EE Student Information

The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring Quarter through Academic Year 2020-2021: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

Seminar / Colloquium

SmartGrid Seminar: Antonio J. Conejo

Topic: 
Risk-Constrained Multi-Stage Wind Power Investment
Abstract / Description: 

When deciding on wind power investments, three major issues arise: the production variability and uncertainty of wind facilities, the eventual future decline in wind power investment costs, and the significant financial risk involved in such investment decisions. Recognizing the above important issues, this presentation proposes a risk-constrained multi-stage stochastic programming model to make optimal investment decisions on wind power facilities along a multistage horizon. The proposed model is illustrated using a clarifying example and a case study.


SmartGrid Seminar website

 

Date and Time: 
Thursday, April 2, 2015 - 1:00pm to 2:00pm
Venue: 
Y2E2 270

ISL Colloquium: The Wireless Biopsy: Bridging the Real-Time Information Gap in Cancer Treatment

Topic: 
The Wireless Biopsy: Bridging the Real-Time Information Gap in Cancer Treatment
Abstract / Description: 

The U.S. spends over $130 billion a year on direct healthcare costs related to cancer. Today, there are a multitude of drugs priced at more than $100,000 per year per patient, and yet the overall survival rate for many cancers has only improved by a couple of weeks to months. The progress is so slow that cancer will soon surpass cardiovascular disease as the number one killer in the America.

Although mainstream cancer diagnostic tests use blood or radiography to detect the progression of cancer, they fail miserably however when it comes to deciding what should come next in a patient's treatment plan. Unfortunately, heretofore, the only way of charting the next course of treatment for solid tumor cancers, such as breast, lung, and prostate, has been to physically cut out a piece of the tumor and run molecular testing on that specimen — i.e., biopsy molecular profiling. This repeated invasive testing is necessary because like HIV, cancer can be highly genetically heterogenous and tends to develop new genomic mutations under therapeutic pressure. Despite the critical need, re-biopsying beyond the point of initial diagnosis is often not performed, especially in the community oncology setting, due to difficulty, cost, and risk to patients. As a point of reference, a minimally invasive lung biopsy costs an average of $14,000 when the 19.5 percent complication rate is factored in. Furthermore, oncologists are often (and understandably) reluctant to subject already-frail patients to additional risky procedures that may prove fruitless. As a result of these considerations, patients are often placed on subsequent treatment regimens empirically, after progression of the disease.

This lack of molecular information has led to a fundamental real-time information gap in cancer that prevents patients from getting the best possible care and has slowed down the rate of progress in clinical research. Guardant Health is helping to bridge this gap through a new technology platform called Digital Sequencing, a marriage of techniques from digital communications to DNA sequencing to enable "wireless" monitoring of tumor genomics in cancer patients via blood, thereby obviating the need for re-biopsies. Further advancements in Digital Sequencing will enable recurrence detection for millions of cancer survivors and early detection for the general population - all with a simple blood test.

Date and Time: 
Thursday, April 2, 2015 - 4:15pm to 5:15pm
Venue: 
Packard 101

Ginzton Lab: AMO on the Attosecond Scale

Topic: 
AMO on the Attosecond Scale
Abstract / Description: 

Please join us at Spilker room 232 every Monday afternoon from 4 pm for the AP 483 & Ginzton Lab, and AMO Seminar Series.
Refreshments begin at 4 pm, seminar at 4:15 pm

Ginzton.stanford.edu

 


Light travels three Angstroms per attosecond, and electrons in molecular valence orbitals travel the same distance in a few hundred attoseconds, so there is strong motivation for methods to measure and control electron motion on this time scale. I'll discuss recent progress in this area.

 

Date and Time: 
Monday, April 6, 2015 - 4:00pm to 5:00pm
Venue: 
Spilker 232

Ginzton Lab: The Novel Electro-mechanical Structure and Function of the Inner Ear

Topic: 
The Novel Electro-mechanical Structure and Function of the Inner Ear
Abstract / Description: 

Please join us at Spilker room 232 every Monday afternoon from 4 pm for the AP 483 & Ginzton Lab, and AMO Seminar Series.
Refreshments begin at 4 pm, seminar at 4:15 pm

Ginzton.stanford.edu


Abstract TBA

Date and Time: 
Monday, March 30, 2015 - 4:00pm to 5:00pm
Venue: 
Spilker 232

SystemX Seminar: Rethinking the Functional Boundaries of Integrated Radio-Frequency Systems Enables New Wireless Communication Paradigms

Topic: 
Rethinking the Functional Boundaries of Integrated Radio-Frequency Systems Enables New Wireless Communication Paradigms
Abstract / Description: 

Mobile data traffic in 2014 was nearly 30 times the size of the entire global Internet in 2000. Next generation wireless networks are targeting 1000x increase in capacity to meet the insatiable demand for more data. Such a tremendous increase in wireless data will require a complete rethinking of today's wireless communication systems and networks from the physical layer to the network and application layer.

My research program at Columbia University is focused on transformative radio-frequency (RF) and millimeter-wave (mmWave) circuit design techniques that enable new system architectures that challenge the traditional functional boundaries (antenna/RF/analog/digital) of wireless communication systems and specifically enable advanced signal processing techniques at RF, thus enabling new wireless communication paradigms in close collaboration with communications, signal processing and network theorists.

In this talk, I will focus on recent research in CoSMIC lab in this space. I will touch upon our work on energy-efficient and high-power millimeter-wave CMOS circuits that have drawn interest for next-generation 5G cellular communications. The bulk of this talk will focus on our work on enabling full-duplex wireless communication, where transmitters and receivers operate at the same frequency at the same time, thus potentially doubling data throughput, promoting more flexible spectrum usage, and enabling solutions to several network problems. The fundamental challenge in full duplex is the tremendous transmitter self-interference at the receiver, which can be one trillion times more powerful than the desired signal and must be dealt with in all domains. This powerful self-interference is susceptible to uncertainties of the wireless channel (for instance, frequency selectivity and time variance) and the imperfections of the transceiver electronics (nonlinear distortion and phase noise to name a few), making it even harder to deal with. I will discuss several generations of fully-integrated CMOS transceiver ICs with self-interference cancellation that leverage circuit design innovations to enable advanced yet robust signal processing such as noise cancellation, distortion cancellation and wireless channel equalization in the RF and electromagnetic (i.e. antenna) domains and achieve the challenging performance required. I will also briefly touch upon our collaborative work with network theorists to determine the rate gains that are possible under various full duplex scenarios based on realistic physical layer models that we developed. Finally, I will end this talk with a brief description of our ongoing and future work on other emerging wireless communication paradigms.


The SystemX Alliance

Date and Time: 
Thursday, April 9, 2015 - 4:00pm to 5:00pm
Venue: 
Packard 202

Applied Physics/Physics Colloquium: Tensor Network Renormalization

Topic: 
Tensor Network Renormalization
Abstract / Description: 

The renormalization group (RG), one of the conceptual pillars of statistical mechanics and quantum field theory, explores how the behavior of an extended system depends on the scale of observation. Important notions such as universality, criticality or stability of phases are explained in terms of the existence of fixed-points of the RG flow. On the other hand, studies of entanglement in the context of quantum information have resulted in the development of tensor networks, a framework to efficiently describe many-body wave-functions. In this Colloquium I will review a decade-long research program based on applying tensor networks to the renormalization group. This program has produced a novel non-perturbative, real-space RG approach and the multi-scale entanglement renormalization ansatz (MERA), currently of interest in a wide range of research areas, from statistical mechanics to condensed matter and quantum field theory, from holography in quantum gravity, to error correction in classical and quantum information theory.


Refreshments in the Physics Lobby at 4:00 p.m.

Date and Time: 
Tuesday, March 31, 2015 - 4:15pm to 5:15pm
Venue: 
Hewlett 200

Pages

Applied Physics / Physics Colloquium

Applied Physics/Physics Colloquium presents "New roles for wormholes"

Topic: 
New roles for wormholes
Abstract / Description: 

A powerful idea in theoretical physics is the conjecture that (from a distance) black holes behave like ordinary quantum systems. Thought of in this way, black holes display many deep quantum phenomena in simple but often surprising ways. We will discuss recent work (involving wormholes) that gives new examples of this and also uncovers new puzzles.

Date and Time: 
Tuesday, May 5, 2020 - 4:30pm
Venue: 
Zoom Meeting ID: 954 8449 2474

Q-Farm Quantum Seminar Series presents "Surprises from Time Crystals"

Topic: 
Surprises from Time Crystals
Abstract / Description: 

Time crystals are new states of matter that only exist in an out-of-equilibrium setting. I will review the state of this rapidly evolving field, focusing in particular on some of the remarkable properties of this phase, and the surprises coming out of its study. I will provide a detailed overview of existing experiments, with a view towards identifying the ingredients needed for an unambiguous observation of this phase in the future.

Date and Time: 
Wednesday, January 29, 2020 - 12:00pm
Venue: 
Hansen Physics & Astrophysics Building, 102/103

Applied Physics/Physics Colloquium: Quantum Optical Control of Levitated Solids: a novel probe for the gravity-quantum interface

Topic: 
Quantum Optical Control of Levitated Solids: a novel probe for the gravity-quantum interface
Abstract / Description: 

The increasing level of control over motional quantum states of massive, solid-state mechanical devices opens the door to a hitherto unexplored parameter regime of macroscopic quantum physics. I will report on our recent progress towards controlling levitated solids in the quantum regime. I will discuss the prospects of using these systems for fundamental tests of physics, including the interface between quantum and gravitational physics.


Winter Qtr. Colloq. committee: M. Schleier-Smith (Chair), B. Cabrera, S. Dimopoulos, T. Heinz, S. Kachru & L. Tompkins
Location: Hewlett Teaching Center, Rm. 200

Date and Time: 
Tuesday, March 3, 2020 - 4:30pm
Venue: 
Hewlett 200

Applied Physics/Physics Colloquium presents "Dark Matter halos from parametric resonance and their signatures"

Topic: 
Dark Matter halos from parametric resonance and their signatures
Abstract / Description: 

While there is undisputed evidence for Dark Matter, its nature and properties remain one of the biggest questions of our time. What is Dark Matter (DM)? How is it produced? Does it have interactions other than gravitational? In this talk, I will describe how a large class of bosonic particles can account for the DM of the Cosmos. These particles can be much lighter than those of the Standard Model with Compton wavelengths that are bigger than the size of our solar system or smaller than a millimeter. In the presence of attractive self-interactions, there is a parametric resonance effect in the early universe that can cause growth of structure at small scales, an effect so dramatic that can cause structures to collapse well before matter-radiation equality. The signatures of this effect span several experiments and orders of magnitude in parameter space. When the DM boson is heavy, the dense DM halos can alter the optimal search strategies in direct detection experiments. When the DM boson is light, these halos may leave their imprint in searches for dark matter substructure, primordial gravitational waves and alter the star formation history of the universe.


Winter Qtr. Colloq. committee: M. Schleier-Smith (Chair), B. Cabrera, S. Dimopoulos, T. Heinz, S. Kachru & L. Tompkins
Location: Hewlett Teaching Center, Rm. 200

Date and Time: 
Tuesday, February 25, 2020 - 4:30pm
Venue: 
Hewlett 200

Applied Physics/Physics Colloquium presents "Fracton – elasticity duality"

Topic: 
Fracton – elasticity duality
Abstract / Description: 

I will discuss a recent discovery that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor and to a coupled-vector gauge theories, thereby providing a concrete realization of the so-called "fracton quantum order". The disclinations and dislocations respectively map onto charges and dipoles of these gauge theories. The fractionalized mobility of fractons matches the constrained dynamics of crystal's topological defects. These dualities lead to predictions of fractonic phases, and phase transitions to their descendants, that are duals of the commensurate crystal, supersolid, smectic, and hexatic liquid crystals. Extensions of this duality to generalized elasticity theories provide a route to discovery of new fractonic models and their potential experimental realizations.


Winter Qtr. Colloq. committee: M. Schleier-Smith (Chair), B. Cabrera, S. Dimopoulos, T. Heinz, S. Kachru & L. Tompkins
Location: Hewlett Teaching Center, Rm. 200

Date and Time: 
Tuesday, February 18, 2020 - 4:30pm
Venue: 
Hewlett 200

Applied Physics/Physics Colloquium presents "Quantum Science with Tweezer Arrays"

Topic: 
Quantum Science with Tweezer Arrays
Abstract / Description: 

Recently cold atoms in optical tweezer arrays have emerged as a versatile platform for quantum science experiments. I will review some of these developments, specifically, atom-by-atom assembly [1] as a fast and simple method to generate defect-free atomic arrays and Rydberg-based quantum simulation of spin models. While already reaching competitive results, these systems are still in their infancy and limitations in coherence, detection fidelity, and scalability remain. I will outline how we can improve on these issues and open new avenues in quantum metrology by using alkaline earth atoms, followed by an overview of recent results: 1) A record in imaging-fidelity for neutral atoms and demonstration of narrow-line cooling in tweezers [2,3]. 2) High-fidelity Rydberg excitation from a clock state, including a record in entanglement-fidelity for two neutral atoms [4]. 3) Demonstration of an optical clock with single-atom detection in tweezer arrays [5].

 

[1] Endres et al., Science 354, 1024 (2016)

[2] Covey et. al, Phys. Rev. Lett. 122, 173201 (2019)

[3] Cooper et al., Phys. Rev. X 8, 041055 (2018)

[4] Madjarov*, Covey*, et al., arXiv:2001.04455 (2020)

[5] Madjarov et al., Phys. Rev. X 9, 041052 (2019)


Winter Qtr. Colloq. committee: M. Schleier-Smith (Chair), B. Cabrera, S. Dimopoulos, T. Heinz, S. Kachru & L. Tompkins
Location: Hewlett Teaching Center, Rm. 200

Date and Time: 
Tuesday, February 11, 2020 - 4:30pm
Venue: 
Hewlett 200

Applied Physics/Physics Colloquium presents "Quantum Physics from a computational complexity angle"

Topic: 
Quantum Physics from a computational complexity angle
Abstract / Description: 

Quantum computation is just around the corner, maybe; or it may take a few decades to see the true technological revolution it offers. Who knows. 

In any case, the field had already reshaped the way we think of quantum physics. Computational complexity notions such as quantum NP and interactive proofs shed light on old physics questions such as relaxation times and the nature of entanglement in ground states; as well as on how we understand what a quantum measurement really is. I will provide some examples of recent lines of research in quantum computation, which demonstrate how this blending of the computational complexity language into the heart of quantum physics can lead to some interesting new insights and questions. 


Winter Qtr. Colloq. committee: M. Schleier-Smith (Chair), B. Cabrera, S. Dimopoulos, T. Heinz, S. Kachru & L. Tompkins
Location: Hewlett Teaching Center, Rm. 200

Date and Time: 
Tuesday, February 4, 2020 - 4:30pm
Venue: 
Hewlett 200

Applied Physics/Physics Colloquium presents "Twisty fun in 2D materials"

Topic: 
Twisty fun in 2D materials
Abstract / Description: 

A van der Waals bonded solid consists of sheets of two-dimensional (2D) atomic layers with strong bonding in-plane. When these crystals are grown naturally, the stacking order along the out-of-plane dimension is dictated by the van der Waals force, typically leading to all layers of the crystal being oriented in the same in-plane direction. Recently, it has become possible to synthetically create materials where the individual layers have arbitrary in-plane direction relative to each other. These materials are of great interest theoretically since they realize new crystal structures not achievable in nature, with new emergent properties predicted. One of the key experimental findings in one such material last year was the presence of superconductivity and Mott insulating behavior in twisted bilayer graphene, properties that the individual layers do not display by themselves. In this talk, I will describe STM and transport properties of three such materials: (a) twisted bilayer graphene, where we measure the electronic structure of the material that is a Mott insulator (b) twisted bilayer WSe2, where we also observe Mott insulating behavior and (c) twisted double bilayer graphene, where we have evidence from STM for excitonic insulator behavior as well as the presence of chiral topological edge states in the interior of the material.


Winter Qtr. Colloq. committee: M. Schleier-Smith (Chair), B. Cabrera, S. Dimopoulos, T. Heinz, S. Kachru & L. Tompkins
Location: Hewlett Teaching Center, Rm. 200

Date and Time: 
Tuesday, January 28, 2020 - 4:30pm
Venue: 
Hewlett 200

Applied Physics/Physics Colloquium presents "Space Observatories of the Highest Energy Particles: POEMMA & EUSO-SPB"

Topic: 
Space Observatories of the Highest Energy Particles: POEMMA & EUSO-SPB
Abstract / Description: 

What are the mysterious sources of the most energetic particles ever observed? What are the sources of energetic cosmic neutrinos? How do particles interact at extreme energies?


Building on the progress achieved by the ground-based Auger Observatory in studying cosmic particles that reach 100 EeV, an international collaboration is working on space and sub-orbital missions to answer these questions. The Extreme Universe Space Observatory (EUSO) on a super pressure balloon (SPB) is designed to detect ultra-high energy cosmic rays (UHECRs) from above. EUSO-SPB1 flew in 2017 with a fluorescence telescope. EUSO-SPB2 is being built to observe both fluorescence and Cherenkov from UHECRs and neutrinos. These sub-orbital missions lead to POEMMA, the Probe Of Extreme Multi-Messenger Astrophysics, a space mission designed to discover the sources of UHECRs and to observe neutrinos above 20 PeV from energetic transient events. POEMMA will open new Multi-Messenger windows onto the most energetic events in the Universe, enabling the study of new astrophysics and particle physics at these otherwise inaccessible energies


Winter Qtr. Colloq. committee: M. Schleier-Smith (Chair), B. Cabrera, S. Dimopoulos, T. Heinz, S. Kachru & L. Tompkins
Location: Hewlett Teaching Center, Rm. 200

Date and Time: 
Tuesday, January 21, 2020 - 4:30pm
Venue: 
Hewlett 200

Applied Physics/Physics Colloquium presents "Quantum oscillations in solids: past, present and future"

Topic: 
Quantum oscillations in solids: past, present and future
Abstract / Description: 

On a visit to Stanford to honor Ted Geballe's centennial, I think it is appropriate to talk about an aspect of condensed matter and materials physics that has spanned his entire professional lifetime. The de Haas – van Alphen effect is one of the most profound and pronounced manifestations of quantum mechanics in solids. Discovered in Leiden fully ninety years ago as a signal in the magnetic torque of bismuth, the effect is now observed in a huge range of physical properties, and often given the general name of 'quantum oscillations'. The quest from discovery to full understanding required seminal contributions from some of the most celebrated names of twentieth century physics, such as Landau, Onsager and Lifshitz. The true hero of the technique, perhaps less well known than the above friends and colleagues with whom he collaborated, was the Cambridge-based Russian experimental physicist David Shoenberg. I had the privilege of knowing David for the last ten years of his life, and of learning about quantum oscillations from him and from his protégé Gil Lonzarich. In this talk I will review the historical development of the field, and try to show how important it has been, as a driver for the development of low temperature-low noise experimental techniques, for the growth of high purity single crystals, and for the introduction of key concepts in the theory of solids. I will close by stressing that the party is far from over. New physics associated with the de Haas – van Alphen effect still at the forefront of condensed matter science to this day, and there is an ongoing search for even more exotic relatives that are predicted to exist in certain special many-body systems.


Winter Qtr. Colloq. committee: M. Schleier-Smith (Chair), B. Cabrera, S. Dimopoulos, T. Heinz, S. Kachru & L. Tompkins
Location: Hewlett Teaching Center, Rm. 200

Date and Time: 
Tuesday, January 14, 2020 - 4:30pm
Venue: 
Hewlett 200

Pages

CS300 Seminar

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

John G. Linvill Distinguished Seminar on Electronic Systems Technology

Topic: 
Internet of Things and Internet of Energy for Connecting at Any Time and Any Place
Abstract / Description: 

In this presentation, I would like to discuss with you how to establish a sustainable and smart society through the internet of energy for connecting at any time and any place. I suspect that you have heard the phrase, "Internet of Energy" less often. The meaning of this phrase is simple. Because of a ubiquitous energy transmission system, you do not need to worry about a shortage of electric power. One of the most important items for establishing a sustainable society is [...]


"Inaugural Linvill Distinguished Seminar on Electronic Systems Technology," EE News, July 2018

 

Date and Time: 
Monday, January 14, 2019 - 4:30pm
Venue: 
Hewlett 200

Special Seminar: Formal Methods meets Machine Learning: Explorations in Cyber-Physical Systems Design

Topic: 
Formal Methods meets Machine Learning: Explorations in Cyber-Physical Systems Design
Abstract / Description: 

Cyber-physical systems (CPS) are computational systems tightly integrated with physical processes. Examples include modern automobiles, fly-by-wire aircraft, software-controlled medical devices, robots, and many more. In recent times, these systems have exploded in complexity due to the growing amount of software and networking integrated into physical environments via real-time control loops, as well as the growing use of machine learning and artificial intelligence (AI) techniques. At the same time, these systems must be designed with strong verifiable guarantees.

In this talk, I will describe our research explorations at the intersection of machine learning and formal methods that address some of the challenges in CPS design. First, I will describe how machine learning techniques can be blended with formal methods to address challenges in specification, design, and verification of industrial CPS. In particular, I will discuss the use of formal inductive synthesis --- algorithmic synthesis from examples with formal guarantees — for CPS design. Next, I will discuss how formal methods can be used to improve the level of assurance in systems that rely heavily on machine learning, such as autonomous vehicles using deep learning for perception. Both theory and industrial case studies will be discussed, with a special focus on the automotive domain. I will conclude with a brief discussion of the major remaining challenges posed by the use of machine learning and AI in CPS.

Date and Time: 
Monday, December 4, 2017 - 4:00pm
Venue: 
Gates 463A

SpaceX's journey on the road to mars

Topic: 
SpaceX's journey on the road to mars
Abstract / Description: 

SSI will be hosting Gwynne Shotwell — President and COO of SpaceX — to discuss SpaceX's journey on the road to mars. The event will be on Wednesday Oct 11th from 7pm - 8pm in Dinkelspiel Auditorium. After the talk, there will be a Q&A session hosted by Steve Jurvetson from DFJ Venture Capital.

Claim your tickets now on eventbright

 

Date and Time: 
Wednesday, October 11, 2017 - 7:00pm
Venue: 
Dinkelspiel Auditorium

CS Department Lecture Series (CS300)

Topic: 
Faculty speak about their research to new PhD students
Abstract / Description: 

Offered to incoming first-year PhD students in the Autumn quarter.

The seminar gives CS faculty the opportunity to speak about their research, which allows new CS PhD students the chance to learn about the professors and their research before permanently aligning.

4:30-5:15, Subhasish Mitra

5:15-6:00, Silvio Savarese

Date and Time: 
Wednesday, December 7, 2016 - 4:30pm to 6:00pm
Venue: 
200-305 Lane History Corner, Main Quad

CS Department Lecture Series (CS300)

Topic: 
Faculty speak about their research to new PhD students
Abstract / Description: 

Offered to incoming first-year PhD students in the Autumn quarter.

The seminar gives CS faculty the opportunity to speak about their research, which allows new CS PhD students the chance to learn about the professors and their research before permanently aligning.

4:30-5:15, Phil Levis

5:15-6:00, Ron Fedkiw

Date and Time: 
Monday, December 5, 2016 - 4:30pm to 6:00pm
Venue: 
200-305 Lane History Corner, Main Quad

CS Department Lecture Series (CS300)

Topic: 
Faculty speak about their research to new PhD students
Abstract / Description: 

Offered to incoming first-year PhD students in the Autumn quarter.

The seminar gives CS faculty the opportunity to speak about their research, which allows new CS PhD students the chance to learn about the professors and their research before permanently aligning.

4:30-5:15, Dan Boneh

5:15-6:00, Aaron Sidford

Date and Time: 
Wednesday, November 30, 2016 - 4:30pm to 6:00pm
Venue: 
200-305 Lane History Corner, Main Quad

CS Department Lecture Series (CS300)

Topic: 
Faculty speak about their research to new PhD students
Abstract / Description: 

Offered to incoming first-year PhD students in the Autumn quarter.

The seminar gives CS faculty the opportunity to speak about their research, which allows new CS PhD students the chance to learn about the professors and their research before permanently aligning.

4:30-5:15, John Mitchell

5:15-6:00, James Zou

Date and Time: 
Monday, November 28, 2016 - 4:30pm to 6:00pm
Venue: 
200-305 Lane History Corner, Main Quad

CS Department Lecture Series (CS300)

Topic: 
Faculty speak about their research to new PhD students
Abstract / Description: 

Offered to incoming first-year PhD students in the Autumn quarter.

The seminar gives CS faculty the opportunity to speak about their research, which allows new CS PhD students the chance to learn about the professors and their research before permanently aligning.

4:30-5:15, Emma Brunskill

5:15-6:00, Doug James

Date and Time: 
Wednesday, November 16, 2016 - 4:30pm to 6:00pm
Venue: 
200-305 Lane History Corner, Main Quad

CS Department Lecture Series (CS300)

Topic: 
Faculty speak about their research to new PhD students
Abstract / Description: 

Offered to incoming first-year PhD students in the Autumn quarter.

The seminar gives CS faculty the opportunity to speak about their research, which allows new CS PhD students the chance to learn about the professors and their research before permanently aligning.

4:30-5:15, James Landay

5:15-6:00, Dan Jurafsky

Date and Time: 
Monday, November 14, 2016 - 4:30pm to 6:00pm
Venue: 
200-305 Lane History Corner, Main Quad

Pages

EE380 Computer Systems Colloquium

EE380 Computer Systems Colloquium presents "Coming Attractions: Death or Utopia in the Next Three Decades"

Topic: 
Coming Attractions: Death or Utopia in the Next Three Decades
Abstract / Description: 

Today the data suggests that we are near the beginning of a chaotic mess of global proportions. Things are fairly simple: a global pandemic with no tools to fight the virus. a global economy in disarray, climate change and other existential risks beginning to intrude into our daily lives, and a total lack of a plan as to what to do. On the other hand, we are at the pinnacle of human capabilities and have, if we choose to do so, the capability create a Utopian egalitarian world without conflict or want.

In this two hour program a group of experts will explore the future, focusing on 2030 and 2050. Where are we now? What is trending? What if anything can be done about it?


Sponsors: The invitational Asilomar Microcomputer Workshop is one of the iconic gatherings which supported the growth of computing. This is the first mini-conference which replaces the 46th Asilomar Microcomputer Workshop which was canceled due to the COVID-19 pandemic. www.amw.org.

Date and Time: 
Thursday, June 4, 2020 - 11:00am
Venue: 
REGISTER to receive access

EE380 Computer Systems Colloquium presents "Rebooting the Internet"

Topic: 
Rebooting the Internet
Abstract / Description: 

"Build one and throw it out," so the adage goes. This talk explores the argument for systems architecture revision, including processors, operating systems, and networking--both as a general principle and the ways the Internet in particular is currently in need of a reboot. Assumptions, resources, and goals change with time and experience, and so too does our understanding of architectural principles. Through the eyes of the Internet and other examples, we review what we got right (one ring to rule them all, good enough rather than perfect), what we got wrong (7 layers, name resolution as afterthought), and what we only now are beginning to appreciate (layering and forwarding as one thing). Challenge cases are presented that can help drive this redesign, including single-packet exchanges and recursive layering, and an example given of one direction this approach can lead. Finally, we explore the challenges of evolution and transition to help us prepare for giving the Internet a well-deserved reset.

REMOTE URL SU-EE380-20200311

Date and Time: 
Wednesday, March 11, 2020 - 4:30pm
Venue: 
[remote only]

EE380 Computer Systems Colloquium presents "Data Analytics at the Exascale for Free Electron Lasers Lasers Project"

Topic: 
Data Analytics at the Exascale for Free Electron Lasers Lasers Project
Abstract / Description: 

The increase in velocity, volume, and complexity of the data generated by the upcoming Linac Coherent Light Source upgrade (LCLS-II) at the SLAC National Accelerator Laboratory presents a considerable challenge for data acquisition, data processing, and data management. These systems face formidable challenges due to the extremely high data throughput, hundreds of GB/s to multi-TB/s, generated by the detectors at the experimental facilities and to the intensive computational demand for data processing and scientific interpretation. The LCLS-II Data System is a fast, powerful, and flexible architecture that includes a feature extraction layer designed to reduce the data volumes by at least one order of magnitude while preserving the science content of the data. Innovative architectures are required to implement this reduction with a configurable approach that can adapt to the multiple science areas served by LCLS. In order to increase the likelihood of experiment success and improve the quality of recorded data, a real-time analysis framework provides visualization and graphically-configurable analysis of a selectable subset of the data on the timescale of seconds. A fast feedback layer offers dedicated processing resources to the running experiment in order to provide experimenters feedback about the quality of acquired data within minutes. We will present an overview of the LCLS-II Data System architecture with an emphasis on the Data Reduction Pipeline (DRP) and online monitoring framework.

Date and Time: 
Wednesday, March 4, 2020 - 4:30pm
Venue: 
Shriram 104

EE380 Computer Systems Colloquium presents "The Soul of a New Machine: Rethinking the Computer"

Topic: 
The Soul of a New Machine: Rethinking the Computer
Abstract / Description: 

While our software systems have become increasingly elastic, the physical substrate available to run that software (that is, the computer!) has remained stuck in a bygone era of PC architecture. Hyperscale infrastructure providers have long since figured this out, building machines that are fit to purpose -- but those advances have been denied to the mass market. In this talk, we will talk about our vision for a new, rack-scale, server-side machine -- and how we anticipate advances like open firmware, RISC-V, and Rust will play a central role in realizing that vision.

Date and Time: 
Wednesday, February 26, 2020 - 4:30pm
Venue: 
Shriram 104

EE380 Computer Systems Colloquium presents "fastai: A Layered API for Deep Learning"

Topic: 
fastai: A Layered API for Deep Learning
Abstract / Description: 


[speaker photo] Sylvain's research at fast.ai has focused on designing and improving techniques that allow models to train fast with limited resources. He has also been a core developer of the fastai library, including implementing the warping transformations, the preprocessing pipeline, much of fastai.text, and a lot more.
Prior to fastai, Sylvain was a Mathematics and Computer Science teacher in Paris for seven years. He taught CPGE, the 2-year French program that prepares students for graduate programs at France's top engineering schools (the "grandes écoles"). After relocating to the USA in 2015, Sylvain wrote ten textbooks covering the entire CPGE curriculum. Sylvain is an alumni from École Normale Supérieure (Paris, France) and has a Master's Degree in Mathematics from University Paris XI (Orsay, France). He lives in Brooklyn with his husband and two sons.fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying patterns of many deep learning and data processing techniques in terms of decoupled abstractions. These abstractions can be expressed concisely and clearly by leveraging the dynamism of the underlying Python language and the flexibility of the PyTorch library. fastai includes: a new type dispatch system for Python along with a semantic type hierarchy for tensors; a GPU-optimized computer vision library which can be extended in pure Python; an optimizer which refactors out the common functionality of modern optimizers into two basic pieces, allowing optimization algorithms to be implemented in 4-5 lines of code; a novel 2-way callback system that can access any part of the data, model, or optimizer and change it at any point during training; a new data block API; and much more. We have used this library to successfully create a complete deep learning course, which we were able to write more quickly than using previous approaches, and the code was more clear. The library is already in wide use in research, industry, and teaching.

Date and Time: 
Wednesday, February 19, 2020 - 4:30pm
Venue: 
Shriram 104

EE380 Computer Systems Colloquium presents "Centaur Technology's Deep learning Coprocessor"

Topic: 
Centaur Technology's Deep learning Coprocessor
Abstract / Description: 

This talk will explore Centaur's microprocessor-design technology includes both a new high-performance x86 core AND the industry's FIRST integrated AI Coprocessor for x86 systems. The x86 microprocessor cores deliver high instructions/clock (IPC) for server-class applications and support the latest x86 extensions such as AVX 512 and new instructions for fast transfer of AI data. The AI Coprocessor is a clean-sheet processor designed to deliver high performance and efficiency on deep-learning applications, freeing up the x86 cores for general-purpose computing. Both the x86 and AI Coprocessor technologies have now been proven in silicon using a new scalable SoC platform with eight x86 cores and an AI Coprocessor able to compute 20 trillion AI operations/sec with 20 terabytes/sec memory bandwidth. This SoC architecture requires less than 195mm2 in TSMC 16nm and provides an extensible platform with 44 PCIe lanes and 4 channels of PC3200 DDR4.

Date and Time: 
Wednesday, February 12, 2020 - 4:30pm
Venue: 
Shriram 104

EE380 Computer Systems Colloquium presents "KUtrace 2020"

Topic: 
KUtrace 2020
Abstract / Description: 

Observation tools for understanding occasionally-slow performance in large-scale distributed transaction systems are not keeping up with the complexity of the environment. The same applies to large database systems, to real-time control systems in cars and airplanes, and to operating system design.

Extremely low-overhead tracing can reveal the true execution and non-execution (waiting) dynamics of such software, running in situ with live traffic. KUtrace is such a tool, based on small Linux kernel patches recording and timestamping every transition between kernel- and user-mode execution across all CPUs of a datacenter or vehicle computer. The resulting displays show exactly what each transaction is doing every nanosecond, and hence shows why unpredictable ones are slow, all with tracing overhead well under 1%. Recent additions to KUtrace also show interference between programs and show profiles within long execution stretches that have no transitions.

The net result is deep insight into the dynamics of complex software, leading to often-simple changes to improve performance.

Date and Time: 
Wednesday, February 5, 2020 - 4:30pm
Venue: 
Shriram 104

EE380 Computer Systems Colloquium presents "Computer Security: The Mess We're In, How We Got Here, and What to Do About It"

Topic: 
Computer Security: The Mess We're In, How We Got Here, and What to Do About It
Abstract / Description: 

There are dozens of companies selling products to solve your Identity and Access Management (IAM) problems. Why so many? Because IAM is really hard. But why is IAM so hard? I hope to convince you in this talk the reason is that our approach to IAM is fundamentally flawed. The talk includes my personal theory of how we got into this mess and a strategy for getting out of it.

Date and Time: 
Wednesday, January 29, 2020 - 4:30pm
Venue: 
Shriram 104

EE380 Computer Systems Colloquium presents "A Fight over the Law of Software APIs, and other war stories from the Electronic Frontier Foundation""

Topic: 
A Fight over the Law of Software APIs, and other war stories from the Electronic Frontier Foundation
Abstract / Description: 

Over the past four years, a federal appeals court has upended a basic assumption about software: that while software can be covered by copyright law, software interfaces cannot. The court ruled that Google's re-implementation of Java APIs infringed Oracle's Java copyrights. Now, the Supreme Court will weigh in. The Electronic Frontier Foundation has argued at each stage of the case that copyright in APIs threatens innovation, especially by smaller players. This is part of EFF's work promoting the freedom to tinker, innovate, and research, especially outside the walls of major corporations—work that has also included challenges to overbroad computer crime and "anti-circumvention" laws.

Date and Time: 
Wednesday, January 22, 2020 - 4:30pm
Venue: 
Shriram 104

Pages

Ginzton Lab

OSA/SPIE, SPRC and Ginzton Lab present "Next Generation Photonics"

Topic: 
Next Generation Photonics
Abstract / Description: 

Over the past few decades, silicon photonics has revolutionized photonic integrated circuits by leveraging the semiconductor CMOS manufacturing infrastructure for low cost, high performance devices and systems. However, key fundamental challenges of the field remain unsolved: packaging the devices with optical fibers and generating light on chip.

We developed a novel approach for fiber packaging based on fusing the fiber and chip together. Connecting a silicon photonic chip across long distances requires attaching optical fibers to the chip. In practice, the packaging of optical fibers to photonic devices is time consuming, lossy, and expensive. This process is usually done by gluing the fiber and chip together using optical adhesives. By fusion splicing the chip and fiber together we have demonstrated losses as low as 1dB for single fibers and 2.5dB for an array of four fibers.

Imagine a laser as thick as an atom that is compatible with silicon photonics. Silicon based materials are passive. Since silicon is an indirect band gap material it is a poor light emitter. To generate light on a silicon photonic integrated circuit, you need to integrate active materials, which are usually not compatible with CMOS, with the device. Two-dimensional materials are excellent candidates for light sources, modulators, and detectors; and they are compatible with CMOS electronic manufacturing in the back end. We recently demonstrated the first fully on-chip 2D laser. Due to their thickness and transfer process, we envision electronic-photonic devices with many optical layers, each with their own lasers, modulators, and detectors based on 2D materials. Our recent demonstration completes the set of active devices completely based on 2D materials.


Password: 017994

Date and Time: 
Wednesday, May 6, 2020 - 1:00pm
Venue: 
Zoom ID: 991 2584 9377

OSA/SPIE with SPRC and Ginzton Lab present "Next Generation Photonics"

Topic: 
Next Generation Photonics
Abstract / Description: 

Over the past few decades, silicon photonics has revolutionized photonic integrated circuits by leveraging the semiconductor CMOS manufacturing infrastructure for low cost, high performance devices and systems. However, key fundamental challenges of the field remain unsolved: packaging the devices with optical fibers and generating light on chip.

We developed a novel approach for fiber packaging based on fusing the fiber and chip together. Connecting a silicon photonic chip across long distances requires attaching optical fibers to the chip. In practice, the packaging of optical fibers to photonic devices is time consuming, lossy, and expensive. This process is usually done by gluing the fiber and chip together using optical adhesives. By fusion splicing the chip and fiber together we have demonstrated losses as low as 1dB for single fibers and 2.5dB for an array of four fibers.

Imagine a laser as thick as an atom that is compatible with silicon photonics. Silicon based materials are passive. Since silicon is an indirect band gap material it is a poor light emitter. To generate light on a silicon photonic integrated circuit, you need to integrate active materials, which are usually not compatible with CMOS, with the device. Two-dimensional materials are excellent candidates for light sources, modulators, and detectors; and they are compatible with CMOS electronic manufacturing in the back end. We recently demonstrated the first fully on-chip 2D laser. Due to their thickness and transfer process, we envision electronic-photonic devices with many optical layers, each with their own lasers, modulators, and detectors based on 2D materials. Our recent demonstration completes the set of active devices completely based on 2D materials.

Date and Time: 
Monday, May 4, 2020 - 12:05pm
Venue: 
Zoom ID: 991 2584 9377 (contact organizers for password)

OSA/SPIE, SPRC and Ginzton Lab present "Applications of Precision Motion Control in the Optics and Photonics Industry"

Topic: 
Applications of Precision Motion Control in the Optics and Photonics Industry
Abstract / Description: 

Precision Automation has become a rapidly growing industry as manufacturers must develop ways to achieve ever-tightening tolerances. Likewise, research must push the envelope in order to maintain the increasingly advancing pace of technology. Aerotech has been providing assistance and solutions to researchers within academia and laboratories worldwide for 50 years and continues to empower students and technicians to complete and publish their research. In this seminar, we will discuss why automation and motion control is important as well as the various methods by which Aerotech has helped expand the boundaries of research in the field of optics and photonics. The topics we will cover in this session include:

  • What Precision Motion Control is and why it is important
  • How to choose the right set of motion control
  • How Aerotech has helped further research in:
    • Optics design and manufacturing
    • Light sources and beamlines
    • Optical positioning and ultra-fast spectroscopy
    • Fiber alignment
    • Laser Processing
    • Additive Manufacturing

After the presentation, a round-table discussion will be held during which we'd like to hear from you! Please bring with you any topics and - more importantly - any tough issues that you'd like to pose pertaining to automated motion control within your specific research field.

Date and Time: 
Tuesday, March 3, 2020 - 4:15pm
Venue: 
Spilker 232

OSA/SPIE present "Applications of Precision Motion Control in the Optics and Photonics Industry"

Topic: 
Applications of Precision Motion Control in the Optics and Photonics Industry
Abstract / Description: 

Refreshments at 4:00

Precision Automation has become a rapidly growing industry as manufacturers must develop ways to achieve ever-tightening tolerances. Likewise, research must push the envelope in order to maintain the increasingly advancing pace of technology. Aerotech has been providing assistance and solutions to researchers within academia and laboratories worldwide for 50 years and continues to empower students and technicians to complete and publish their research. In this seminar, we will discuss why automation and motion control is important as well as the various methods by which Aerotech has helped expand the boundaries of research in the field of optics and photonics. The topics we will cover in this session include:

  • What Precision Motion Control is and why it is important
  • How to choose the right set of motion control
  • How Aerotech has helped further research in:
    • Optics design and manufacturing
    • Light sources and beamlines
    • Optical positioning and ultra-fast spectroscopy
    • Fiber alignment
    • Laser Processing
    • Additive Manufacturing

After the presentation, a round-table discussion will be held during which we'd like to hear from you! Please bring with you any topics and - more importantly - any tough issues that you'd like to pose pertaining to automated motion control within your specific research field.

 

Date and Time: 
Wednesday, February 26, 2020 - 4:15pm
Venue: 
Spilker 232

OSA/SPIE, SPRC and Ginzton Lab present "Innovation in the Laser Industry"

Topic: 
Innovation in the Laser Industry
Abstract / Description: 
Spectra-Physics was a startup when Prof. Byer was a summer student in 1964.  By the time Alan Petersen and Jim Kafka joined in the early 1980s, the company had matured and aspired to be all things in lasers.  We will discuss the changes in the laser industry since that time and the role of innovation within the company to drive growth and broaden the product offerings from scientific lasers to industrial laser systems.
 
PLEASE RVP TO GUARANTEE A SPOT.
Date and Time: 
Monday, March 9, 2020 - 12:30pm
Venue: 
Y2E2 299

Q-Farm Quantum Seminar Series presents "Surprises from Time Crystals"

Topic: 
Surprises from Time Crystals
Abstract / Description: 

Time crystals are new states of matter that only exist in an out-of-equilibrium setting. I will review the state of this rapidly evolving field, focusing in particular on some of the remarkable properties of this phase, and the surprises coming out of its study. I will provide a detailed overview of existing experiments, with a view towards identifying the ingredients needed for an unambiguous observation of this phase in the future.

Date and Time: 
Wednesday, January 29, 2020 - 12:00pm
Venue: 
Hansen Physics & Astrophysics Building, 102/103

AP 483 Seminar Series presents "Photovoltaic Restoration of Sight in Retinal Degeneration"

Topic: 
Photovoltaic Restoration of Sight in Retinal Degeneration
Abstract / Description: 

Retinal degenerative diseases lead to blindness due to loss of the “image capturing” photoreceptors, while neurons in the “image-processing” inner retinal layers are relatively well-preserved. Information can be reintroduced into the visual system by photovoltaic subretinal implants, which convert incident light into electric current and stimulate the secondary retinal neurons.

 

To provide sufficient light intensity for photovoltaic stimulation while avoiding visual perception by remaining photoreceptors, images captured by a camera are projected onto the retina from augmented-reality glasses using pulsed near-infrared light. This design avoids the use of bulky electronics and wiring, thereby greatly reducing the surgical complexity and enabling scaling the number of photovoltaic pixels to thousands. Many features of the natural retinal signal processing are preserved in this approach, and spatial resolution matches the pixel pitch (so far 100 μm pixels in human patients, and 50 μm in rodents). For a broad acceptance of this technology by patients who lost central vision due to Age-Related Macular Degeneration, visual acuity should exceed 20/100, which requires pixels smaller than 25 μm. I will present a 3-dimensional electro-neural interface scalable to cellular dimensions and discuss the outlook and challenges for future developments.


 AP483 Optics and Electronics Seminar Series 2019-20 (Sponsored by Ginzton Laboratory, SPRC, Applied Physics, Physics, and HEPL).

Date and Time: 
Monday, February 24, 2020 - 4:15pm
Venue: 
Spilker 232

AP 483 Seminar Series presents "Taking the Humble FBG on a Voyage of Discovery from the Lab Bench to the Hospital and Beyond"

Topic: 
Taking the Humble FBG on a Voyage of Discovery from the Lab Bench to the Hospital and Beyond
Abstract / Description: 

Fiber Bragg gratings (FBGs) emerged almost magically in 1978. Since then, they have developed from being primarily of academic interest, to being one of the most versatile photonic components for both telecommunications and sensing. 

I was lucky enough to get introduced to photonics during the early years of discovery and experimentation with FBGs and ended up making FBG components for telecommunications. Jumping forward a few decades, I had moved away from telecommunications and had started to dabble with free space optical sensing. Then, during a chance meeting over a beer in Sydney, I was asked, rather naively, if it was possible to use optical fiber to monitor what goes on in the esophagus when we swallow. This set me off on an entirely new path and, pulling together some ideas from telecoms, and some basic mechanical engineering, my team ended up developing a range of sensors for monitoring pressure in the human digestive tract. 

Being able to detect swallowing disorders quickly led to monitoring in other regions of the gut, like the colon and small bowel, and, together with colleagues from Flinders Medical Center, we provided some details of the inner workings of the human gastrointestinal tract. Thus, the fiber optic catheter was born. This device kept me busy for almost 10 years, during which time we worked closely with clinical research groups to write a whole new chapter on how the gut works.

The next ‘Eureka’ moment came when we had to develop a temperature independent version of our sensor, initially for monitoring pressure beneath bandages. The very simple design that resulted worked well for sub-bandage measurements but has also become a key technology that has moved to applications in aerospace, pipeline monitoring, and mining.

When I started working in optics, I never thought I'd end up monitoring what makes your stomach growl when hungry, how air flows across an airplane wing, or detecting pressure transients in water pipes. 

During this talk I will explain how our basic transducers work and will then describe the applications they are now being applied to, demonstrating how the humble FBG has opened up the scope and reach of fiber-optic sensing.


 

AP483 Optics and Electronics Seminar Series 2019-20 (Sponsored by Ginzton Laboratory, SPRC, Applied Physics, Physics, and HEPL).

Date and Time: 
Monday, February 10, 2020 - 4:15pm
Venue: 
Spilker 232

AP 483 Seminar Series presents "Non-Hermitian Photonics: Optics at an Exceptional Point"

Topic: 
Non-Hermitian Photonics: Optics at an Exceptional Point
Abstract / Description: 

In recent years, non-Hermitian degeneracies, also known as exceptional points (EPs), have emerged as a new paradigm for engineering the response of optical systems. At such points, an N-dimensional space can be represented by a single eigenvalue and one eigenvector. As a result, these points are associated with abrupt phase transitions in parameter space. Among many different non-conservative photonic configurations, parity-time (PT) symmetric systems are of particular interest since they provide a powerful platform to explore, and consequently utilize, the physics of exceptional points in a systematic manner. In this talk, I will review some of our recent works in the area of non-Hermitian (mainly PT-symmetric) active photonics. For example, in a series of works, we have demonstrated how the generation and judicial utilization of these points in laser systems can result in unexpected dynamics, unusual linewidth behavior, and improved modal response. On the other hand, biasing a photonic system at an exceptional point can lead to orders of magnitude enhancement in sensitivity, an effect that may enable a new generation of ultrasensitive optical sensors on-chip. Non-Hermiticity can also be used as a means to promote or single out an edge mode in photonic topological insulator lattices. Rotation sensors play a crucial role in a diverse set of applications associated with navigation, positioning, and inertial sensing. Most optical gyroscopes rely on the Sagnac effect induced phase shift that scales linearly with the rotational velocity. In ring laser gyroscopes (RLGs), this shift manifests itself as a resonance splitting in the emission spectrum that can be detected as a beat frequency. The need for evermore precise RLGs has fueled research activities towards devising new approaches aimed to boost the sensitivity beyond what is dictated by geometrical constraints. In this respect, attempts have been made in the past to use either dispersive or nonlinear effects. Here, we propose a new scheme for ultrasensitive laser gyroscopes that utilizes the physics of exceptional points. By exploiting the properties of such non- Hermitian degeneracies, we show that the rotation-induced frequency splitting becomes proportional to the square root of the gyration speed, thus enhancing the sensitivity to low angular rotations by orders of magnitudes. We will then describe a possible modification of a standard RLG to support an exceptional point and measure the resulting enhanced sensitivity in the proposed system.


 

Date and Time: 
Monday, January 27, 2020 - 4:15pm
Venue: 
Spilker 232

AP 483 Seminar Series presents "Where Are We Heading: A Brief History and Future of Navigation"

Topic: 
Where Are We Heading: A Brief History and Future of Navigation
Abstract / Description: 

- tba -


 

AP483 Optics and Electronics Seminar Series 2019-20 (Sponsored by Ginzton Laboratory, SPRC, Applied Physics, Physics, and HEPL).

Date and Time: 
Monday, January 13, 2020 - 4:15pm
Venue: 
Spilker 232

Pages

Information Systems Lab (ISL) Colloquium

ISL Colloquium welcomes Prof. Ramesh Johari

Topic: 
TBA
Abstract / Description: 

The ISL Colloquium meets weekly during the academic year. Seminars are each Thursday at 4:30pm PT, unless indicated otherwise.

Until further notice, the ISL Colloquium convenes exclusively via Zoom (on Thursdays at 4:30pm PT) due to the ongoing pandemic. To avoid "Zoom-bombing", we ask attendees to input their email address here https://stanford.zoom.us/meeting/register/tJckfuCurzkvEtKKOBvDCrPv3McapgP6HygJ to receive the Zoom meeting details via email.

Date and Time: 
Thursday, November 19, 2020 - 4:30pm
Venue: 
Zoom

ISL Colloquium welcomes Prof. David Woodruff

Topic: 
TBA
Abstract / Description: 

The ISL Colloquium meets weekly during the academic year. Seminars are each Thursday at 4:30pm PT, unless indicated otherwise.

Until further notice, the ISL Colloquium convenes exclusively via Zoom (on Thursdays at 4:30pm PT) due to the ongoing pandemic. To avoid "Zoom-bombing", we ask attendees to input their email address here https://stanford.zoom.us/meeting/register/tJckfuCurzkvEtKKOBvDCrPv3McapgP6HygJ to receive the Zoom meeting details via email.

Date and Time: 
Friday, November 13, 2020 - 4:30pm
Venue: 
Zoom

ISL Colloquium welcomes Prof. Adam Wierman

Topic: 
TBA
Abstract / Description: 

The ISL Colloquium meets weekly during the academic year. Seminars are each Thursday at 4:30pm PT, unless indicated otherwise.

Until further notice, the ISL Colloquium convenes exclusively via Zoom (on Thursdays at 4:30pm PT) due to the ongoing pandemic. To avoid "Zoom-bombing", we ask attendees to input their email address here https://stanford.zoom.us/meeting/register/tJckfuCurzkvEtKKOBvDCrPv3McapgP6HygJ to receive the Zoom meeting details via email.

Date and Time: 
Thursday, October 22, 2020 - 4:30pm
Venue: 
Zoom

ISL Colloquium welcomes Prof. Robert Nowak

Topic: 
TBA
Abstract / Description: 

The ISL Colloquium meets weekly during the academic year. Seminars are each Thursday at 4:30pm PT, unless indicated otherwise.

Until further notice, the ISL Colloquium convenes exclusively via Zoom (on Thursdays at 4:30pm PT) due to the ongoing pandemic. To avoid "Zoom-bombing", we ask attendees to input their email address here https://stanford.zoom.us/meeting/register/tJckfuCurzkvEtKKOBvDCrPv3McapgP6HygJ to receive the Zoom meeting details via email.

Date and Time: 
Thursday, October 15, 2020 - 4:30pm
Venue: 
Zoom

ISL Colloquium welcomes Prof. Carlee Joe Wong

Topic: 
TBA
Abstract / Description: 

The ISL Colloquium meets weekly during the academic year. Seminars are each Thursday at 4:30pm PT, unless indicated otherwise.

Until further notice, the ISL Colloquium convenes exclusively via Zoom (on Thursdays at 4:30pm PT) due to the ongoing pandemic. To avoid "Zoom-bombing", we ask attendees to input their email address here https://stanford.zoom.us/meeting/register/tJckfuCurzkvEtKKOBvDCrPv3McapgP6HygJ to receive the Zoom meeting details via email.

Date and Time: 
Thursday, October 1, 2020 - 4:30pm
Venue: 
Zoom

ISL Colloquium presents "Quantum Renyi relative entropies and their use"

Topic: 
Quantum Renyi relative entropies and their use
Abstract / Description: 

The past decade of research in quantum information theory has witnessed extraordinary progress in understanding communication over quantum channels, due in large part to quantum generalizations of the classical Renyi relative entropy. One generalization is known as the sandwiched Renyi relative entropy and finds its use in characterizing asymptotic behavior in quantum hypothesis testing. It has also found use in establishing strong converse theorems (fundamental communication capacity limitations) for a variety of quantum communication tasks. Another generalization is known as the geometric Renyi relative entropy and finds its use in establishing strong converse theorems for feedback assisted protocols, which apply to quantum key distribution and distributed quantum computing scenarios. Finally, a generalization now known as the Petz–Renyi relative entropy plays a critical role for statements of achievability in quantum communication. In this talk, I will review these quantum generalizations of the classical Renyi relative entropy, discuss their relevant information-theoretic properties, and the applications mentioned above.


 

The ISL Colloquium meets weekly during the academic year. Seminars are each Thursday at 4:30pm PT, unless indicated otherwise.

Until further notice, the ISL Colloquium convenes exclusively via Zoom (on Thursdays at 4:30pm PT) due to the ongoing pandemic. To avoid "Zoom-bombing", we ask attendees to input their email address here https://stanford.zoom.us/meeting/register/tJckfuCurzkvEtKKOBvDCrPv3McapgP6HygJ to receive the Zoom meeting details via email.

Date and Time: 
Thursday, September 17, 2020 - 4:30pm
Venue: 
Zoom

ISL Colloquium presents "Federated Learning at Google and Beyond"

Topic: 
Federated Learning at Google and Beyond
Abstract / Description: 

Federated Learning enables mobile devices to collaboratively learn a shared prediction model or analytic while keeping all the training data on device, decoupling the ability to do machine learning from the need to store the data in the cloud. It embodies the principles of focused collection and data minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning. In this talk, I will discuss: (1) how federated learning differs from more traditional distributed machine learning paradigms, focusing on the main defining characteristics and challenges of the federated learning setting; (2) practical algorithms for federated learning that address the unique challenges of this setting; (3) extensions to federated learning, including differential privacy, secure aggregation, and compression for model updates, and (4) a range of valuable research directions that could have significant real-world impact.

Date and Time: 
Friday, February 28, 2020 - 1:15pm
Venue: 
Packard 202

RL forum presents "Temporal Abstraction in Reinforcement Learning with the Successor Representation"

Topic: 
Temporal Abstraction in Reinforcement Learning with the Successor Representation
Abstract / Description: 

Reasoning at multiple levels of temporal abstraction is one of the key abilities for artificial intelligence. In the reinforcement learning problem, this is often instantiated with the options framework. Options allow agents to make predictions and to operate at different levels of abstraction within an environment. Nevertheless, when a reasonable set of options is not known beforehand, there are no definitive answers for characterizing which options one should consider. Recently, a new paradigm for option discovery has been introduced. This paradigm is based on the successor representation (SR), which defines state generalization in terms of how similar successor states are. In this talk I'll discuss the existing methods from this paradigm, providing a big picture look at how the SR can be used in the options framework. I'll present methods for discovering "bottleneck" options, as well as options that improve an agent's exploration capabilities. I'll also discuss the option keyboard, which uses the SR to extend a finite set of options to a combinatorially large counterpart without additional learning.

Date and Time: 
Tuesday, February 25, 2020 - 2:00pm
Venue: 
Packard 202

ISL Colloquium presents "Fully Convolutional Pixelwise Context-Adaptive Denoiser"

Topic: 
Fully Convolutional Pixelwise Context-Adaptive Denoiser
Abstract / Description: 

Denoising is a classical problem in signal processing and information theory, and various different methods have been applied to tackle the problem for several decades. Recently, supervised-trained neural network-based methods have achieved impressive denoising performances, significantly surpassing those of the classical approaches, such as prior- or optimization-based denoisers. However, there are two drawbacks on those methods; they are not adaptive, i.e., the neural- network cannot correct itself when distributional mismatch between training and test data exists, and they require clean source data and exact noise model for training, which is not always possible in some practical scenarios. In this talk, I will introduce a framework that tries to tackle above two drawbacks jointly, based on an unbiased estimate of the loss of a particular class of pixelwise context- adaptive denoisers. Using the framework and neural networks to learn the denoisers, I show the resulting image denoiser can adapt to mismatched distributions in the data solely based on the given noisy images, and achieve the state-of-the-art performances on several benchmark datasets. Moreover, combined with the standard noise transform/estimation techniques, I will show that our denoiser can be completely blindly trained only with the noisy images (and without exact noise model) and yet be very effective for denoising more sophisticated, source-dependent real-world noise, e.g., Poisson- Gaussian noise.

This is a joint work with my students, Sungmin Cha and Jaeseok Byun at SKKU.

Date and Time: 
Friday, February 21, 2020 - 1:15pm
Venue: 
Packard 202

ISL & IT-Forum present "Approaching Capacity at Short Blocklengths"

Topic: 
Approaching Capacity at Short Blockengths
Abstract / Description: 

This talk explores a family of recent results directed to approaching capacity at short blocklengths on the order of 50-500 channel transmissions. Convolutional codes out-perform polar codes and LDPC codes to approach the random coding union bound with low complexity when used with an optimized CRCs and list decoding. This perspective rehabilitates "catastrophic" convolutional codes, which are more properly understood for finite blocklengths as clever expurgation rather than any sort of catastrophe. This approach also provides a low-complexity approach for maximum-likelihood decoding of high-rate BCH codes. The use of variable length coding, i.e. incremental redundancy controlled with simple ACK/NACK feedback, allows capacity to be closely approached by practical codes with fewer than 500 channel uses. This talk reviews the information-theoretic results of Polyanskiy with respect to ACK/NACK feedback, presents new results extending the classic approach of Horstein for full feedback, and shows how to optimize the number and length of incremental redundancy transmissions (and feedback transmissions) for a variable-length code with feedback (i.e. a type-II hybrid ARQ). The talk also shows how to avoid entirely the overhead of a CRC in a hybrid ARQ setting by directly computing the reliability of convolutional codeword decisions. Finally, attendees will learn about a novel communications architecture that allows the use of incremental redundancy even without feedback.

 

Date and Time: 
Friday, January 24, 2020 - 1:15pm
Venue: 
Packard 202

Pages

IT-Forum

IT-Forum welcomes David Woodruff

Topic: 
TBA
Abstract / Description: 

TBA


The Information Theory Forum (IT-Forum) at Stanford ISL is an interdisciplinary academic forum which focuses on mathematical aspects of information processing. With a primary emphasis on information theory, we also welcome researchers from signal processing, learning and statistical inference, control and optimization to deliver talks at our forum. We also warmly welcome industrial affiliates in the above fields. The forum is typically held every Friday at 1:15 pm during the academic year.

Until further notice, the IT Forum convenes exclusively via Zoom (on Fridays at 1:15pm PT) due to the ongoing pandemic. To avoid "Zoom-bombing", we ask attendees to input their email address here https://stanford.zoom.us/meeting/register/tJwkf-uvqjoqHNIWxY4HHon4K107QMo22PVR to receive the Zoom meeting details via email.

Date and Time: 
Friday, November 13, 2020 - 1:15pm
Venue: 
Zoom

IT-Forum presents "High-accuracy Optimality and Limitation of the Profile Maximum Likelihood"

Topic: 
High-accuracy Optimality and Limitation of the Profile Maximum Likelihood
Abstract / Description: 

Symmetric properties of distributions arise in multiple settings, where for each of them separate estimators have been developed. Recently, Orlitsky et al. showed that a single estimator, called the profile maximum likelihood (PML), achieves the optimal sample complexity universally for many properties and any accuracy parameter larger than $n^{-1/4}$, where $n$ is the sample size. They also raised the question whether this low-accuracy range is an artifact of the analysis or a fundamental limitation of the PML, which remained open after several subsequent work.

In this talk, we provide a complete answer to this question and characterize the tight performance of PML in the high-accuracy regime. On the positive side, we show that the PML remains sample-optimal for any accuracy parameter larger than $n^{-1/3}$ using a novel chaining property of the PML distributions. In particular, the PML distribution itself is an optimal estimator of the sorted hidden distribution. On the negative side, we show that the PML as well as any adaptive approach cannot be universally sample-optimal when the accuracy parameter is below $n^{-1/3}$, and characterize the exact penalty for adaptation via a matching adaptation lower bound.

Based on joint work with Kirankumar Shiragur. The full papers are available online at https://arxiv.org/abs/2004.03166 and https://arxiv.org/abs/2008.11964.


The Information Theory Forum (IT-Forum) at Stanford ISL is an interdisciplinary academic forum which focuses on mathematical aspects of information processing. With a primary emphasis on information theory, we also welcome researchers from signal processing, learning and statistical inference, control and optimization to deliver talks at our forum. We also warmly welcome industrial affiliates in the above fields. The forum is typically held every Friday at 1:15 pm during the academic year.

Until further notice, the IT Forum convenes exclusively via Zoom (on Fridays at 1:15pm PT) due to the ongoing pandemic. To avoid "Zoom-bombing", we ask attendees to input their email address here https://stanford.zoom.us/meeting/register/tJwkf-uvqjoqHNIWxY4HHon4K107QMo22PVR to receive the Zoom meeting details via email.

Date and Time: 
Friday, September 25, 2020 - 1:15pm
Venue: 
Zoom registration req'd

Learning to Bid in Repeated First-price Auctions

Topic: 
Learning to Bid in Repeated First-price Auctions
Abstract / Description: 

First-price auctions have very recently swept the online advertising industry, replacing second-price auctions as the predominant auction mechanism on many platforms. This shift has brought forth important challenges for a bidder: how should one bid in a first-price auction where it is no longer optimal to bid one's private value truthfully and hard to know the others' bidding behaviors? To answer this question, we study online learning in repeated first-price auctions, and consider various scenarios involving different assumptions on the characteristics of the other bidders' bids, of the bidder's private valuation, of the feedback structure of the auction, and of the reference policies with which our bidder competes. For all of them, we characterize the essentially optimal performance and identify computationally efficient algorithms achieving it. Experimentation on first-price auction datasets from Verizon Media demonstrates the promise of our schemes relative to existing bidding algorithms.

Based on joint work with Aaron Flores, Erik Ordentlich, Tsachy Weissman, and Zhengyuan Zhou. The full papers are available online at https://arxiv.org/abs/2003.09795 and https://arxiv.org/abs/2007.04568


 

The Information Theory Forum (IT-Forum) at Stanford ISL is an interdisciplinary academic forum which focuses on mathematical aspects of information processing. With a primary emphasis on information theory, we also welcome researchers from signal processing, learning and statistical inference, control and optimization to deliver talks at our forum. We also warmly welcome industrial affiliates in the above fields. The forum is typically held every Friday at 1:15 pm during the academic year.

Until further notice, the IT Forum convenes exclusively via Zoom (on Fridays at 1:15pm PT) due to the ongoing pandemic. To avoid "Zoom-bombing", we ask attendees to input their email address here https://stanford.zoom.us/meeting/register/tJwkf-uvqjoqHNIWxY4HHon4K107QMo22PVR to receive the Zoom meeting details via email.

Date and Time: 
Friday, September 18, 2020 - 1:15pm
Venue: 
Zoom

IT Forum presents "Fundamental barriers to estimation in high-dimensions"

Topic: 
Fundamental barriers to estimation in high-dimensions
Abstract / Description: 

Modern large-scale statistical models require to estimate thousands to millions of parameters. Understanding the tradeoff between statistical optimality and computational tractability in such models remains an outstanding challenge. Under a random design assumption, we establish lower bounds to statistical estimation with two popular classes of tractable estimators in several popular statistical models. First, in high-dimensional linear models we show that a large gap often exists between the optimal statistical error and that achieved by least squares with a convex penalty. Examples of such estimators include the Lasso, ridge regression, and MAP estimation with log-concave priors and Gaussian noise. Second, in generalized linear models and low-rank matrix estimation problems, we introduce the class of 'general first order methods,' examples of which include gradient descent, projected gradient descent, and their accelerated versions. We derive lower bounds for general first order methods which are tight up to asymptotically negligible terms. Our results demonstrate a gap to statistical optimality for general first order methods in both sparse phase retrieval and sparse PCA.

This is joint work with Andrea Montanari and Yuchen Wu.

 

Date and Time: 
Friday, April 3, 2020 - 1:15pm
Venue: 
Zoom: stanford.zoom.us/j/516499996

IT Forum presents "What Hockey Teams and Foraging Animals Can Teach Us About Feedback Communication"

Topic: 
What Hockey Teams and Foraging Animals Can Teach Us About Feedback Communication
Abstract / Description: 

Suppose we wish to communicate over a memoryless channel with known statistics. How can the use of a feedback link from the receiver to the transmitter help? We introduce a novel mechanism for using feedback, called timid/bold coding, and we show that for some channels timid/bold coding yields a strict asymptotic improvement over the best non- feedback schemes. We also show that for a broad class of channels, feedback is useful if and only if timid/bold coding is applicable. The talk contains a puzzle (recently featured on the FiveThirtyEight website), a life lesson, a (potential) practical application, and some stochastic calculus.

This is joint work with Nirmal Shende and Yucel Altug.

Date and Time: 
Friday, March 6, 2020 - 1:15pm
Venue: 
Packard 202

RL forum presents "Temporal Abstraction in Reinforcement Learning with the Successor Representation"

Topic: 
Temporal Abstraction in Reinforcement Learning with the Successor Representation
Abstract / Description: 

Reasoning at multiple levels of temporal abstraction is one of the key abilities for artificial intelligence. In the reinforcement learning problem, this is often instantiated with the options framework. Options allow agents to make predictions and to operate at different levels of abstraction within an environment. Nevertheless, when a reasonable set of options is not known beforehand, there are no definitive answers for characterizing which options one should consider. Recently, a new paradigm for option discovery has been introduced. This paradigm is based on the successor representation (SR), which defines state generalization in terms of how similar successor states are. In this talk I'll discuss the existing methods from this paradigm, providing a big picture look at how the SR can be used in the options framework. I'll present methods for discovering "bottleneck" options, as well as options that improve an agent's exploration capabilities. I'll also discuss the option keyboard, which uses the SR to extend a finite set of options to a combinatorially large counterpart without additional learning.

Date and Time: 
Tuesday, February 25, 2020 - 2:00pm
Venue: 
Packard 202

IT Forum presents "Why should information theorists and probabilists care about blockchains?"

Topic: 
Why should information theorists and probabilists care about blockchains?
Abstract / Description: 

The invention of blockchains in 2008 opened up for the first time the possibility of large scale decentralized trust systems. In the past few years, the design and analysis of blockchains have received significant attention from cryptography, security and distributed systems communities. In this talk, I argue that there are many interesting problems for information theorists and probabilists as well. I will discuss two particular classes of problems: 1) security analysis of blockchains as convergence analysis of random tree processes; 2) the use of coding to efficiently scale blockchains. I will also briefly discuss a course I plan to teach in the Spring on the topic.

Part of this talk is on joint work with Amir Dembo and Ofer Zeitouni.

 

Date and Time: 
Friday, January 31, 2020 - 1:00pm
Venue: 
Packard 202

Q-Farm Quantum Seminar Series presents "Surprises from Time Crystals"

Topic: 
Surprises from Time Crystals
Abstract / Description: 

Time crystals are new states of matter that only exist in an out-of-equilibrium setting. I will review the state of this rapidly evolving field, focusing in particular on some of the remarkable properties of this phase, and the surprises coming out of its study. I will provide a detailed overview of existing experiments, with a view towards identifying the ingredients needed for an unambiguous observation of this phase in the future.

Date and Time: 
Wednesday, January 29, 2020 - 12:00pm
Venue: 
Hansen Physics & Astrophysics Building, 102/103

ISL & IT-Forum present "Approaching Capacity at Short Blocklengths"

Topic: 
Approaching Capacity at Short Blockengths
Abstract / Description: 

This talk explores a family of recent results directed to approaching capacity at short blocklengths on the order of 50-500 channel transmissions. Convolutional codes out-perform polar codes and LDPC codes to approach the random coding union bound with low complexity when used with an optimized CRCs and list decoding. This perspective rehabilitates "catastrophic" convolutional codes, which are more properly understood for finite blocklengths as clever expurgation rather than any sort of catastrophe. This approach also provides a low-complexity approach for maximum-likelihood decoding of high-rate BCH codes. The use of variable length coding, i.e. incremental redundancy controlled with simple ACK/NACK feedback, allows capacity to be closely approached by practical codes with fewer than 500 channel uses. This talk reviews the information-theoretic results of Polyanskiy with respect to ACK/NACK feedback, presents new results extending the classic approach of Horstein for full feedback, and shows how to optimize the number and length of incremental redundancy transmissions (and feedback transmissions) for a variable-length code with feedback (i.e. a type-II hybrid ARQ). The talk also shows how to avoid entirely the overhead of a CRC in a hybrid ARQ setting by directly computing the reliability of convolutional codeword decisions. Finally, attendees will learn about a novel communications architecture that allows the use of incremental redundancy even without feedback.

 

Date and Time: 
Friday, January 24, 2020 - 1:15pm
Venue: 
Packard 202

ISL Colloquium presents "Self-Programming Networks: Applications to Financial Trading Systems"

Topic: 
Self-Programming Networks: Applications to Financial Trading Systems
Abstract / Description: 

We describe Self-Programming Networks (SPNs), an ongoing research effort at Stanford for making cloud computing networks autonomous; that is, to enable the networks to sense and monitor themselves, and program and control themselves. We describe the goals and the architecture of SPNs and present two key outcomes: (i) Huygens, for scalable and accurate clock synchronization, and (ii) Simon, for fine-grained network telemetry using observations from the network’s edge. We also describe the relevance of this work to existing financial trading systems and demonstrate how, in future, it enables financial trading systems in the Cloud.


The Information Systems Laboratory Colloquium (ISLC) is typically held in Packard 101 every Thursday at 4:30 pm during the academic year. Coffee and refreshments are served at 4pm in the second floor kitchen of Packard Bldg.

The Colloquium is organized by graduate students Joachim Neu, Tavor Baharav and Kabir Chandrasekher. To suggest speakers, please contact any of the students.

Date and Time: 
Thursday, January 23, 2020 - 4:30pm
Venue: 
Packard 101

Pages

Optics and Electronics Seminar

AP 483 seminar presents "Sensing beyond the conventional limits: vortices, viscosity and molecular vibrations"

Topic: 
Sensing beyond the conventional limits: vortices, viscosity and molecular vibrations
Abstract / Description: 

It has been known for over a century that, in quantum physics, even the act of looking can have dramatic consequences. For instance, it kills the cat in Schrödinger’s famous thought experiment. However, it has proved extremely difficult to reach regimes where such effects play a role, let alone to use them as a tool to enhance measurement technologies. 

 

Over the past decade, however, advances in photonics and nanotechnology have allowed us to engineer both devices and states of light which exhibit this distinctive quantum behavior [1]. These “quantum optomechanical devices” consist of a nanoscale mechanical object – for example, a nanoparticle, molecule or cantilever – coupled to light via radiation pressure, often concentrated in a tiny optical cavity. In essence, they are miniature versions of the kilometer-scale interferometers that have enabled the extraordinary detection of gravitational waves from distant black hole collisions. Quite remarkably, they can allow measurements of motion at the sub-attometre level – more than a thousand times below the width of an atomic nucleus. At a fundamental level, this allows us to ask new questions of quantum physics for macroscopic systems consisting of trillions of atoms. It also provides a way to build precision optical sensors that far outperform the current state-of-the-art. 

 

In this talk, I will provide an overview of optomechanical sensors developed in my laboratory, with a particular focus on applications in the bioscience and in studying superfluid helium, a strongly interacting quantum liquid. This includes the observation of coherent vortex dynamics in two-dimensional superfluid helium [2]; the engineering of extreme Brillouin nonlinearities in superfluid thin-films [3]; a quantum-light microscope that provides absolute quantum advantage, allowing the observation of molecular vibrations of nanoscale biological structures that would otherwise be unresolvable [4]; and optical tweezers that allow tracking of the instantaneous

velocity of trapped particles, and through this orders-of-magnitude faster measurements of cell properties reaching microsecond timescales [5].

 
  1. Bowen and Milburn, Quantum Optomechanics, CRC Press (2016).
  2. Science 366 1480 (2019).
  3. Nature Physics 16 417 (2020); also Nature Physics 12 788 (2016).
  4. arXiv:2004.00178 (2020).
  5. arXiv:2007.03066 (2020); also Nature Photonics 11, 477-481 (2017); 9, 669-673 (2015); 7, 229-233 (2013)

This seminar is sponsored by the department of Applied Physics and the Ginzton Laboratory.

Organized by Prof. Amir Safavi-Naeini

Date and Time: 
Monday, September 21, 2020 - 4:15pm
Venue: 
Zoom

AP 483 seminar presents "Quantum computing over the rainbow: the quantum optical frequency comb as a platform for measurement-based universal quantum computing"

Topic: 
Quantum computing over the rainbow: the quantum optical frequency comb as a platform for measurement-based universal quantum computing
Abstract / Description: 

An ultrafast laser emits vastly multimode light over a broad spectral band, a.k.a. the optical frequency comb (OFC), but the emission happens but one photon at a time, if in a stimulated manner, and no entanglement is created in the light. Changing the gain medium from linear (one-photon) to nonlinear (two-photon) yields an optical parametric oscillator which features massively multipartite entanglement of the OFC modes, as demonstrated experimentally by our group and others. This entanglement can then be exquisitely tailored to cluster states with specific graphs, in particular the two-dimensional ones that are universal for measurement-based, one-way quantum computing. It is worth noting that this requires only sparse experimental resources that are highly compatible with integrated optics, thereby paving the way to the realization of practical, fault-tolerant quantum computers.


This seminar is sponsored by the department of Applied Physics and the Ginzton Laboratory.

Organized by Prof. Amir Safavi-Naeini

Date and Time: 
Monday, September 14, 2020 - 4:15pm
Venue: 
Zoom

OSA Color Technical Group presents "Modeling the Initial Steps of Human Vision"

Topic: 
Modeling the Initial Steps of Human Vision
Abstract / Description: 

Vision guides thought and action. To do so usefully it must inform us about critical features of the world around us. What we can learn about the world is limited by the initial stages of visual processing. Physicists, biologists and psychologists have created quantitative models of these stages, and these models enable us to quantify the encoded information. We have integrated these models as image computable software: the Image Systems Engineering Toolbox for Biology (ISETBio). The software is an extensible set of open-source modules that model the three-dimensional scene spectral radiance, retinal image formation (physiological optics), spatial sampling by the cone photoreceptor mosaic, fixational eye movements, and phototransduction. This webinar, hosted by the OSA Color Technical Group, will provide an overview of the ISETBio modules as well as examples of how to use the software to understand and model human visual performance.

Hosted By: Color Technical Group

Date and Time: 
Tuesday, July 21, 2020 - 9:00am

OSA/SPIE, SPRC and Ginzton Lab present "Workshop on Inverse Design using SPINS"

Topic: 
Workshop on Inverse Design using SPINS
Abstract / Description: 

The goal of this workshop is to provide attendees with a practitioner's perspective of the basic ingredients and tools of inverse design using SPINS [1], a photonic optimization framework developed at Jelena Vuckovic's Nanoscale and Quantum Photonics Lab over the past decade.
SPINS is a flexible inverse-design platform that is compatible with a variety of device parametrizations, electromagnetic solvers, and objective functions. This has enabled SPINS to be used to design and experimentally demonstrate functional devices in a wide variety of different application areas including grating couplers [2-4], optical routing for LiDAR [5], and electron accelerators [6].
In this workshop, we will work through examples of using SPINS to design simple devices, including grating couplers and silicon photonics devices. We will emphasize how attendees can adapt these examples for their own applications and discuss some practical considerations for using inverse-design to produce functional devices. All example code will be available online after the workshop.

[1] Su, L. et al. Nanophotonic inverse design with SPINS: software architecture and practical considerations. Appl. Phys. Rev. https://doi.org/10.1063/1.5131263 (2020).
[2] Su, L. et al. Fully-automated optimization of grating couplers. Optics Express, 26(4): 4023–4034, 2018.
[3] Sapra, N. V. et al. Inverse design and demonstration of broadband grating couplers. IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[4] Dory, etl al. Inverse-designed diamond photonics. Nature Communications, 10(1):3309, 2019.
[5] Yang, K. Skarda, J. et al., Inverse-designed non-reciprocal pulse router for chip-based LiDAR, Nature Photonics DOI: 10.1038/s41566-020-0606-0 (2020)
[6] Sapra, N. V. et al., On-chip integrated laser-driven particle accelerator. Science 367, 79-83 (2020).

Date and Time: 
Thursday, June 4, 2020 - 1:30pm
Venue: 
Zoom ID: 945 5728 7546 (password required)

OSA/SPIE, SPRC and Ginzton Lab present "Next Generation Photonics"

Topic: 
Next Generation Photonics
Abstract / Description: 

Over the past few decades, silicon photonics has revolutionized photonic integrated circuits by leveraging the semiconductor CMOS manufacturing infrastructure for low cost, high performance devices and systems. However, key fundamental challenges of the field remain unsolved: packaging the devices with optical fibers and generating light on chip.

We developed a novel approach for fiber packaging based on fusing the fiber and chip together. Connecting a silicon photonic chip across long distances requires attaching optical fibers to the chip. In practice, the packaging of optical fibers to photonic devices is time consuming, lossy, and expensive. This process is usually done by gluing the fiber and chip together using optical adhesives. By fusion splicing the chip and fiber together we have demonstrated losses as low as 1dB for single fibers and 2.5dB for an array of four fibers.

Imagine a laser as thick as an atom that is compatible with silicon photonics. Silicon based materials are passive. Since silicon is an indirect band gap material it is a poor light emitter. To generate light on a silicon photonic integrated circuit, you need to integrate active materials, which are usually not compatible with CMOS, with the device. Two-dimensional materials are excellent candidates for light sources, modulators, and detectors; and they are compatible with CMOS electronic manufacturing in the back end. We recently demonstrated the first fully on-chip 2D laser. Due to their thickness and transfer process, we envision electronic-photonic devices with many optical layers, each with their own lasers, modulators, and detectors based on 2D materials. Our recent demonstration completes the set of active devices completely based on 2D materials.


Password: 017994

Date and Time: 
Wednesday, May 6, 2020 - 1:00pm
Venue: 
Zoom ID: 991 2584 9377

OSA/SPIE with SPRC and Ginzton Lab present "Next Generation Photonics"

Topic: 
Next Generation Photonics
Abstract / Description: 

Over the past few decades, silicon photonics has revolutionized photonic integrated circuits by leveraging the semiconductor CMOS manufacturing infrastructure for low cost, high performance devices and systems. However, key fundamental challenges of the field remain unsolved: packaging the devices with optical fibers and generating light on chip.

We developed a novel approach for fiber packaging based on fusing the fiber and chip together. Connecting a silicon photonic chip across long distances requires attaching optical fibers to the chip. In practice, the packaging of optical fibers to photonic devices is time consuming, lossy, and expensive. This process is usually done by gluing the fiber and chip together using optical adhesives. By fusion splicing the chip and fiber together we have demonstrated losses as low as 1dB for single fibers and 2.5dB for an array of four fibers.

Imagine a laser as thick as an atom that is compatible with silicon photonics. Silicon based materials are passive. Since silicon is an indirect band gap material it is a poor light emitter. To generate light on a silicon photonic integrated circuit, you need to integrate active materials, which are usually not compatible with CMOS, with the device. Two-dimensional materials are excellent candidates for light sources, modulators, and detectors; and they are compatible with CMOS electronic manufacturing in the back end. We recently demonstrated the first fully on-chip 2D laser. Due to their thickness and transfer process, we envision electronic-photonic devices with many optical layers, each with their own lasers, modulators, and detectors based on 2D materials. Our recent demonstration completes the set of active devices completely based on 2D materials.

Date and Time: 
Monday, May 4, 2020 - 12:05pm
Venue: 
Zoom ID: 991 2584 9377 (contact organizers for password)

Stanford Photonics Research Center (SPRC) SPECIAL SEMINAR on Global Environmental Measurement and Monitoring Technologies

Topic: 
The Source and Fate of Fossil Fuel CO2 Emissions
Abstract / Description: 

Fossil fuel burning is the primary driver of increasing atmospheric carbon dioxide (CO2), which recently passed the landmark 400 parts per million mark. Most nations have committed to reducing their emissions under the Paris Agreement and many sub-national entities have made similar commitments. To ensure that the promised emission reductions are achieved, an understanding of emission rates from fossil fuel point sources, cities, regions and countries, and of uptake of carbon into the land and oceans, is critical.

Traditionally, "bottom-up" economic information has been used to determine fossil fuel emission rates, and biomass estimates are used to evaluate the land carbon sink. In this presentation, I will discuss the use of a "top-down" approach that uses atmospheric measurements and modelling that complements the bottom-up method. In particular, I will focus on the use of radiocarbon (14C) in CO2 as a tracer for the fossil fuel component of atmospheric CO2. I will showcase how the method can be used to quantify fossil fuel CO2 emissions and land carbon uptake, giving examples from USA and New Zealand.

Date and Time: 
Thursday, March 12, 2020 - 3:30pm
Venue: 
Spilker 232

OSA/SPIE, SPRC and Ginzton Lab present "Applications of Precision Motion Control in the Optics and Photonics Industry"

Topic: 
Applications of Precision Motion Control in the Optics and Photonics Industry
Abstract / Description: 

Precision Automation has become a rapidly growing industry as manufacturers must develop ways to achieve ever-tightening tolerances. Likewise, research must push the envelope in order to maintain the increasingly advancing pace of technology. Aerotech has been providing assistance and solutions to researchers within academia and laboratories worldwide for 50 years and continues to empower students and technicians to complete and publish their research. In this seminar, we will discuss why automation and motion control is important as well as the various methods by which Aerotech has helped expand the boundaries of research in the field of optics and photonics. The topics we will cover in this session include:

  • What Precision Motion Control is and why it is important
  • How to choose the right set of motion control
  • How Aerotech has helped further research in:
    • Optics design and manufacturing
    • Light sources and beamlines
    • Optical positioning and ultra-fast spectroscopy
    • Fiber alignment
    • Laser Processing
    • Additive Manufacturing

After the presentation, a round-table discussion will be held during which we'd like to hear from you! Please bring with you any topics and - more importantly - any tough issues that you'd like to pose pertaining to automated motion control within your specific research field.

Date and Time: 
Tuesday, March 3, 2020 - 4:15pm
Venue: 
Spilker 232

OSA/SPIE present "Applications of Precision Motion Control in the Optics and Photonics Industry"

Topic: 
Applications of Precision Motion Control in the Optics and Photonics Industry
Abstract / Description: 

Refreshments at 4:00

Precision Automation has become a rapidly growing industry as manufacturers must develop ways to achieve ever-tightening tolerances. Likewise, research must push the envelope in order to maintain the increasingly advancing pace of technology. Aerotech has been providing assistance and solutions to researchers within academia and laboratories worldwide for 50 years and continues to empower students and technicians to complete and publish their research. In this seminar, we will discuss why automation and motion control is important as well as the various methods by which Aerotech has helped expand the boundaries of research in the field of optics and photonics. The topics we will cover in this session include:

  • What Precision Motion Control is and why it is important
  • How to choose the right set of motion control
  • How Aerotech has helped further research in:
    • Optics design and manufacturing
    • Light sources and beamlines
    • Optical positioning and ultra-fast spectroscopy
    • Fiber alignment
    • Laser Processing
    • Additive Manufacturing

After the presentation, a round-table discussion will be held during which we'd like to hear from you! Please bring with you any topics and - more importantly - any tough issues that you'd like to pose pertaining to automated motion control within your specific research field.

 

Date and Time: 
Wednesday, February 26, 2020 - 4:15pm
Venue: 
Spilker 232

OSA/SPIE, SPRC and Ginzton Lab present "Innovation in the Laser Industry"

Topic: 
Innovation in the Laser Industry
Abstract / Description: 
Spectra-Physics was a startup when Prof. Byer was a summer student in 1964.  By the time Alan Petersen and Jim Kafka joined in the early 1980s, the company had matured and aspired to be all things in lasers.  We will discuss the changes in the laser industry since that time and the role of innovation within the company to drive growth and broaden the product offerings from scientific lasers to industrial laser systems.
 
PLEASE RVP TO GUARANTEE A SPOT.
Date and Time: 
Monday, March 9, 2020 - 12:30pm
Venue: 
Y2E2 299

Pages

SCIEN Talk

SCIEN and EE292E present "Retinal topography using stripe illumination in a fundus camera"

Topic: 
Retinal topography using stripe illumination in a fundus camera
Abstract / Description: 

Retinal topography is affected by pathology such as drusen and tumors, and it may be useful to determine topography with fundus imaging when three-dimensional imaging is not available. In this talk, I will present a novel method of retinal topography scanning using the stripe projection technology of the CLARUSTM 700 (ZEISS, Dublin, CA) wide-field fundus camera. The camera projects stripes onto the retina and records images of the returned light while maintaining a small angle between illumination and imaging. We make use of this structured illumination, analyzing neighboring stripes to determine depth -i.e. the retinal topography – from both relative defocus and stripe displacements. The resulting topography maps are finally compared to three-dimensional data from optical coherence tomography imaging.

Date and Time: 
Wednesday, September 23, 2020 - 4:30pm
Venue: 
Zoom registration required

SCIEN and EE292E present "Time of flight imaging with single photon detectors”

Topic: 
Time of flight imaging with single photon detectors
Abstract / Description: 

Single Photon Avalanche Detectors (SPADs) can detect single photon arrival events and in doing so, record a click that can be used to also determine the photon arrival time on the detector with picosecond temporal resolution. This timing capability is finding many uses such as LIDAR and fluorescence lifetime imaging and provides an opportunity for revisiting fundamental imaging concepts by combining SPAD data with computational image retrieval techniques. The computational techniques can in general resort to inverse retrieval approaches or machine learning, with the choice depending on the specific nature of the data and imaging problem at hand. I will overview some of our work, starting from the first attempts to capture light-in-flight using SPAD cameras and covering the topics of non-line-of-sight imaging, imaging through diffusion, extraction of 3D images from time-of-light data only, fluorescence lifetime imaging and coincidence counting for quantum imaging applications.

Date and Time: 
Thursday, August 27, 2020 - 10:00am
Venue: 
Zoom

SCIEN and EE292E present "Breaking the Resolution & Speed Limit – Next Generation 3D Printing Technology based on Digital Holography and Temporal Focusing"

Topic: 
Breaking the Resolution & Speed Limit – Next Generation 3D Printing Technology based on Digital Holography and Temporal Focusing
Abstract / Description: 

Additive manufacturing printing, i.e., 3-D printing, is one of the most important technological innovations in the past few decades. Among the various techniques, two-photon polymerization (TPP) is the most precise 3-D printing process that has been used to create many complex structures for advanced photonic and nanoscale applications, e.g., microrobots, optical memories, metamaterials, photonic crystals, and bio-scaffolds etc. However, to date the technology still remains a laboratory tool due to its high operation cost and limited fabrication rate, i.e., serial laser scanning process. In this seminar, I will present our recent work on the parallelization of the TPP process based on (1) temporal focusing and (2) binary holography, where programmable femtosecond light sheets or tens to hundreds of shaped laser beams are used to substantially improve the rate without sacrificing resolution. In addition, the engineered laser foci can improve the strength and structural integrity of the printed structures. Our experiments demonstrate arbitrarily complex structures can be fabricated at a record-breaking resolution and speed, i.e., lateral/axial resolution: 140 nm/175 nm at 10s mm3/min, which is 3-4 orders of magnitude higher than any existing fabrication methods. Our new methods provide an effective and low-cost solution to scale-up the fabrication of functional micro- and nano-structures (~$1.5/mm3). This means our technology may play a large role in fields such as healthcare, clean energy and water, computing, and telecommunications.

Date and Time: 
Wednesday, August 19, 2020 - 4:30pm
Venue: 
Zoom

SCIEN and EE292E present "Miniature Optical Endoscopes for Early-Stage Cancer Detection"

Topic: 
Miniature Optical Endoscopes for Early-Stage Cancer Detection
Abstract / Description: 

With multiple mechanisms of contrast, high sensitivity, high resolution, and the possibility to create miniature, inexpensive devices, light-based techniques have tremendous potential to positively impact cancer detection and survival. Many organs of the body can be reached in a minimally-invasive fashion with small flexible endoscopes. Some organs, such as the fallopian tubes and ovaries, require extremely miniature (sub-mm) and flexible endoscopes to avoid tissue cutting. Additionally, some modalities, such as side-viewing optical coherence tomography, are naturally suited to miniature endoscopes, whereas others like forward-viewing reflectance or fluorescence imaging, may require performance tradeoffs. The development of small, robust and fiber-delivered advanced light sources, miniature fiber bundles, and sensitive detectors has aided the development of novel miniature endoscopes. In this talk, I will discuss our recent advancements in endoscope design for multimodality optical early detection of ovarian cancer.

Date and Time: 
Wednesday, August 5, 2020 - 4:30pm
Venue: 
Zoom - registration required

OSA Color Technical Group presents "Modeling the Initial Steps of Human Vision"

Topic: 
Modeling the Initial Steps of Human Vision
Abstract / Description: 

Vision guides thought and action. To do so usefully it must inform us about critical features of the world around us. What we can learn about the world is limited by the initial stages of visual processing. Physicists, biologists and psychologists have created quantitative models of these stages, and these models enable us to quantify the encoded information. We have integrated these models as image computable software: the Image Systems Engineering Toolbox for Biology (ISETBio). The software is an extensible set of open-source modules that model the three-dimensional scene spectral radiance, retinal image formation (physiological optics), spatial sampling by the cone photoreceptor mosaic, fixational eye movements, and phototransduction. This webinar, hosted by the OSA Color Technical Group, will provide an overview of the ISETBio modules as well as examples of how to use the software to understand and model human visual performance.

Hosted By: Color Technical Group

Date and Time: 
Tuesday, July 21, 2020 - 9:00am

SCIEN and EE292E present "ThinVR: A VR display approach providing wide FOV in a compact form factor"

Topic: 
ThinVR: A VR display approach providing wide FOV in a compact form factor
Abstract / Description: 

This talk describes ThinVR: An approach to build near-eye VR displays that simultaneously provides a very wide (180 degree horizontal) FOV and a compact form factor. The key is to replace traditional large optics with curved microlens arrays and to place the optics in front of curved displays. We had to design custom heterogeneous optics to make this approach work, because many lenslets are viewed off the central axis. To ensure the existence of an adequate eyebox and to minimize pupil swim distortions, we had to design and build a custom optimizer to produce an acceptable heterogeneous lenslet array. We prove this approach works through prototypes with both static and dynamic displays. To our knowledge, this is the first work to both convincingly demonstrate and analyze the potential for curved, heterogeneous microlens arrays to enable compact, wide FOV near-eye VR displays.

Date and Time: 
Wednesday, July 15, 2020 - 4:30pm
Venue: 
Zoom - register for link + password

SCIEN and EE292E present "Fluorescence Guided Precision Surgery TM – Illuminating Tumors and Nerves"

Topic: 
Fluorescence Guided Precision Surgery TM – Illuminating Tumors and Nerves
Abstract / Description: 

Although treatment algorithms vary, surgery is the primary treatment modality for most solid cancers. In oncologic tumor resection, the preferred outcome is complete cancer removal as residual tumor left behind is considered treatment failure. However complete tumor removal needs to be balanced with functional preservation and minimizing patient morbidity including prevention of inadvertent nerve injury. The inability of surgeons to visually distinguish between tumor and normal tissue including nerves leads to residual cancer cells being left behind at the edges of resection, i.e. positive surgical margins (PSM). PSM can be as high as 20-40% in breast cancer lumpectomy, 21% for radical prostatectomy, and 13% for HNSCC. Similarly, using white light reflectance alone which is the current standard of care in operating rooms, nerve dysfunction following surgery has been reported to be as high as ~2-40% ranging from immediate post op to long-term dysfunction.

Molecular imaging with fluorescence provides enhanced visual definition between diseased and normal tissue and have been shown to decrease PSM in both animal models and patients. Molecular imaging with fluorescence can also provide enhanced visualization of important structures such as nerves to improve preservation and minimize inadvertent injury. Our laboratory has extensive experience in development of both nerve and tumor injectable markers for surgical visualization. In presentation we will discuss the development of nerve and tumor markers combinations to improve intraoperative visualization – aka Precision Surgery TM.


The SCIEN Colloquia are now offered via Zoom - Please register by going to https://stanford.zoom.us/meeting/register/tJctd-utrT4rHtT5OO34glASg1vol-PCGuXR

Date and Time: 
Wednesday, July 8, 2020 - 4:30pm
Venue: 
Zoom

SCIEN and EE292E present "Next-generation technologies to enable high-performance, low-cost lidar"

Topic: 
Next-generation technologies to enable high-performance, low-cost lidar
Abstract / Description: 

 

Lidar systems are used in diverse applications, including autonomous driving and industrial automation. Despite the challenging requirements for these systems, most lidars in the market utilize legacy technologies such as scanning mechanisms, long-coherence-length or edge-emitting lasers, and avalanche photodiodes, and consequently offer limited performance and robustness at a relatively high price point. Other systems propose to utilize esoteric technologies which face an uphill struggle towards manufacturability. This talk will describe two complementary technologies, leveraging on years of progress in adjacent industries. When combined with novel signal processing algorithms, these deliver a high-resolution, long-range and low-cost solid-state flash lidar system, breaking the performance envelope and resulting in a camera-like system. We will discuss design trade-offs, performance roadmap into the future and remaining challenges.


 

Please register by going to https://stanford.zoom.us/meeting/register/tJAtcO2gqz0iGN0p94z4JU_I9-EQuQ3lBi7N

The talks are also videotaped and posted the following week on talks.stanford.edu for Stanford students, staff, faculty and SCIEN Affiliate Member companies.

If you wish to receive announcements about future talks, please add yourself to the SCIEN distribution list by going here.

 

 

Date and Time: 
Wednesday, July 1, 2020 - 4:30pm
Venue: 
Zoom (join SCIEN mail list to receive meeting ID)

SCIEN presents "Codification Design in Compressive Imaging"

Topic: 
Codification Design in Compressive Imaging
Abstract / Description: 

Compressive imaging enables faster acquisitions by capturing coded projections of the scenes. Codification elements used in compressive imaging systems include lithographic masks, gratings and micro-polarizers, which sense spatial, spectral, and temporal data. Codification plays a key role in compressive imaging as it determines the number of projections needed for correct reconstruction. In general, random coding patterns are sufficient for accurate reconstruction. Still, more recent studies have shown that code design not only yields to improved image reconstructions, but it can also reduce the number of required projections. This talk covers different tools for codification design in compressive imaging, such as the restricted isometry property, geometric and deep learning approaches. Applications in compressive spectral video, compressive X-ray computed tomography, and seismic acquisition will be also discussed.

Date and Time: 
Wednesday, June 3, 2020 - 4:30pm
Venue: 
Zoom (join SCIEN mail list to receive meeting ID)

SCIEN presents "Mojo Lens, the First True Smart Contact Lens"

Topic: 
Mojo Lens, the First True Smart Contact Lens
Abstract / Description: 

After working in stealth for over 4 years, Mojo Vision recently unveiled the first working prototype of Mojo Lens, a smart contact lens designed to deliver augmented reality content wherever you look. This talk will provide an overview of the company, its vision of "Invisible Computing", the science behind the world's first contact lens display, and a first-hand account of what it's like to actually wear Mojo Lens.

Date and Time: 
Wednesday, May 27, 2020 - 4:30pm
Venue: 
Zoom (join SCIEN mail list to receive meeting ID)

Pages

SmartGrid

Smart Grid Seminar: Dynamic Operation and Lifetime Valuation for Batteries in Markets

Topic: 
Dynamic Operation and Lifetime Valuation for Batteries in Markets
Abstract / Description: 

This talk introduces a generalized framework for valuating batteries based on their degradation mechanism and market signals. The proposed framework follows a dynamic programming approach, and novel solution algorithms are designed to accurately model years of battery degradation accumulation, while simulating high granularity optimal control for batteries over time resolutions of minutes or even seconds, including the capability to model stochastic operations. Results from this research will provide pricing and operation references for new and used batteries in grid-interactive applications, and demonstrate how batteries of different degradation mechanisms should be priced differently.

Date and Time: 
Thursday, November 19, 2020 - 1:30pm
Venue: 
Zoom

Smart Grid Seminar: IoT, Smart Microgrid

Topic: 
IoT, Smart Microgrid
Abstract / Description: 

Transforming the grid to a Smart Grid requires real time sensing, of energy producers, consumers, stored capacity in batteries, weather conditions, and more, essential to develop usage models, and anticipate need. Along with the ability to take 'action' such as bringing online cleaner sources of power and curbing demand we can help smooth load peaks. In this talk we introduce the open source project EdgeX Foundry and its viability to deliver a secure, extensible, endpoint to collect real time data, develop models, and control devices. Data processing at the edge while reducing network bandwidth needs, reduces response latency, and helps preserve data privacy. We illustrate this in the context of VMware's on-campus electric vehicle charging facility. We conclude by sharing our longer term goals of developing and controlling hierarchical composite device models and introduce open source project Kinney.

Seminars are open to all Stanford students, faculty, staff and community. Register via the RSVP link

Date and Time: 
Thursday, October 15, 2020 - 1:30pm
Venue: 
Zoom

Smart Grid Seminar: Increasing Electricity Market Efficiency with Flexible Mechanism

Topic: 
Increasing Electricity Market Efficiency with Flexible Mechanism
Abstract / Description: 

Current wholesale electricity market designs of day-ahead and real-time markets have inherent inefficiencies that are amplified with greater shares from intermittent renewable sources. Building in flexibility through time and geographically substitutable bids and stochastic unit commitments can yield significant gains. This talk will discuss how to model and assess these advantages and their implications for renewable generation.

Date and Time: 
Thursday, October 1, 2020 - 1:30pm
Venue: 
Zoom

SmartGrid Seminar presents "Cyber Security Research: A Data Scientist’s Perspective"

Topic: 
Cyber Security Research: A Data Scientist’s Perspective
Abstract / Description: 

Situational awareness of computer networks presents many challenges including but not limited to the volume of the data and the dynamic and evolving nature of the problem space. For example, at the perimeter of a corporate enterprise computer network, it is common to see terabytes of network traffic each day, containing millions of unique IP addresses and connection records that number in the hundreds of millions. Celeste will provide an overview and discuss recent trends facing computer security researchers and practitioners. She will describe recent work at Lawrence Livermore National Laboratory to enable analysis of computer networks and encourage an interactive discussion to foster new ideas to address these challenges.

Date and Time: 
Thursday, May 7, 2020 - 1:30pm
Venue: 
Register at tinyurl.com/Spring-SGS

Smart Grid Seminar presents "California Microgrids: Lessons Learned"

Topic: 
California Microgrids: Lessons Learned
Abstract / Description: 

There has been substantial discussion of the use of microgrids as a result of the recent wildfires and Public Safety Power Shutoffs. The ability of microgrids to be considered for these applications now, is in part a result of over a decade of research funded through the California Energy Commission's R&D programs. To date the CEC has issued over $100M in grants that have funded over 30 microgrids. These microgrids support a variety of applications, with a diversity of ownership models. This presentation will provide an overview of the microgrid research being funded by the CEC and future research areas of interest.

Date and Time: 
Thursday, April 23, 2020 - 1:30pm
Venue: 
Zoom: register to receive ID

Smart Grid Seminar presents "Grid Resilience"

Topic: 
Grid Resilience
Abstract / Description: 

The term "resilience" refers to the ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions. The value of resilience to the electricity system is in enabling the function of other interdependent infrastructure systems and maintaining critical energy-based services. Many resilience approaches are being considered. This webinar will outline some of these perspectives and provide an overview of some of the related ongoing activities within the Department of Energy.

Date and Time: 
Thursday, May 21, 2020 - 1:30pm
Venue: 
Zoom: register to receive ID

Smart Grid Seminar presents "Cyber Security Roadmap and Challenge"

Topic: 
Cyber Security Roadmap and Challenge
Abstract / Description: 

Cyber security has become a critical priority for electric utilities, which are increasingly dependent on information technology and telecommunication infrastructure to ensure the reliability and security of the electric grid. Additionally, rapid, disruptive changes are happening in electric grids around the world. In many states and countries, initiatives are underway to integrate small, renewable generation into the distribution grid, to meet the local demand for electricity, while reducing the dependency on large, central generation facilities and long-distance transmission. This transition requires new technologies, connectivity, and intelligence, which inherently changes the attack surface of the grid and introduces new stakeholders in the delivery and use of power. This talk provides an introduction to these new cyber security issues, discusses EPRI's approach to addressing the challenges, and presents future research opportunities.

Date and Time: 
Thursday, May 28, 2020 - 1:30pm
Venue: 
Zoom: register to receive ID

Smart Grid Seminar presents "Dynamic Electricity Pricing"

Topic: 
Dynamic Electricity Pricing
Abstract / Description: 

With the rapid growth in residential smart meters across the United States in recent years, most homes will soon be capable of moving to time varying prices for electricity. We discuss a methodology for studying the welfare impacts of different pricing strategies on an electricity market when homes deploy smart, price responsive appliances with forward-looking capabilities, and understanding its effects on social welfare and consumer surplus. We show conditions under which asymptotically, as the number of homes increases, social welfare-maximizing price schedules in equilibrium are linear in load. Real data are used to calibrate a smart thermostat model to compare dynamic pricing strategy against flat and peak pricing strategies when smart thermostats are deployed across ComEd's service territory of 3.5 million residential homes.

Date and Time: 
Thursday, May 14, 2020 - 1:30pm
Venue: 
Zoom: register to receive ID

Opportunities in Solar Research and Entrepreneurship

Topic: 
Opportunities in Solar Research and Entrepreneurship
Abstract / Description: 

Renewable energy generation, storage and energy efficiency are being rapidly integrated into our digitized buildings, transportation system and electric grid. Exponentially expanding opportunities for entrepreneurs to commercialize new products are blossoming. This talk will highlight examples of the wide-ranging resources available to help start-up initiatives accelerate cycles of learning and bring innovations to market. Some specific resources to be reviewed include:

  • Stanford's TomKat Center for Sustainable Energy Innovation Transfer
  • The NSF I-Corps Program adapted from Steve Blank's Stanford Lean LaunchPad class
  • The Elemental Accelerator in East Palo Alto
  • Emily Kirsch's PowerHouse Incubator and PowerHouse Ventures in Oakland
  • Cyclotron Road at Lawrence Berkeley National Laboratory
  • The National Renewable Energy Laboratory Industry Growth Forum and Innovation Incubator
  • The Department of Energy Solar Prize
  • Dorothy Jones-Davis' Nation of Makers
  • The American-Made Partner Network
Date and Time: 
Thursday, April 23, 2020 - 2:30pm
Venue: 
Zoom

Bits and Watts presents "Battery Electric Vehicles, Energy Management, and the Smart Grid: An OEM Perspective"

Topic: 
Battery Electric Vehicles, Energy Management, and the Smart Grid: An OEM Perspective
Abstract / Description: 

Ford is pursuing an aggressive electrification of their product portfolio that includes the launch of the all-electric 2021 Mustang Mach-E, all-electric F-150, and all-electric global commercial van. With 100 kWh of electrical capacity, and potentially more, on board, Ford customers will have enough energy to meet their daily driving needs. However, what if there is more than enough energy? Ford is looking closely at how battery electric vehicles can unlock additional value for customers in a world of a dynamic and intelligent electrical energy system.

This talk will briefly cover Ford's electrification strategy and the mission of Greenfield Labs, Ford's Silicon Valley outpost. It will review projects on connected charging infrastructure and hands-free charging and describe the ways that Ford researchers are envisioning smart vehicles in a smart world.

Date and Time: 
Thursday, February 27, 2020 - 1:30pm
Venue: 
Shriram 104

Pages

Stanford's NetSeminar

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

John G. Linvill Distinguished Seminar on Electronic Systems Technology

Topic: 
Internet of Things and Internet of Energy for Connecting at Any Time and Any Place
Abstract / Description: 

In this presentation, I would like to discuss with you how to establish a sustainable and smart society through the internet of energy for connecting at any time and any place. I suspect that you have heard the phrase, "Internet of Energy" less often. The meaning of this phrase is simple. Because of a ubiquitous energy transmission system, you do not need to worry about a shortage of electric power. One of the most important items for establishing a sustainable society is [...]


"Inaugural Linvill Distinguished Seminar on Electronic Systems Technology," EE News, July 2018

 

Date and Time: 
Monday, January 14, 2019 - 4:30pm
Venue: 
Hewlett 200

Claude E. Shannon's 100th Birthday

Topic: 
Centennial year of the 'Father of the Information Age'
Abstract / Description: 

From UCLA Shannon Centennial Celebration website:

Claude Shannon was an American mathematician, electrical engineer, and cryptographer known as "the father of information theory". Shannon founded information theory and is perhaps equally well known for founding both digital computer and digital circuit design theory. Shannon also laid the foundations of cryptography and did basic work on code breaking and secure telecommunications.

 

Events taking place around the world are listed at IEEE Information Theory Society.

Date and Time: 
Saturday, April 30, 2016 - 12:00pm
Venue: 
N/A

NetSeminar

Topic: 
BlindBox: Deep Packet Inspection over Encrypted Traffic
Abstract / Description: 

SIGCOMM 2015, Joint work with: Justine Sherry, Chang Lan, and Sylvia Ratnasamy

Many network middleboxes perform deep packet inspection (DPI), a set of useful tasks which examine packet payloads. These tasks include intrusion detection (IDS), exfiltration detection, and parental filtering. However, a long-standing issue is that once packets are sent over HTTPS, middleboxes can no longer accomplish their tasks because the payloads are encrypted. Hence, one is faced with the choice of only one of two desirable properties: the functionality of middleboxes and the privacy of encryption.

We propose BlindBox, the first system that simultaneously provides both of these properties. The approach of BlindBox is to perform the deep-packet inspection directly on the encrypted traffic. BlindBox realizes this approach through a new protocol and new encryption schemes. We demonstrate that BlindBox enables applications such as IDS, exfiltration detection and parental filtering, and supports real rulesets from both open-source and industrial DPI systems. We implemented BlindBox and showed that it is practical for settings with long-lived HTTPS connections. Moreover, its core encryption scheme is 3-6 orders of magnitude faster than existing relevant cryptographic schemes.

Date and Time: 
Wednesday, November 11, 2015 - 12:15pm to 1:30pm
Venue: 
Packard 202

NetSeminar

Topic: 
Precise localization and high throughput backscatter using WiFi signals
Abstract / Description: 

Indoor localization holds great promise to enable applications like location-based advertising, indoor navigation, inventory monitoring and management. SpotFi is an accurate indoor localization system that can be deployed on commodity WiFi infrastructure. SpotFi only uses information that is already exposed by WiFi chips and does not require any hardware or firmware changes, yet achieves the same accuracy as state-of-the-art localization systems.

We then talk about BackFi, a novel communication system that enables high throughput, long range communication between very low power backscatter IoT sensors and WiFi APs using ambient WiFi transmissions as the excitation signal. We show via prototypes and experiments that it is possible to achieve communication rates of up to 5 Mbps at a range of 1 m and 1 Mbps at a range of 5 meters. Such performance is an order to three orders of magnitude better than the best known prior WiFi backscatter system.

Date and Time: 
Thursday, October 15, 2015 - 12:15pm to 1:30pm
Venue: 
Gates 104

NetSeminar

Topic: 
BlindBox: Deep Packet Inspection over Encrypted Traffic
Abstract / Description: 

SIGCOMM 2015, Joint work with: Justine Sherry, Chang Lan, and Sylvia Ratnasamy

Many network middleboxes perform deep packet inspection (DPI), a set of useful tasks which examine packet payloads. These tasks include intrusion detection (IDS), exfiltration detection, and parental filtering. However, a long-standing issue is that once packets are sent over HTTPS, middleboxes can no longer accomplish their tasks because the payloads are encrypted. Hence, one is faced with the choice of only one of two desirable properties: the functionality of middleboxes and the privacy of encryption.

We propose BlindBox, the first system that simultaneously provides both of these properties. The approach of BlindBox is to perform the deep-packet inspection directly on the encrypted traffic. BlindBox realizes this approach through a new protocol and new encryption schemes. We demonstrate that BlindBox enables applications such as IDS, exfiltration detection and parental filtering, and supports real rulesets from both open-source and industrial DPI systems. We implemented BlindBox and showed that it is practical for settings with long-lived HTTPS connections. Moreover, its core encryption scheme is 3-6 orders of magnitude faster than existing relevant cryptographic schemes.

Date and Time: 
Wednesday, October 7, 2015 - 12:15pm to 1:30pm
Venue: 
AllenX Auditorium

Pages

Statistics and Probability Seminars

Workshop in Biostatistics presents "Evidence-Based Elections"

Topic: 
Evidence-Based Elections
Abstract / Description: 

Elections rely on people, hardware, and software, all of which are fallible and subject to manipulation. Well resourced nation-states continue to attack U.S. elections and domestic election fraud is not unheard of. Voting equipment is built by private vendors--some foreign, but all using foreign parts. Many states even oursource election reporting to foreign firms. How can we conduct and check elections in a way that provides evidence that the reported winners really won--despite malfunctions and malfeasance? Evidence-based elections require voter-verified (generally, hand-marked) paper ballots kept demonstrably secure throughout the canvass and manual audits of election results against the trustworthy paper trail. Hand-marked paper ballots are far more trustworthy than machine-marked ballots for a variety of reasons. Two kinds of audits are required to provide affirmative evidence that outcomes are correct: _compliance audits_ to establish whether the paper trail is complete and trustworthy, and _risk-limiting audits_ (RLAs). RLAs test the hypothesis that an accurate manual tabulation of the votes would find that one or more reported winners did not win. To reject that hypothesis means there is convincing evidence that a full hand tally would confirm the reported results. For a broad variety of social choice functions, including plurality, multi-winner plurality, supermajority, proportional representation rules such as D'Hondt, Borda count, approval voting, and instant-runoff voting (aka ranked-choice voting), the hypothesis that one or more outcomes is wrong can be reduced to the hypothesis that the means of one or more lists of nonnegative numbers is not greater than 1/2. Martingale methods for testing such nonparametric hypotheses sequentially are especially practical. RLAs are in law in several states and have been piloted in more than a dozen; there have been roughly 60 pilots in jurisdictions of all sizes, including roughly 10 audits of statewide contests. Open-source software to support RLAs is available.

Suggested Readings:
● "Sets of Half-Average Nulls Generate Risk-Limiting Audits: SHANGRLA"
● "Ballot-marking devices cannot assure the will of the voters"
● "Evidence-Based Elections: Create a Meaningful Paper Trail, Then Audit"
● "Testing Cannot Tell Whether Ballot-Marking Devices Alter Election Outcomes"

* Subscribe to the BIODS260 Workshop list via their abstracts page to receive one-click access details directly!

Date and Time: 
Thursday, September 24, 2020 - 2:30pm
Venue: 
Zoom ID 926 9609 8893 (+password)*

Probability Seminar presents "A Gaussian particle distribution for branching Brownian motion with an inhomogeneous branching rate"

Topic: 
A Gaussian particle distribution for branching Brownian motion with an inhomogeneous branching rate
Abstract / Description: 

Motivated by the goal of understanding the evolution of populations undergoing selection, we consider branching Brownian motion in which particles independently move according to one-dimensional Brownian motion with drift, each particle may either split into two or die, and the difference between the birth and death rates is a linear function of the position of the particle. We show that, under certain assumptions, after a sufficiently long time, the empirical distribution of the positions of the particles is approximately Gaussian. This provides mathematically rigorous justification for results in the Biology literature indicating that the distribution of the fitness levels of individuals in a population over time evolves like a Gaussian traveling wave.

This is joint work with Matt Roberts.

Date and Time: 
Monday, September 21, 2020 - 4:00pm
Venue: 
Zoom ID 984 0476 9786 (+password)

Statistics Seminar presents "Scaled minimax optimality in high-dimensional linear regression: A non-convex algorithmic regularization approach"

Topic: 
Scaled minimax optimality in high-dimensional linear regression: A non-convex algorithmic regularization approach
Abstract / Description: 

The question of fast convergence in the classical problem of high-dimensional linear regression has been extensively studied. Arguably, one of the fastest procedures in practice is Iterative Hard Thresholding (IHT). Still, IHT relies strongly on the knowledge of the true sparsity parameters. In this talk, we present a novel fast procedure for estimation in high-dimensional linear regression. Taking advantage of the interplay between estimation, support recovery and optimization, we achieve both optimal statistical accuracy and fast convergence. The main advantage of our procedure is that it is fully adaptive, making it more practical than state-of-the-art IHT methods. Our procedure achieves optimal statistical accuracy faster than, for instance, classical algorithms for the Lasso. Moreover, we establish sharp optimal results for both estimation and support recovery. As a consequence, we present a new iterative hard thresholding algorithm for high-dimensional linear regression that is scaled minimax optimal (achieves the estimation error of the oracle that knows the sparsity pattern if possible), fast and adaptive.

Date and Time: 
Tuesday, September 29, 2020 - 4:30pm
Venue: 
Zoom ID 973 5368 4241 (+password)

Statistics Seminar presents "Some recent insights on transfer-learning"

Topic: 
Some recent insights on transfer-learning
Abstract / Description: 

A common situation in Machine Learning is one where training data is not fully representative of a target population due to bias in the sampling mechanism or due to prohibitive target sampling costs. In such situations, we aim to "transfer" relevant information from the training data (a.k.a. source data) to the target application. How much information is in the source data about the target application? Would some amount of target data improve transfer? These are all practical questions that depend crucially on "how far" the source domain is from the target. However, how to properly measure "distance" between source and target domains remains largely unclear.

In this talk we will argue that much of the traditional notions of distance (e.g., KL-divergence, extensions of TV such as D_A discrepancy, density-ratios, Wasserstein distance) can yield an over-pessimistic picture of transferability. Instead, we show that some new notions of "relative dimension" between source and target (which we simply term transfer-exponents) capture a continuum from easy to hard transfer. Transfer-exponents uncover a rich set of situations where transfer is possible even at fast rates; they encode relative benefits of source and target samples, and have interesting implications for related problems such as multi-task or multi-source learning.

In particular, in the case of transfer from multiple sources, we will discuss (if time permits) a strong dichotomy between minimax and adaptive rates: no adaptive procedure exists that can achieve the same rates as minimax (oracle) procedures.

The talk is based on earlier work with Guillaume Martinet, and ongoing work with Steve Hanneke.

Date and Time: 
Tuesday, September 22, 2020 - 4:30pm
Venue: 
Zoom ID 973 5368 4241 (+password)

Pages

SystemX

SystemX: Intelligent Sensors in Every Stream: Engineering Deployable Water Quality Sensors

Topic: 
Intelligent Sensors in Every Stream: Engineering Deployable Water Quality Sensors
Abstract / Description: 

Water contamination can harm human health and alter aquatic ecosystems. Current treatment only addresses collected wastewater, although most pollution occurs from uncollected water (e.g., agricultural runoff). Water quality is typically monitored at treatment plants with time-intensive, costly, analytical laboratory techniques that limit monitoring frequency and spatiotemporal resolution; exhibit dangerous lag times between sampling and measurement; and constrain monitoring to treatment plants. Presently, real-time water monitoring is restricted to indirect measures of pollution (e.g., pH, dissolved oxygen); we design modular sensors that directly measure pollutants such as ammonium, which contributes to harmful algal blooms. Our first step toward that vision is designing selective, durable, deployable ammonia sensors that achieve laboratory method detection (1 mg/L) at field sensor prices (<$30) and breakthrough selectivity (>99%).

Date and Time: 
Thursday, October 1, 2020 - 4:30pm
Venue: 
Zoom ID: 920 2334 9868; +passcode

SystemX presents "Enterprise Software to Accelerate the Quantum Revolution"

Topic: 
Enterprise Software to Accelerate the Quantum Revolution
Abstract / Description: 

Through the transformative impact of quantum computing, powerful software and algorithms for the next generation of high-performance computing are being developed. These quantum algorithms will provide solutions to some of the world's toughest computational problems, including simulation, optimization, and machine learning applications in chemistry, finance, logistics, pharmaceuticals, engineering, and materials - in short, solve massive, real-world problems that will revolutionize industry and society.

Especially in recent years, we have witnessed a dramatic increase in the amount of investment and progress made in both quantum computing hardware and software architectures. This talk will look at the dramatic developments of the last decade and discuss the various approaches to the application of quantum computing. The goal is to suggest trends of how commercial quantum computing technology will evolve in the coming years and describe how this tremendous processing power could unleash exponential advances for humanity.

Date and Time: 
Thursday, September 24, 2020 - 4:30pm
Venue: 
Zoom ID: 920 2334 9868; +passcode

SystemX presents "Cold CMOS for Hot Chips–Cryogenic Electronics for High Performance Computing"

Topic: 
Cold CMOS for Hot Chips–Cryogenic Electronics for High Performance Computing
Abstract / Description: 

CMOS scaling and its power-performance-density-cost benefits have been the driving force behind the semiconductor industry. I will first review CMOS evolution over the last half century with a focus on recent progress. Due to CMOS leakage current constraints, supply voltage reduction has been stalled for a while which makes energy efficiency gain more difficult. Major efforts were undertaken to search for low voltage switches such as tunnel FET, negative capacitance FET and non CMOS logic but practical implementation appears far away. For high performance computing applications, cryogenic operation provides a straightforward way to reduce supply voltage due to steepened subthreshold slope and sharp turn-off behavior. In this talk, I will discuss various benefits of cryogenic operation, some of them were recognized long ago but have not been discussed in the context of advanced CMOS technologies and some of them are not obvious. I will also highlight the stringent requirement on the energy efficiency of refrigerators for overall power benefit.

Date and Time: 
Thursday, September 17, 2020 - 4:30pm
Venue: 
Zoom (Webinar) Live stream only (instructions below)

Pages

Subscribe to RSS - Seminar / Colloquium