SmartGrid

Design, stability and control of ad-hoc microgrids [SmartGrid Seminar]

Topic: 
Design, stability and control of ad-hoc microgrids
Abstract / Description: 

Microgrids are a promising and viable solution for integrating the distributed generation resources in future power systems. Similar to large-scale power systems, microgrids are prone to a range of instability mechanisms and are naturally fragile with respect to disturbances. However, existing planning and operation practices employed in large scale transmission grids usually cannot be downscaled to small low-voltage microgrids. This talk will discuss the concept of ad-hoc microgrids that allow for arbitrary interconnection and switching with guaranteed stability. Although the problem of microgrid stability and control has received a lot of attention in the last years, vast majority of existing works assumed that the network configuration is given and fixed. Moreover, only few works have accounted for electromagnetic delays that will be shown to play a critical role in the context of stability.

The talk will introduce a new mathematical framework for characterization and certification of stability in an ad-hoc setting and derive the formal design constraints for both DC and AC networks. In the context of low-voltage DC network, the corresponding derivations will employ the Brayton-Moser potential theory and result in simple conditions on load capacitances that guarantee both small-signal and transient stability. Whereas for AC microgrids, the singular perturbation analysis will be used to derive simple relations for the droop coefficient of neighboring networks. The talk will conclude with a discussion of key open problems and challenges.

Date and Time: 
Wednesday, June 28, 2017 - 1:30pm
Venue: 
Y2E2 101

Research Perspectives on Smart Electric Distribution Systems [SLAC-Stanford SmartGrid]

Topic: 
Research Perspectives on Smart Electric Distribution Systems
Abstract / Description: 

Electric distribution systems are transforming from a traditionally passive element to an active component of the Smart Grid with a hitherto unprecedented availability of new technologies, data, control, and options for end-users to participate in the daily operations of the grid. To realize the full potential of this transformation there is a dire need for new architectures, markets, tools, techniques, and testbeds. In that regard, this talk presents a comprehensive approach based on cyber-physical-social system to energy management in the emerging smart distribution system with new research results from on-going efforts. Topics of aggregators, incentive pricing, customer-side intelligence, and sustainability metrics as well as aspects of current and future trends in this research will be addressed.

Date and Time: 
Friday, June 16, 2017 - 2:00pm
Venue: 
Y2E2 101

The New Utility: Basic Enabler of Sustainable and Resilient Electric Energy Services? [SmartGrid Seminar]

Topic: 
The New Utility: Basic Enabler of Sustainable and Resilient Electric Energy Services?
Abstract / Description: 

In this talk, we consider problems concerning the role of future utilities. Innovative operations and financial mechanisms are needed to transform utilities into future enablers of sustainable and resilient electric energy service providers. Both technical and financial issues on the road to modernizing today's utilities.

First, we illustrate on real-world operating problems limiting the penetration and utilization of distributed energy resources (DERs) and how these problems can be systematically solved using advanced automation and control. Automation represents a fundamental opportunity to overcome today's worst-case approach to electric energy services and offer more sustainable and resilient services. Mechanisms for better voltage support, power-electronics-based automation for stable operations systems and fast storage systems during abnormal conditions must be introduced. Although utilities should consider this approach as an alternative to building strong grids, some of these solutions are too complex for end users. Fortunately, there exists a win-win range of technological solutions by both utilities and end users. This is particularly the case when solutions are needed to operate these grids during natural disasters and cyber-attacks.

Second, we discuss financial roadblocks to deploy these promising technological innovations. We assess electricity markets in terms of their ability to enable DER integration at value. We also show how DERs can participate in electricity markets for energy and regulation during normal operations, but stress that there are no good mechanisms to value automation and storage. Utilities should move forward as providers of the last resort at value and be paid for taking the financial risks. If end users require uninterrupted clean services, market mechanisms must be put in place to give incentives to utilities to deploy effective technological solutions.


 

This quarter's speakers are renowned experts in power and energy systems, and we believe they will bring novel insights and fruitful discussions to Stanford. This seminar is offered as a 1 unit seminar course, CEE 272T/EE292T for interested students. This course can be repeated for credit for the students.

SmartGrid Seminar Organization Team:

  • Ram Rajagopal, Assistant Professor, Civil and Environmental Engineering
  • Chin-Woo Tan, Director, Stanford Smart Grid Lab
  • Wenyuan Tang, Postdoctoral Scholar, Civil and Environmental Engineering
  • Yuting Ji, Postdoctoral Scholar, Civil and Environmental Engineering
  • Emre Kara, Associate Staff Scientist, SLAC
Date and Time: 
Thursday, May 18, 2017 - 1:30pm
Venue: 
Shriram 104

Electric Vehicles in the Smart Grid: Optimization & Control [SmartGrid Seminar]

Topic: 
Electric Vehicles in the Smart Grid: Optimization & Control
Abstract / Description: 

The rapid electrification of the transportation fleet imposes unprecedented demands on the electric grid. If controlled, however, these electric vehicles (EVs) provide an immense opportunity for smart grid services that enable renewable penetration and increased reliability. In this talk we discuss paradigms for aggregating and optimally controlling EV charging. Specifically, we discuss (i) aggregate modeling via partial differential equations, (ii) distributed optimization of large-scale EV fleets, (iii) and plug-and-play model predictive control in distribution networks. The talk closes with future perspectives for EVs in the Smart Grid.


This quarter's speakers are renowned experts in power and energy systems, and we believe they will bring novel insights and fruitful discussions to Stanford. This seminar is offered as a 1 unit seminar course, CEE 272T/EE292T for interested students. This course can be repeated for credit for the students.

SmartGrid Seminar Organization Team:

  • Ram Rajagopal, Assistant Professor, Civil and Environmental Engineering
  • Chin-Woo Tan, Director, Stanford Smart Grid Lab
  • Wenyuan Tang, Postdoctoral Scholar, Civil and Environmental Engineering
  • Yuting Ji, Postdoctoral Scholar, Civil and Environmental Engineering
  • Emre Kara, Associate Staff Scientist, SLAC
Date and Time: 
Thursday, May 11, 2017 - 1:30pm
Venue: 
Shriram 104

Toward Real-Time Monitoring, Look-Ahead Assessment and Forecasting Engine for Active Distribution Networks [SmartGrid Seminar]

Topic: 
Toward Real-Time Monitoring, Look-Ahead Assessment and Forecasting Engine for Active Distribution Networks
Abstract / Description: 

United Kingdom Power Networks (UKPN) provides power to a quarter of the UK's population via its electricity distribution networks in London that span to the east and southeast of England. This talk will present an advanced distribution analytics power network tool (ADAPT) codeveloped by BSI and UKPN. ADAPT is an advanced real-time monitoring, state estimation platform, contingency analysis, corrective control. In addition, look ahead platform (30 minutes to 2 hours ahead) offers look-ahead assessment of the network taking the uncertainties of renewable energy into account. ADAPT completes with energy forecasting tools which provide input into forecasting future system cases (e.g. 1 hour ahead to 24 hours ahead). ADAPT has several key features such as: State Estimation, Power flow, Contingency Analysis, Interactive Single Line Diagram (132 kV, 33 kV, and external connections), Energy forecaster for load, solar, and wind, Corrective control for removing violations in the system. The ADAPT platform provides operators and engineers real-time situational awareness and facilitates network reliability management as new distributed generation comes online. It also enhances the capability of outage planners to minimize constraints placed on the output from distributed generators during the summer maintenance season and during any major construction and reconfiguration activities. The Look-Ahead mode allows engineers to include the uncertainty of renewable output as well as energy forecasting to produce cases with new renewable contingencies and alternate dispatch cases. Some challenges faced during the development of ADAPT will also be presented. A by-product of the tool's analysis capabilities can also identify root causes of system and component power losses as well as ways to minimize them. Some challenges and theoretical issues faced during the development of ADAPT will also be presented.


This quarter's speakers are renowned experts in power and energy systems, and we believe they will bring novel insights and fruitful discussions to Stanford. This seminar is offered as a 1 unit seminar course, CEE 272T/EE292T for interested students. This course can be repeated for credit for the students.

SmartGrid Seminar Organization Team:

  • Ram Rajagopal, Assistant Professor, Civil and Environmental Engineering
  • Chin-Woo Tan, Director, Stanford Smart Grid Lab
  • Wenyuan Tang, Postdoctoral Scholar, Civil and Environmental Engineering
  • Yuting Ji, Postdoctoral Scholar, Civil and Environmental Engineering
  • Emre Kara, Associate Staff Scientist, SLAC
Date and Time: 
Thursday, May 4, 2017 - 1:30pm
Venue: 
Shriram 104

Smart grids and energy systems [SmartGrid Seminar]

Topic: 
Smart grids and energy systems
Abstract / Description: 

As the share of renewable energy becomes an increasing part of electricity generation, electric vehicles (EVs) have the potential to be used as virtual power plants (VPP) to provide reliable back-up power. This could generate additional profits for EV carsharing rental firms. We design a computational control mechanism for VPPs that decide whether EVs should be charging, discharging, or rented out. We validate our computational design by developing a discrete-event simulation platform based on real-time GPS information from 1,100 electric cars from Daimler's carsharing service Car2Go in San Diego, Amsterdam, and Stuttgart. We compute trading prices (bids and asks) for participating in secondary control reserve markets and investigate what effect the density of charging infrastructure, battery technology, and rental demand for vehicles have on the pay-off for the carsharing fleet. We show that VPPs can create sustainable revenue streams for electric vehicle carsharing fleets without compromising their rental business.

The theme of this quarter's Stanford SmartGrid seminar series is on smart grids and energy systems, scheduled to be held on Thursdays, with speakers from academic institutions and industry.


This quarter's speakers are renowned experts in power and energy systems, and we believe they will bring novel insights and fruitful discussions to Stanford. This seminar is offered as a 1 unit seminar course, CEE 272T/EE292T for interested students. This course can be repeated for credit for the students.

SmartGrid Seminar Organization Team:

  • Ram Rajagopal, Assistant Professor, Civil and Environmental Engineering
  • Chin-Woo Tan, Director, Stanford Smart Grid Lab
  • Wenyuan Tang, Postdoctoral Scholar, Civil and Environmental Engineering
  • Yuting Ji, Postdoctoral Scholar, Civil and Environmental Engineering
  • Emre Kara, Associate Staff Scientist, SLAC
Date and Time: 
Thursday, April 27, 2017 - 1:30pm
Venue: 
Shriram 104

Online Optimization of Virtual Power Plant [SmartGrid Seminar]

Topic: 
Online Optimization of Virtual Power Plant
Abstract / Description: 

Traditional approaches for regulating and maintaining system frequency in power transmission systems leverage primary frequency response, automatic generation control (AGC), and regulation services provided by synchronous generators. In the future, on the other hand, distributed energy resources (DERs) at both utility level and in commercial/residential settings are envisioned to complement traditional generation-side capabilities at multiple time scales to aid frequency regulation and maintaining a reliable system operation. Aligned with this emerging vision, this talk considers a distribution system featuring DERs, and presents a system-theoretic optimization strategy for DERs that enables a distribution feeder to emulate a virtual power plant effectively providing services to the main grid at multiple temporal scales. An online distributed algorithm for DERs is designed to enable the active and reactive power at the feeder head to track given setpoints (e.g, dispatch, ramp, or AGC signals), while concurrently ensuring that electrical quantities are within given limits throughout the feeder. The design of the online algorithm leverages primal-dual gradient methods applied to pertinent minimax problems, and its stability is analyzed under a time-varying optimization formalism. The talk will also demonstrates how individual DERs can provide primary frequency response; particularly, power-frequency droop slopes for individual DERs can be designed so that the distribution feeder presents a guaranteed frequency-regulation characteristic at the feeder head.

 

The theme of this quarter's Stanford SmartGrid seminar series is on smart grids and energy systems, scheduled to be held on Thursdays, with speakers from academic institutions and industry.


This quarter's speakers are renowned experts in power and energy systems, and we believe they will bring novel insights and fruitful discussions to Stanford. This seminar is offered as a 1 unit seminar course, CEE 272T/EE292T for interested students. This course can be repeated for credit for the students.

SmartGrid Seminar Organization Team:

  • Ram Rajagopal, Assistant Professor, Civil and Environmental Engineering
  • Chin-Woo Tan, Director, Stanford Smart Grid Lab
  • Wenyuan Tang, Postdoctoral Scholar, Civil and Environmental Engineering
  • Yuting Ji, Postdoctoral Scholar, Civil and Environmental Engineering
  • Emre Kara, Associate Staff Scientist, SLAC
Date and Time: 
Thursday, April 20, 2017 - 1:30pm
Venue: 
Shriram 104

Smart grids and energy systems [SmartGrid Seminar]

Topic: 
Smart grids and energy systems
Abstract / Description: 

Semidefinite Programming is met with increasing interest within the power systems community. Its most notable application to-date is a convex formulation of the AC optimal power flow problem. At the same time, semidefinite programs can be applied on LMI conditions to derive Lyapunov functions that guarantee power system stability. In this talk we will report on recent work both on power system stability and optimization. First, we will present a novel robust stability toolbox for power grid with its extensions to inertia mimicking and topology control. In that, the quadratic Lyapunov functions approach is introduced for transient stability assessment. Second, we will propose formulations for the integration of chance constraints for different types of uncertainty in the AC optimal power flow problem. We demonstrate our method with numerical examples, and we investigate the conditions to achieve zero relaxation gap.

 

The theme of this quarter's Stanford SmartGrid seminar series is on smart grids and energy systems, scheduled to be held on Thursdays, with speakers from academic institutions and industry.


This quarter's speakers are renowned experts in power and energy systems, and we believe they will bring novel insights and fruitful discussions to Stanford. This seminar is offered as a 1 unit seminar course, CEE 272T/EE292T for interested students. This course can be repeated for credit for the students.

SmartGrid Seminar Organization Team:

  • Ram Rajagopal, Assistant Professor, Civil and Environmental Engineering
  • Chin-Woo Tan, Director, Stanford Smart Grid Lab
  • Wenyuan Tang, Postdoctoral Scholar, Civil and Environmental Engineering
  • Yuting Ji, Postdoctoral Scholar, Civil and Environmental Engineering
  • Emre Kara, Associate Staff Scientist, SLAC
Date and Time: 
Thursday, April 13, 2017 - 1:30pm
Venue: 
Shriram 104

Power System Reliability with Integration of a Diverse Fleet of Generation Resources [SmartGrid Seminar]

Topic: 
Power System Reliability with Integration of a Diverse Fleet of Generation Resources
Abstract / Description: 

The electric power system has been experiencing a shift in its generation resource mix resulting from the retirement of conventional base load synchronous resources and the integration of a more diverse fleet of smaller sized resources with varying generation characteristics. As this transformation continues, there is a fundamental shift in the operational characteristics of the power system as a whole and thus potential reliability implications. In 2014, the North American Electric Reliability Corporation (NERC) created a task force on Essential Reliability Services (ERS) to identify the necessary operating characteristics to assure reliable operations of the North American electric grid. By 2015 frequency, voltage, and net demand ramping variability were recognized as the three essential building blocks of reliability. In December 2016, a paper on ERS sufficiency guidelines include frequency response, voltage limits, and ramping models that tend to vary by particular area and Balancing Authority. The ERS task force also studied the potential impact of a substantial penetration of distributed energy resources (DERs) that, in aggregate, could impact the reliability of the BPS. This industry presentation will focus on the measures identified by the ERS working group, and highlight the results from analysis performed using three years of historical data and three years of forward looking data. Additionally, an overview of the analysis performed by DER task force will be provided.


This quarter's speakers are renowned experts in power and energy systems, and we believe they will bring novel insights and fruitful discussions to Stanford. This seminar is offered as a 1 unit seminar course, CEE 272T/EE292T for interested students. This course can be repeated for credit for the students.

SmartGrid Seminar Organization Team:

  • Ram Rajagopal, Assistant Professor, Civil and Environmental Engineering
  • Chin-Woo Tan, Director, Stanford Smart Grid Lab
  • Wenyuan Tang, Postdoctoral Scholar, Civil and Environmental Engineering
  • Yuting Ji, Postdoctoral Scholar, Civil and Environmental Engineering
  • Emre Kara, Associate Staff Scientist, SLAC
Date and Time: 
Thursday, April 6, 2017 - 1:30pm
Venue: 
Shriram 104

New Directions in Management Science & Engineering: A Brief History of the Virtual Lab

Topic: 
New Directions in Management Science & Engineering: A Brief History of the Virtual Lab
Abstract / Description: 

Lab experiments have long played an important role in behavioral science, in part because they allow for carefully designed tests of theory, and in part because randomized assignment facilitates identification of causal effects. At the same time, lab experiments have traditionally suffered from numerous constraints (e.g. short duration, small-scale, unrepresentative subjects, simplistic design, etc.) that limit their external validity. In this talk I describe how the web in general—and crowdsourcing sites like Amazon's Mechanical Turk in particular—allow researchers to create "virtual labs" in which they can conduct behavioral experiments of a scale, duration, and realism that far exceed what is possible in physical labs. To illustrate, I describe some recent experiments that showcase the advantages of virtual labs, as well as some of the limitations. I then discuss how this relatively new experimental capability may unfold in the future, along with some implications for social and behavioral science.

Date and Time: 
Thursday, March 16, 2017 - 12:15pm
Venue: 
Packard 101

Pages

Subscribe to RSS - SmartGrid