the market place with an IPO.

Date and Time: 
Thursday, April 27, 2017 - 4:30pm
Venue: 
AllenX Auditorium

Carbon Nanotube for Logic Transistor and More than Moore Applications [SystemX Seminar]

Topic: 
Carbon Nanotube for Logic Transistor and More than Moore Applications
Abstract / Description: 

We have witnessed a tremendous information technology revolution originated from the relentless scaling of Si CMOS devices. The conventional homogeneous scaling of silicon devices has become very difficult. Carbon nanotubes (CNTs) are promising to replace silicon as the channel material for high-performance electronics near the end of silicon scaling roadmap, with their superb electrical properties, intrinsic ultrathin body, and nearly transparent contact with certain metals. In this talk, I will cover recent CNT progress within IBM Research for extending logic roadmap as well as few examples for beyond logic applications, such as physical unclonable function and mid-IR to THz detection utilizing unique properties from CNTs.

Date and Time: 
Thursday, May 11, 2017 - 4:30pm
Venue: 
Packard 202

Secrets of Successful Technology Start-ups [SystemX Seminar EE310]

Topic: 
Secrets of Successful Technology Start-ups
Abstract / Description: 

Start-up companies offer entrepreneurs fulfillment for their innovative product concepts, not to mention recognition and the promise of monetary rewards. However, no matter how well conceived or financed, most perish. Not because they lack great ideas, or aren't passionate enough or committed to their company and its products. Many of these companies succumb to the inexperience of the founding team and the people they subsequently bring aboard. Business schools have certainly helped distill the lessons of many successes and failures into a formulistic guideline for those intent on venturing forward. One wise sage offered, "A short cut to success is to emulate those who have succeeded". Today we will sample some insights and factors that propelled five consecutive Semiconductor startups towards success. All the companies built sizeable businesses and were rewarded by going public in the market place with an IPO.


The EE310 seminar series is intended to offer students a window onto the research directions of the SystemX industrial affiliates and associated faculty.

Offers a series of talks covering emerging topics in contemporary hardware/software systems design. Attention will be paid to the key building blocks of sensors, processing elements and wired/wireless communications, as well as their foundations in semiconductor technology, SoC construction, and physical assembly as informed by the SystemX Focus Areas. The series will draw upon distinguished engineering speakers from both industry and academia who are involved at all levels of the technology stack and the applications that are only now becoming possible.

Date and Time: 
Thursday, April 27, 2017 - 4:30pm
Venue: 
AllenX Auditorium

Wi-Fi The R/Evolution Continues [SystemX Seminar EE310]

Topic: 
Wi-Fi The R/Evolution Continues
Abstract / Description: 

September 2015 marked the 25th anniversary of IEEE 802.11, commonly referred to as Wi-Fi. Over these 25 years, Wi-Fi has ascended from a technology that enabled computers to wirelessly transfer data at 2 Mbps to winning a spot in Maslow's pyramid as the most basic human need. IEEE 802.11 got here, as Lewis Carroll suggested, by running twice as fast. The standard has continuously advanced itself by introducing amendments, such as 802.11n, 802.11ac and 802.11ax. These amendments support higher data rates to meet ever-increasing application demands through the adoption of higher-order modulation schemes such as 64-, 256-, and 1024-QAM, by supporting channel bonding up to 160 MHz and by employing MIMO techniques to transmit multiple streams to single client. In addition to increasing the peak data rate, efforts have been made to improve the spectral efficiency, which characterizes how well the system uses the available spectrum. Multi-user techniques such as MU-MIMO and OFDMA have been introduced in 802.11ac and 802.11ax to improve spectral efficiency and network capacity.

This talk will provide an overview of the upcoming 802.11ax standard, particularly the features that enable it to achieve higher capacity. Given its ubiquitous presence, WiFi, by enabling indoor locationing, has also emerged as a tool to improve operational efficiency and engage with customers like never before. WiFi Alliance recently launched a certification program to deliver high accuracy indoor locationing. We will also provide a survey of WiFi-based indoor locationing technologies,as well as the applications enabled.


 

The EE310 seminar series is intended to offer students a window onto the research directions of the SystemX industrial affiliates and associated faculty.

Offers a series of talks covering emerging topics in contemporary hardware/software systems design. Attention will be paid to the key building blocks of sensors, processing elements and wired/wireless communications, as well as their foundations in semiconductor technology, SoC construction, and physical assembly as informed by the SystemX Focus Areas. The series will draw upon distinguished engineering speakers from both industry and academia who are involved at all levels of the technology stack and the applications that are only now becoming possible.

Date and Time: 
Thursday, April 20, 2017 - 4:30pm
Venue: 
AllenX Auditorium

Pages

Subscribe to RSS - SystemX