Seminar / Colloquium

EE402T presents “Entrepreneurship in Asian High-Tech Industries” Spring Seminars

Topic: 
Recent Developments, Opportunities, and Challenges for Entrepreneurs in India: An Investor’s Perspective
Abstract / Description: 

 “Recent Developments, Opportunities, and Challenges for Entrepreneurs in India: An Investor’s Perspective”

- abstract pending -

Date and Time: 
Tuesday, April 30, 2019 - 4:30pm
Venue: 
Skilling Auditorium

SystemX BONUS LECTURE: Run-time computation for enhanced integrated circuits and systems

Topic: 
Run-time computation for enhanced integrated circuits and systems
Abstract / Description: 

For over half a century, Integrated Circuits have been designed and developed (rather successfully) toward the goal of enhancing computing performance and efficiency. During this time, the relationship between circuit design and computing has remained largely one-directional: Careful, detailed circuit design is performed in the service of building computing systems. Notwithstanding a post-Moore and post-Dennard reality, the impressive strides made by digital computing thus far prompt an important question which re-examines the traditional circuit-computing relationship: Can runtime computing itself be used to enhance circuit and system capabilities? If so, under which conditions and to what extent?

In this talk, I will present recent efforts in my group that represent two different ways that computing can augment circuit capabilities to (1) overcome limitations inherent in circuit design; and (2) enable rapid, time-optimal control of integrated control systems. The effectiveness and limitations of both efforts are examined through a representative test-chip design. These efforts have yielded a robust True-Random Number Generators (TRNGs) demonstrating the lowest measured energy-per-bit (2.58pJ/bit), and an all-digital PLLs (ADPLLs) for system clocking applications with the fastest demonstrated cold-start and re-lock times (16 Refclk cycles, mean).

Date and Time: 
Friday, April 26, 2019 - 2:00pm
Venue: 
Gates 104

SystemX presents Life in Space

Topic: 
Life in Space: Microfluidic Systems Enable the Study of Terrestrial Microbes in Space and the Search for Life on the Solar System’s Icy Moons
Abstract / Description: 

We develop miniaturized integrated bio/analytical instruments and platforms to conduct economical, frequent, autonomous life-science experiments in outer space. The technologies represented by several of our recent 5-kg "free-flyer" small-satellite missions are the basis of a rapidly growing suite of miniaturized biologically- and chemically-oriented instrumentation now enabling a new generation of in-situ space science experiments. Over the past decade, our missions have included studies of space-environment-related changes in gene expression, drug dose response, microbial longevity and metabolism, and the degradation of biomarker molecules. The science and technology of one of these missions, the O/OREOS (Organism/Organic Response to Orbital Stress) Nanosatellite, will be highlighted in the context of conducting biological and chemical experiments in outer space using miniaturized integrated systems.

We have recently begun to adapt and apply our spaceflight-compatible microfluidic and bioanalytical technologies to the challenge of finding molecular and structural indications of microbial life on the so-called icy worlds of our solar system, particularly the moons Europa and Enceladus. The design, development, and laboratory testing of the Sample Processor for Life on Icy Worlds (SPLIce) system, a microfluidic sample-processing "front end" to enable autonomous detection of signatures of life and measurements of habitability parameters on icy worlds, will be described. SPLIce is under development to support two nominal mission scenarios: a fly-through of Enceladus' icy plumes, expected to yield ~ 2 µL of ice particles/square meter of collector area, and a Europan lander, the rasp-based sampling system of which is anticipated to deliver 1 – 5 mL of icy solids for analysis.

Date and Time: 
Thursday, April 25, 2019 - 4:30pm
Venue: 
Huang 018

AP483 & AMO Seminar presents Optimizing Energy-Limited Photonic Systems by Using Photonic Devices Inefficiently

Topic: 
Optimizing Energy-Limited Photonic Systems by Using Photonic Devices Inefficiently
Abstract / Description: 

AP 483 & AMO Seminar Series
Time:
4:15 pm, every Monday (Refreshments begin at 4 pm)

Location:
Spilker Building Room 232

Date and Time: 
Monday, April 15, 2019 - 4:15pm
Venue: 
Spilker 232

Marconi Society Young Scholar Symposium presents "Nothing But Net"

Topic: 
Nothing But Net: How the Net and the Web Will Continue to Shape Our World
Abstract / Description: 

Join the World's Top Young Researchers and Entrepreneurs

Celebrating 30 years of the World Wide Web, panels of leading young engineers who are creating the future of communications will discuss how their work is contributing to the latest developments in security, mobility and emerging technologies--and what the future may hold.

 

SESSION ONE

The core and backbone of the new network: New technologies and approaches to creating better, faster, cheaper connectivity.

Moderated by Dr. Robert Tkach,
Marconi Fellow, Director of Advanced Photonics Research
at Nokia-Bell Labs

SPEAKERS INCLUDE
Dr. Di Che (2018 Young Scholar, Nokia Bell Labs)
Min-Yu Huang (2019 Young Scholar, Georgia Institute of Technology)
Dr. Qurrat-Ul-Ain Nadeem (2018 Young Scholar; Researcher, University of British Columbia)
Dr. Negar Reiskarimian (2017 Young Scholar, Asst. Prof. MIT, July 2019)
Bichai Wang (2019 Young Scholar, Tsinghua University)

SESSION TWO

The edge of the new network: Realizing the promise of wireless technologies and information theory for applications ranging from health care and self-driving cars to machine learning, neuroscience, and interconnected systems.

Moderated by Dr. Andrea Goldsmith,
Stephen Harris Chair Professor of Electrical Engineering,
Stanford University

SPEAKERS INCLUDE
Dr. Stefania Bartoletti, (2016 Young Scholar; Marie Sklodowska-Curie Fellow, University of Ferrara)
Dr. Aakanksha Chowdhery (2012 Young Scholar; Software Engineer, Machine Learning, at Google) (tentative)
Dr. Vasuki Narasimha Swamy (2019 Young Scholar; Research Scientist, Intel Labs)

SESSION THREE

Executing/implementing/engineering the new network: Time-tested approaches to bringing technology and ideas to life.

Moderated by Dr. Vinton G. Cerf,
Marconi Fellow; Marconi Society Chair; Chief Internet Evangelist, Google

SPEAKERS INCLUDE
Dr. Joseph Kakande (2011 Young Scholar; Founder, Elgon Technologies)
Dr. Ken Pesyna (2016 Young Scholar; Location Software Engineer)
Dr. Hao Zou (2008 Young Scholar; Chair Professor, Tsinghua University; Visiting Professor, Stanford University; Founder of Tsimage Medical Technology and Abundy Inc.)


 

Please Register to reserve your seat.

More details available on Marconi Society Events

Date and Time: 
Friday, May 17, 2019 - 10:00am to 2:00pm
Venue: 
Allen 101X

Pages

Applied Physics / Physics Colloquium

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

Applied Physics/Physics Colloquium presents "Strongly Interacting Synthetic Topological Insulators in High Dimensions"

Topic: 
Strongly Interacting Synthetic Topological Insulators in High Dimensions
Abstract / Description: 

details TBA

 

Date and Time: 
Tuesday, May 21, 2019 - 4:30pm
Venue: 
Hewlett 201

Applied Physics/Physics Colloquium presents Imaging at the genomic-scale: from 3D organization of the genome to cell atlas of the brain

Topic: 
Imaging at the genomic-scale: from 3D organization of the genome to cell atlas of the brain
Abstract / Description: 

details TBA

 

Date and Time: 
Tuesday, April 30, 2019 - 4:30pm
Venue: 
Hewlett 201

Applied Physics/Physics Colloquium presents Matter made of Light: Mott Insulators and Topological Fields

Topic: 
Matter made of Light: Mott Insulators and Topological Fields
Abstract / Description: 

In this talk I will describe our ongoing effort at the University of Chicago to explore exotic models of condensed matter using materials made of light. Starting with a quick discussion of "light as matter," I will then explain how we imbue photons with the essential attributes of a material particle: mass, charge, and interactions. Along the way, I will introduce the two "flavors" of photons that we employ for our photonic matter: optical photons trapped in Fabry-Perot cavities, and microwave photons trapped in superconducting resonators or transmon qubits. Finally, I will describe the first two materials that have emerged from our interacting photons: a Mott insulator of microwave photons and a topological fluid of optical photons. More broadly, building materials from light impacts both (a) the kinds of matter that can be assembled, and (b) the assembly process itself, providing a new window on the physics of correlated quantum matter.

Date and Time: 
Tuesday, April 23, 2019 - 4:30pm
Venue: 
Hewlett 201

Applied Physics/Physics Colloquium presents Computational Microscopy for phase retrieval, super-resolution and 3D imaging

Topic: 
Computational Microscopy for phase retrieval, super-resolution and 3D imaging
Abstract / Description: 

Computational imaging involves the joint design of imaging system hardware and software, optimizing across the entire pipeline from acquisition to reconstruction. Computers can replace bulky and expensive optics by solving computational inverse problems. This talk will describe new microscopes that use computational imaging to enable 3D, super-resolution and phase imaging with simple and inexpensive hardware. Our reconstruction algorithms are based on large-scale nonlinear non-convex optimization. Applications span optical bioimaging, X-ray lithography and atomic-resolution electron microscopy.

Date and Time: 
Tuesday, April 16, 2019 - 4:30pm
Venue: 
Hewlett 201

Applied Physics/Physics Colloquium presents Black Holes, Holography, and Entanglement

Topic: 
Black Holes, Holography, and Entanglement
Abstract / Description: 

Black holes have been instrumental in paving the way toward a quantum theory of gravity. Their elegant mathematical formulation has revealed that black holes behave as thermodynamic objects, which subsequently motivated the holographic principle. Its concrete realization, the gauge/gravity duality, offers a framework for elucidating the fundamental nature of spacetime, once we understand the map between the two sides of the duality sufficiently well. Research over the last decade has offered tantalizing hints that quantum entanglement plays a foundational role, ushering in more mysteries. This talk will give a broad-brush perspective on these themes and motivate considering a time-dependent context in order to gain further insight.

Date and Time: 
Tuesday, April 9, 2019 - 4:30pm
Venue: 
Hewlett 201

Pages

CS300 Seminar

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

John G. Linvill Distinguished Seminar on Electronic Systems Technology

Topic: 
Internet of Things and Internet of Energy for Connecting at Any Time and Any Place
Abstract / Description: 

In this presentation, I would like to discuss with you how to establish a sustainable and smart society through the internet of energy for connecting at any time and any place. I suspect that you have heard the phrase, "Internet of Energy" less often. The meaning of this phrase is simple. Because of a ubiquitous energy transmission system, you do not need to worry about a shortage of electric power. One of the most important items for establishing a sustainable society is [...]


"Inaugural Linvill Distinguished Seminar on Electronic Systems Technology," EE News, July 2018

 

Date and Time: 
Monday, January 14, 2019 - 4:30pm
Venue: 
Hewlett 200

Special Seminar: Formal Methods meets Machine Learning: Explorations in Cyber-Physical Systems Design

Topic: 
Formal Methods meets Machine Learning: Explorations in Cyber-Physical Systems Design
Abstract / Description: 

Cyber-physical systems (CPS) are computational systems tightly integrated with physical processes. Examples include modern automobiles, fly-by-wire aircraft, software-controlled medical devices, robots, and many more. In recent times, these systems have exploded in complexity due to the growing amount of software and networking integrated into physical environments via real-time control loops, as well as the growing use of machine learning and artificial intelligence (AI) techniques. At the same time, these systems must be designed with strong verifiable guarantees.

In this talk, I will describe our research explorations at the intersection of machine learning and formal methods that address some of the challenges in CPS design. First, I will describe how machine learning techniques can be blended with formal methods to address challenges in specification, design, and verification of industrial CPS. In particular, I will discuss the use of formal inductive synthesis --- algorithmic synthesis from examples with formal guarantees — for CPS design. Next, I will discuss how formal methods can be used to improve the level of assurance in systems that rely heavily on machine learning, such as autonomous vehicles using deep learning for perception. Both theory and industrial case studies will be discussed, with a special focus on the automotive domain. I will conclude with a brief discussion of the major remaining challenges posed by the use of machine learning and AI in CPS.

Date and Time: 
Monday, December 4, 2017 - 4:00pm
Venue: 
Gates 463A

SpaceX's journey on the road to mars

Topic: 
SpaceX's journey on the road to mars
Abstract / Description: 

SSI will be hosting Gwynne Shotwell — President and COO of SpaceX — to discuss SpaceX's journey on the road to mars. The event will be on Wednesday Oct 11th from 7pm - 8pm in Dinkelspiel Auditorium. After the talk, there will be a Q&A session hosted by Steve Jurvetson from DFJ Venture Capital.

Claim your tickets now on eventbright

 

Date and Time: 
Wednesday, October 11, 2017 - 7:00pm
Venue: 
Dinkelspiel Auditorium

CS Department Lecture Series (CS300)

Topic: 
Faculty speak about their research to new PhD students
Abstract / Description: 

Offered to incoming first-year PhD students in the Autumn quarter.

The seminar gives CS faculty the opportunity to speak about their research, which allows new CS PhD students the chance to learn about the professors and their research before permanently aligning.

4:30-5:15, Subhasish Mitra

5:15-6:00, Silvio Savarese

Date and Time: 
Wednesday, December 7, 2016 - 4:30pm to 6:00pm
Venue: 
200-305 Lane History Corner, Main Quad

CS Department Lecture Series (CS300)

Topic: 
Faculty speak about their research to new PhD students
Abstract / Description: 

Offered to incoming first-year PhD students in the Autumn quarter.

The seminar gives CS faculty the opportunity to speak about their research, which allows new CS PhD students the chance to learn about the professors and their research before permanently aligning.

4:30-5:15, Phil Levis

5:15-6:00, Ron Fedkiw

Date and Time: 
Monday, December 5, 2016 - 4:30pm to 6:00pm
Venue: 
200-305 Lane History Corner, Main Quad

CS Department Lecture Series (CS300)

Topic: 
Faculty speak about their research to new PhD students
Abstract / Description: 

Offered to incoming first-year PhD students in the Autumn quarter.

The seminar gives CS faculty the opportunity to speak about their research, which allows new CS PhD students the chance to learn about the professors and their research before permanently aligning.

4:30-5:15, Dan Boneh

5:15-6:00, Aaron Sidford

Date and Time: 
Wednesday, November 30, 2016 - 4:30pm to 6:00pm
Venue: 
200-305 Lane History Corner, Main Quad

CS Department Lecture Series (CS300)

Topic: 
Faculty speak about their research to new PhD students
Abstract / Description: 

Offered to incoming first-year PhD students in the Autumn quarter.

The seminar gives CS faculty the opportunity to speak about their research, which allows new CS PhD students the chance to learn about the professors and their research before permanently aligning.

4:30-5:15, John Mitchell

5:15-6:00, James Zou

Date and Time: 
Monday, November 28, 2016 - 4:30pm to 6:00pm
Venue: 
200-305 Lane History Corner, Main Quad

CS Department Lecture Series (CS300)

Topic: 
Faculty speak about their research to new PhD students
Abstract / Description: 

Offered to incoming first-year PhD students in the Autumn quarter.

The seminar gives CS faculty the opportunity to speak about their research, which allows new CS PhD students the chance to learn about the professors and their research before permanently aligning.

4:30-5:15, Emma Brunskill

5:15-6:00, Doug James

Date and Time: 
Wednesday, November 16, 2016 - 4:30pm to 6:00pm
Venue: 
200-305 Lane History Corner, Main Quad

CS Department Lecture Series (CS300)

Topic: 
Faculty speak about their research to new PhD students
Abstract / Description: 

Offered to incoming first-year PhD students in the Autumn quarter.

The seminar gives CS faculty the opportunity to speak about their research, which allows new CS PhD students the chance to learn about the professors and their research before permanently aligning.

4:30-5:15, James Landay

5:15-6:00, Dan Jurafsky

Date and Time: 
Monday, November 14, 2016 - 4:30pm to 6:00pm
Venue: 
200-305 Lane History Corner, Main Quad

Pages

EE380 Computer Systems Colloquium

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

EE380 Computer Systems Colloquium presents Deep Learning for Medical Diagnoses

Topic: 
Deep Learning for Medical Diagnoses
Abstract / Description: 

The use of algorithms in clinical care demands a very high performance level for accurate detection and classification of disease. Deep learning (DL) offers a powerful toolkit necessary to handle the complex variations present in medical data, which traditional statistical or machine learning approaches have historically been unable to capture. In this talk, I will describe the challenges and approaches for the development of high-performance DL algorithms and curation of datasets for problems in diagnostic radiology and cardiology. I will also discuss the use of these algorithms as diagnostic support tools for clinicians, and challenges for the potential translation of these algorithms from the lab setting to clinical practice.

Date and Time: 
Wednesday, April 17, 2019 - 4:30pm
Venue: 
Shriram 104

EE380 Computer Systems Colloquium presents "Instruction Sets Should Be Free: The Case For RISC-V"

Topic: 
Instruction Sets Should Be Free: The Case For RISC-V
Abstract / Description: 

The increasing popularity today of systems on a chip, where processors are just part of the design, calls into question why one of the most important interfaces is proprietary. We argue that:
There is no good technical reason not to have free, open instruction sets just as we have free, open networking standards and free, open operating systems.
The most likely first targets for a free, open instruction set are systems on a chip for the Internet of Things, which have low cost and power demands, and for Warehouse Scale Computers, which could benefit from viable alternatives to the 80x86 instruction set
The best architectural style for a free, open instruction set is RISC.


Given the time it takes to design an instruction set, it makes more sense to adopt an existing RISC free, open instruction set than to design a new one from scratch.
Among the existing RISC free, open instruction sets, RISC-V is the best and safest choice.

 

To learn more, see www.riscv.org

Date and Time: 
Wednesday, April 10, 2019 - 4:30pm
Venue: 
Shriram 104

Pages

Ginzton Lab

AP483 & AMO Seminar presents Optimizing Energy-Limited Photonic Systems by Using Photonic Devices Inefficiently

Topic: 
Optimizing Energy-Limited Photonic Systems by Using Photonic Devices Inefficiently
Abstract / Description: 

AP 483 & AMO Seminar Series
Time:
4:15 pm, every Monday (Refreshments begin at 4 pm)

Location:
Spilker Building Room 232

Date and Time: 
Monday, April 15, 2019 - 4:15pm
Venue: 
Spilker 232

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

OSA/SPIE, SPRC and Ginzton Lab present "Frequency comb-based nonlinear spectroscopy"

Topic: 
Frequency comb-based nonlinear spectroscopy
Abstract / Description: 

Rapid and precise measurements are and always have been of interest in science and technology partly because of their numerous practical applications. Since their development, frequency comb-based methods have revolutionized optical measurements. They simultaneously provide high resolution, high sensitivity, and rapid acquisition times. These methods are being developed for use in many fields, from atomic and molecular spectroscopy, to precision metrology, to spectral LIDAR and even atmospheric monitoring. However they cannot address the issues of inhomogeneously broadened transitions or sample heterogeneity. This is especially important for remote chemical sensing applications.

In this talk I will discuss a novel optical method, that I recently developed, which overcomes these limitations. I will demonstrate its capabilities for probing extremely weak fundamental processes as well as its applications for rapid and high resolution chemical sensing.

 

References:

B. Lomsadze, B. Smith and S. T. Cundiff. "Tri-comb spectroscopy". Nature Photonics 12, 676, 2018.
B. Lomsadze and S. T. Cundiff. "Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions." Physical Review Letters 120, 233401, 2018.
B. Lomsadze and S. T. Cundiff. "Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy". Science 357, 1389, 2017
B. Lomsadze and S. T. Cundiff. "Frequency comb-based four-wave-mixing spectroscopy". Optics letters 42, 2346, 2017

Date and Time: 
Wednesday, June 12, 2019 - 4:15pm
Venue: 
Allen 101X

RESCHEDULED: OSA/SPIE, SPRC and Ginzton Lab present "Frequency comb-based nonlinear spectroscopy"

Topic: 
RESCHEDULED: Frequency comb-based nonlinear spectroscopy: Bridging the gap between fundamental science and cutting-edge technology
Abstract / Description: 

RESCHEDULED for June 12

Rapid and precise measurements are and always have been of interest in science and technology partly because of their numerous practical applications. Since their development, frequency comb-based methods have revolutionized optical measurements. They simultaneously provide high resolution, high sensitivity, and rapid acquisition times. These methods are being developed for use in many fields, from atomic and molecular spectroscopy, to precision metrology, to spectral LIDAR and even atmospheric monitoring. However they cannot address the issues of inhomogeneously broadened transitions or sample heterogeneity. This is especially important for remote chemical sensing applications.

In this talk I will discuss a novel optical method, that I recently developed, which overcomes these limitations. I will demonstrate its capabilities for probing extremely weak fundamental processes as well as its applications for rapid and high resolution chemical sensing.

 

References:

B. Lomsadze, B. Smith and S. T. Cundiff. "Tri-comb spectroscopy". Nature Photonics 12, 676, 2018.
B. Lomsadze and S. T. Cundiff. "Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions." Physical Review Letters 120, 233401, 2018.
B. Lomsadze and S. T. Cundiff. "Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy". Science 357, 1389, 2017
B. Lomsadze and S. T. Cundiff. "Frequency comb-based four-wave-mixing spectroscopy". Optics letters 42, 2346, 2017

Date and Time: 
Wednesday, March 20, 2019 - 4:15pm
Venue: 
Allen 101X

AP483 Optics & Electronics Seminar presents Ultrafast X-ray diffraction imaging with Free Electron Lasers

Topic: 
Ultrafast X-ray diffraction imaging with Free Electron Lasers
Abstract / Description: 

The advent of X-ray Free Electron Lasers (FELs) opens the door for unprecedented studies on non-crystallin nanoparticles with high spatial and temporal resolutions. In the recent past, ultrafast X-ray imaging studies with intense, femtosecond short FEL pulses have elucidated hidden processes in individual fragile specimens, which are inaccessible with conventional imaging techniques. Examples include airborne soot particle formation [1], metastable states in the synthesis of metal nanoparticles [2] and transient vortices in superfluid quantum systems [3] . Theoretically, ultrafast coherent diffraction X-ray imaging (CDI) could achieve atomic resolution in combination with sub-femtosecond temporal precision. Currently, the spatial resolution of ultrafast X-ray CDI is limited to several nanometers due to a combination of several factors such as X-ray photon flux, image imperfections and ultimately, sample damage [4] .

In this talk, I will present several experimental studies, which address these limitations and/or demonstrate the potential of ultrafast CDI. In the first part of the talk, I will report on a novel "in-flight" holographic method which overcomes the phase problem and paves the way for high-resolution X-ray imaging in presence of noise and image imperfections [5]. The second part will focus on potential applications of ultrafast X-ray CDI such as visualization of irreversible light-induced dynamics at the nanoscale with nanometer and sub-femtosecond resolutions [6]. In the third part, I will present world's first diffraction images of heavy atom nanoparticles recorded with isolated soft X-ray attosecond pulses. The study indicates that the combination of the optimal pulse length and X-ray energy can significantly deviate from linear models and control over transient resonances might be an efficient pathway for the improvement of spatial resolution [7] .

In summary, ultrafast CDI is a powerful method for studies of transient non-equilibrium dynamics at the nanoscale. The increasing number of X-ray FEL facilities, and the constant improvement in accelerator and X-ray focusing technology will broaden our capabilities to observe transient states of matter. This development will have a significant impact on research fields such as catalysis, nanophotonics, matter under extreme conditions, light-matter interactions and biological studies.

[1] Loh, N. D. et al. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 486, 513–517 (2012).
[2] Barke, I. et al. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering. Nat. Commun. 6, (2015):6187.
[3] Gomez, L. F. et al. Shapes and vorticities of superfluid helium nanodroplets. Science 345, 906–909 (2014).
[4] Aquila, Andrew, et al., The linac coherent light source single particle imaging road map., Structur. Dyn. 2.4 (2015): 041701
[5] Gorkhover,T. et al., Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles. Nat. Phot. 10, (2016):93.
[6] Gorkhover,T.,et al., Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. Nat. Phot. 12.3, (2018): 150.
[7] Kuschel, S., et al, in prep.

Date and Time: 
Monday, January 14, 2019 - 4:15pm
Venue: 
Spilker 232

Pages

Information Systems Lab (ISL) Colloquium

ISL Colloquium presents "Decentralized control over unreliable communication links"

Topic: 
Decentralized control over unreliable communication links
Abstract / Description: 

Decentralized control problems have been a topic of significant research interest due to their relevance to multi-agent systems and large-scale distributed systems.The design of optimal decentralized control strategies has been investigated under various models for inter-controller communication such as graph-based communication models and communication with delays. A common feature of much of the prior work is that the underlying communication structure of the decentralized system is assumed to be fixed and unchanging. For example, several works assume a fixed communication graph among controllers whose edges describe perfect communication links between controllers. Similarly, when the communication graph incorporates delays, the delays are assumed to be fixed and known. This is a key limitation since in many situations communication among controllers may suffer from imperfections such as random packet loss and random packet delays. These imperfections introduce a new layer of uncertainty in the information structure that is not present in the models considered in prior work. In this talk, we will describe a decentralized LQG control problem where some of the communication links suffer from random packet loss. We will first identify optimal decentralized control strategies for finite horizon version of our problem. We will then discuss the infinite horizon problem and show that there are critical thresholds for packet loss probabilities above which no strategy can achieve finite cost and below which optimal strategies can be explicitly identified.

Date and Time: 
Thursday, April 18, 2019 - 4:15pm
Venue: 
Packard 101

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

ISL Colloquium presents "Learn to Communicate - Communicate to Learn"

Topic: 
Learn to Communicate - Communicate to Learn
Abstract / Description: 

Machine learning and communications are intrinsically connected. The fundamental problem of communications, as stated by Shannon, "reproducing at one point either exactly or approximately a message selected at another point," can be considered as a classification problem. With this connection in mind, I will focus on the fundamental joint source-channel coding problem using modern machine learning techniques. I will introduce uncoded "analog" schemes for wireless image transmission, and show their surprising performance both through simulations and practical implementation. This result will be used to motivate unsupervised learning techniques for wireless image transmission, leading to a "deep joint source-channel encoder" architecture, which behaves similarly to analog transmission, and not only improves upon state-of-the-art digital schemes, but also achieves graceful degradation with channel quality, and performs exceptionally well over fading channels despite not utilizing explicit pilot signals or channel state estimation.

In the second part of the talk, I will focus on distributed machine learning, particularly targeting wireless edge networks, and show that ideas from coding and communication theories can help improve their performance. Finally, I will introduce the novel concept of "over-the-air stochastic gradient descent" for wireless edge learning, and show that it significantly improves the efficiency of machine learning across bandwidth and power limited wireless devices compared to the standard digital approach that separates computation and communication. This will close the circle, making another strong case for analog communication in future communication systems.

Date and Time: 
Thursday, March 14, 2019 - 4:15pm
Venue: 
Packard 101

ISL Colloquium presents "Sensing the World Wirelessly: Perception in the Age of IoT"

Topic: 
Sensing the World Wirelessly: Perception in the Age of IoT
Abstract / Description: 

The success of wireless and mobile systems has led to a digital infrastructure that is integrated into the fabric of the physical world at a scale unimaginable two decades ago. This has come to be known as the internet of things, or the IoT. Batteryless devices constitute the largest component of this infrastructure, as they are attached to clothing, food, drugs, and manufacturing parts. However, due to their batteryless nature, these devices were assumed to be intrinsically limited in bandwidth, range, and sensing capability. To overcome these limitations, existing approaches required designing new hardware that replaces the hundreds of billions of devices already deployed.

In this talk, I will describe how our research enables transforming batteryless devices into powerful sensors without modifying their hardware in any way, thus bringing direct benefits to the billions of devices deployed in today's world. Specifically, I will describe how we can extract a sensing bandwidth from batteryless devices that is 10,000x larger than their communication bandwidth, and how we can extend their operation range by over 10x. I will also describe how we have designed novel inference algorithms and learning models that build on these techniques to deliver a variety of sensing tasks including sub-centimeter positioning, deep-tissue communication, and non-contact food sensing.

The systems we have built have transformative implications on smart environments, healthcare, manufacturing, and food safety. They enable agile robots to operate in non-line-of-sight environments where vision systems typically fail. They have led to the first demonstration of communication with deep-tissue batteryless micro-implants in a large living animal (pig) from meter-scale distances. Most recently, we demonstrated the potential of using these techniques to sense contaminated food in closed containers. I will conclude by describing how rethinking the abstractions of computing will enable us to bring the next generation of micro-computers to exciting new domains ranging from the human body to the depth of the ocean.

Date and Time: 
Thursday, March 7, 2019 - 4:15pm
Venue: 
Packard 101

ISL Colloquium and IT-Forum presents "Coding over Sets for DNA Storage"

Topic: 
Coding over Sets for DNA Storage
Abstract / Description: 

DNA based storage is a novel technology, where digital information is stored in synthetic DNA molecules. The recent advance in DNA sequencing methods and decrease in sequencing costs have paved the way for storage methods based on DNA. The natural stability of DNA molecules, (the genetic information from fossils is maintained over tens of thousands of years) motivate their use for long-term archival storage. Furthermore, because the information is stored on molecular levels, such storage systems have extremely high data densities. Recent experiments report data densities of 2 PB/gram, which corresponds to the capacity of a thousand conventional hard disk drives in one gram of DNA.

In this talk we present error-correcting codes for the storage of data in synthetic DNA. We investigate a storage model where data is represented by an unordered set of M sequences, each of length L. Errors within that model are a loss of whole sequences and point errors inside the sequences, such as insertions, deletions and substitutions. We derive Gilbert-Varshamov lower bounds and sphere packing upper bounds on achievable cardinalities of error-correcting codes within this storage model. We further propose explicit code constructions than can correct errors in such a storage system that can be encoded and decoded efficiently. Comparing the sizes of these codes to the upper bounds, we show that many of the constructions are close to optimal.

Date and Time: 
Friday, March 8, 2019 - 1:15pm
Venue: 
Packard 202

ISL Colloquium presents "Reinforcement Learning and Optimal Control: An Overview"

Topic: 
Reinforcement Learning and Optimal Control: An Overview
Abstract / Description: 

We will provide an overview of a book in preparation, which will provide a synthesis of optimization/control and artificial intelligence methodologies as they relate to sequential decision problems. In particular, we consider large and challenging multistage problems, which can be solved in principle by dynamic programming, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance. These methods are collectively referred to as reinforcement learning, and also by alternative names such as approximate dynamic programming, and neuro-dynamic programming. Our subject has benefited greatly from the interplay of ideas from optimal control and from artificial intelligence. One of the aims of the book is to explore the common boundary between these two fields and to form a bridge that is accessible by workers with a background in either field.

Date and Time: 
Monday, March 4, 2019 - 4:00pm
Venue: 
Packard 101

ISL Colloquium and IT-Forum presents "Compression for biological data analysis"

Topic: 
Compression for biological data analysis
Abstract / Description: 

Compression has for decades served primarily the utilitarian purpose of enabling easier storage and transmission of data. Here however, I show how compression can be used to better understand biological processes and assist in data analysis.

First, I will demonstrate the relationship between lossy compression and understanding the perceptual characteristics of downstream agents. Quartz, my lossy compression program for next-generation sequencing quality scores counterintuitively improves SNP calling, despite discarding 95% of quality scores, showing the oversensitivity of variant callers to sequencer noise. More recently, I developed HyperMinHash, a lossy floating-point compression of the popular MinHash Jaccard index sketch, that reduces the space-complexity from log(n) to loglog(n) by using the understanding that MinHash cares less about large hash values than smaller ones.

In the second part of this talk, I show how we exploit the compressive structure of biological data to speed up similarity search. I prove that by organizing the database to facilitate clustered search, our time-complexity scales with metric entropy (number of covering hyperspheres) if the fractal dimension of a dataset is low. This is the key insight behind our compressively accelerated versions of standard tools in genomics (CORA, 10-100x speedup for all-mapping of NGS reads), metagenomics (MICA, 3.5x speedup Diamond), and chemical informatics (Ammolite, 150x speedup SMSD).

Date and Time: 
Friday, February 1, 2019 - 1:15pm
Venue: 
Packard 202

IT Forum presents "Adapting Maximum Likelihood Theory in Modern Applications"

Topic: 
Adapting Maximum Likelihood Theory in Modern Applications
Abstract / Description: 

Maximum likelihood estimation (MLE) is influential because it can be easily applied to generate optimal, statistically efficient procedures for broad classes of estimation problems. Nonetheless, the theory does not apply to modern settings --- such as problems with computational, communication, or privacy considerations --- where our estimators have resource constraints. In this talk, I will introduce a modern maximum likelihood theory that addresses these issues, focusing specifically on procedures that must be computationally efficient or privacy- preserving. To do so, I first derive analogues of Fisher information for these applications, which allows a precise characterization of tradeoffs between statistical efficiency, privacy, and computation. To complete the development, I also describe a recipe that generates optimal statistical procedures (analogues of the MLE) in the new settings, showing how to achieve the new Fisher information lower bounds.

Date and Time: 
Friday, February 22, 2019 - 1:15pm
Venue: 
Packard 202

ISL Colloquium presents "Statistical Inference Under Local Information Constraints"

Topic: 
Statistical Inference Under Local Information Constraints
Abstract / Description: 

Independent samples from an unknown probability distribution p on a domain of size k are distributed across n players, with each player holding one sample. Each player can send a message to a central referee in a simultaneous message passing (SMP) model of communication, whose goal is to solve a pre-specified inference problem. The catch, however, is that each player cannot simply send their own sample to the referee; instead, the message they send must obey some (local) information constraint. For instance, each player may be limited to communicating only L bits, where L << log k; or they may seek to reveal as little information as possible, and preserve local differentially privacy.

We propose a general formulation for inference problems in this distributed setting, and instantiate it to two fundamental inference questions, learning and uniformity testing. We study the role of randomness for those questions, and obtain striking separations between public- and private-coin protocols for the latter, while showing the two settings are equally powerful for the former. (Put differently, "sharing with neighbors does help a lot for the test, but not really for learning.")

Based on joint works with Jayadev Acharya (Cornell University), Cody Freitag (Cornell University), and Himanshu Tyagi (IISc Bangalore).

Date and Time: 
Friday, February 1, 2019 - 1:15am
Venue: 
Packard 202

ISL Colloquium presents "Learning in Non-Stationary Environments: Near-Optimal Guarantees"

Topic: 
Learning in Non-Stationary Environments: Near-Optimal Guarantees
Abstract / Description: 

Motivated by scenarios in which heterogeneous autonomous agents interact, in this talk we present recent work on the development of learning algorithms with performance guarantees for both simultaneous and hierarchical decision-making. Adoption of new technologies is transforming application domains from intelligent infrastructure to e-commerce, allowing operators and intelligently augmented humans to make decisions rapidly as they engage with these systems. Algorithms and market mechanisms supporting interactions occur on multiple time-scales, face resource constraints and system dynamics, and are exposed to exogenous uncertainties, information asymmetries, and behavioral aspects of human decision-making. Techniques for synthesis and analysis of decision-making algorithms, for either inference or influence, that fundamentally depend on an assumption of environment stationarity often breakdown in this context. For instance, humans engaging with platform-based transportation services make decisions that are dependent on their immediate observations of the environment and past experience, both of which are functions of the decisions of other users, multi-timescale policies (e.g., dynamic pricing and fixed laws), and even environmental context that may be non-stationary (e.g., weather patterns or congestion). Implementation of algorithms designed assuming stationarity may lead to unintended or unforeseen consequences.

Stochastic models with high-probability guarantees that capture the dynamics and the decision-making behavior of autonomous agents are needed to support effective interventions such as physical control, economic incentives, or information shaping mechanisms. Two fundamental components are missing in the state-of-the-art: (i) a toolkit for analysis of interdependent learning processes and for adaptive inference in these settings, and (ii) certifiable algorithms for co-designing adaptive influence mechanisms that achieve measurable improvement in system-level performance while ensuring individual-level quality of service through design-in high-probability guarantees. In this talk, we discuss our work towards addressing these gaps. In particular, we provide (asymptotic and non-asymptotic) convergence guarantees for simultaneous play, multi-agent gradient-based learning (a class of algorithms that encompasses a broad set of multi-agent reinforcement learning algorithms) and performance guarantees (regret bounds) for hierarchical decision-making (incentive design) with bandit feedback in non-stationary, Markovian environments. Building on insights from these results, the talk concludes with a discussion of interesting future directions in the design of certifiable, robust algorithms for adaptive inference and influence.

Date and Time: 
Thursday, January 24, 2019 - 4:15pm
Venue: 
Packard 101

Pages

IT-Forum

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

IEEE IT Society, Santa Clara Valley Chapter presents Irena Fischer-Hwang

Topic: 
The future of lossy image compression: what machines can learn from humans
Abstract / Description: 

The availability of massive public image datasets appears to have hardly been exploited in image compression. In this work, we present a novel framework for image compression based on human image generation and publicly available images as "side information." Our framework consists of one human who describes images using text instructions to another, who is tasked with reconstructing the original image to the first human's satisfaction. These image reconstructions were then rated by human scorers on the Amazon Mechanical Turk platform and compared to reconstructions obtained by existing image compressors. While this setup lacks certain components typical of traditional compressors, the insights gained from these experiments offer a new perspective on designing image compressors of the future.

 

The Santa Clara Valley chapters of the IEEE Information Theory and Signal Processing societies are co-sponsors this event.

Date and Time: 
Wednesday, May 1, 2019 - 6:00pm
Venue: 
Packard 202

IT Forum presents "Universal Learning for Individual Data"

Topic: 
Universal Learning for Individual Data
Abstract / Description: 

Universal learning is considered from an information theoretic point of view following the universal prediction approach pursued in the 90's by F&Merhav. Interestingly, the extension to learning is not straight-forward. In previous works we considered on-line learning and supervised learning in a stochastic setting. Yet, the most challenging case is batch learning where prediction is done on a test sample once the entire training data is observed, in the individual setting where the features and labels, both training and test, are specific individual quantities. This work provides schemes that for any individual data compete with a "genie" (or reference) that knows the true test label. It suggests design criteria and derive the corresponding universal learning schemes. The main proposed scheme is termed Predictive Normalized Maximum Likelihood (pNML). As demonstrated, pNML learning and its variations provide robust, "stable" learning solutions that outperforms the current leading approach based on Empirical Risk Minimization (ERM). Furthermore, the pNMLconstruction provides a pointwise indication for the learnability that measures the uncertainty in learning the specific test challenge with the given training examples - thus the learner knows when it does not know. The improved performance of the pNML, the induced learnability measure and its utilization are demonstrated in several learning problems including deep neural networks models.

Joint work with Yaniv Fogel and Koby Bibas

Date and Time: 
Thursday, March 28, 2019 - 4:15pm
Venue: 
Packard 101

IT Forum presents "Harnessing nature to make wireless positioning practical and accurate"

Topic: 
Harnessing nature to make wireless positioning practical and accurate
Abstract / Description: 

Positioning has been the Holy Grail of wireless sensing research with a wide range of applications from tracking virtual reality devices to in-body implants. However, despite two decades of active research, a widely deployable system with high accuracy has always been elusive. Wireless signals reflected from objects in the environment interfere with and distort the signal from the intended target device, corrupting the position estimates. In order to fight this 'multipath' phenomenon, previous approaches built specialized wireless devices with huge antenna arrays or large bandwidths making them impractical for ubiquitous deployment. In this talk, I will introduce a new technique called 'Synthetic Aperture Radio' that harnesses, rather than fighting, the multipath that naturally occurs in the environment and exploits the device motion that naturally occurs in these applications. By applying this technique, I have demonstrated the first real-time and centimeter-level accurate positioning system using standard, off-the-shelf WiFi radios. Building on synthetic aperture radio technique, I have developed practical positioning systems for indoor navigation, tracking virtual reality accessories and resource constrained devices like endoscopic capsules. Looking forward, these techniques lay a foundation for utilizing ubiquitous wireless devices for developing important machine vision applications in various domains like medical sensing, physical security and autonomous vehicles.

Date and Time: 
Friday, March 15, 2019 - 1:15pm
Venue: 
Packard 202

ISL Colloquium and IT-Forum presents "Coding over Sets for DNA Storage"

Topic: 
Coding over Sets for DNA Storage
Abstract / Description: 

DNA based storage is a novel technology, where digital information is stored in synthetic DNA molecules. The recent advance in DNA sequencing methods and decrease in sequencing costs have paved the way for storage methods based on DNA. The natural stability of DNA molecules, (the genetic information from fossils is maintained over tens of thousands of years) motivate their use for long-term archival storage. Furthermore, because the information is stored on molecular levels, such storage systems have extremely high data densities. Recent experiments report data densities of 2 PB/gram, which corresponds to the capacity of a thousand conventional hard disk drives in one gram of DNA.

In this talk we present error-correcting codes for the storage of data in synthetic DNA. We investigate a storage model where data is represented by an unordered set of M sequences, each of length L. Errors within that model are a loss of whole sequences and point errors inside the sequences, such as insertions, deletions and substitutions. We derive Gilbert-Varshamov lower bounds and sphere packing upper bounds on achievable cardinalities of error-correcting codes within this storage model. We further propose explicit code constructions than can correct errors in such a storage system that can be encoded and decoded efficiently. Comparing the sizes of these codes to the upper bounds, we show that many of the constructions are close to optimal.

Date and Time: 
Friday, March 8, 2019 - 1:15pm
Venue: 
Packard 202

ISL Colloquium and IT-Forum presents "Compression for biological data analysis"

Topic: 
Compression for biological data analysis
Abstract / Description: 

Compression has for decades served primarily the utilitarian purpose of enabling easier storage and transmission of data. Here however, I show how compression can be used to better understand biological processes and assist in data analysis.

First, I will demonstrate the relationship between lossy compression and understanding the perceptual characteristics of downstream agents. Quartz, my lossy compression program for next-generation sequencing quality scores counterintuitively improves SNP calling, despite discarding 95% of quality scores, showing the oversensitivity of variant callers to sequencer noise. More recently, I developed HyperMinHash, a lossy floating-point compression of the popular MinHash Jaccard index sketch, that reduces the space-complexity from log(n) to loglog(n) by using the understanding that MinHash cares less about large hash values than smaller ones.

In the second part of this talk, I show how we exploit the compressive structure of biological data to speed up similarity search. I prove that by organizing the database to facilitate clustered search, our time-complexity scales with metric entropy (number of covering hyperspheres) if the fractal dimension of a dataset is low. This is the key insight behind our compressively accelerated versions of standard tools in genomics (CORA, 10-100x speedup for all-mapping of NGS reads), metagenomics (MICA, 3.5x speedup Diamond), and chemical informatics (Ammolite, 150x speedup SMSD).

Date and Time: 
Friday, February 1, 2019 - 1:15pm
Venue: 
Packard 202

IT Forum presents "Sub-packetization of Minimum Storage Regenerating codes"

Topic: 
Sub-packetization of Minimum Storage Regenerating codes: A lower bound and a work-around
Abstract / Description: 

Modern cloud storage systems need to store vast amounts of data in a fault tolerant manner, while also preserving data reliability and accessibility in the wake of frequent server failures. Traditional MDS (Maximum Distance Separable) codes provide the optimal trade-off between redundancy and number of worst-case erasures tolerated. Minimum storage regenerating (MSR) codes are a special sub-class of MDS codes that provide mechanisms for exact regeneration of a single code-block by downloading the minimum amount of information from the remaining code-blocks. As a result, MSR codes are attractive for use in distributed storage systems to ensure node repairs with optimal repair- bandwidth. However, all known constructions of MSR codes require large sub-packetization levels (which is a measure of the granularity to which a single vector codeword symbol needs to be divided into for efficient repair). This restricts the applicability of MSR codes in practice.

This talk will present a lower bound that exponentially large sub- packetization is inherent for MSR codes. We will also propose a natural relaxation of MSR codes that allows one to circumvent this lower bound, and present a general approach to construct MDS codes that significantly reduces the required sub-packetization level by incurring slightly higher repair-bandwidth as compared to MSR codes.

The lower bound is joint work with Omar Alrabiah, and the constructions are joint work with Ankt Rawat, Itzhak Tamo, and Klim Efremenko.

Date and Time: 
Wednesday, February 20, 2019 - 2:00pm
Venue: 
Gates 463A

IT Forum presents "Adapting Maximum Likelihood Theory in Modern Applications"

Topic: 
Adapting Maximum Likelihood Theory in Modern Applications
Abstract / Description: 

Maximum likelihood estimation (MLE) is influential because it can be easily applied to generate optimal, statistically efficient procedures for broad classes of estimation problems. Nonetheless, the theory does not apply to modern settings --- such as problems with computational, communication, or privacy considerations --- where our estimators have resource constraints. In this talk, I will introduce a modern maximum likelihood theory that addresses these issues, focusing specifically on procedures that must be computationally efficient or privacy- preserving. To do so, I first derive analogues of Fisher information for these applications, which allows a precise characterization of tradeoffs between statistical efficiency, privacy, and computation. To complete the development, I also describe a recipe that generates optimal statistical procedures (analogues of the MLE) in the new settings, showing how to achieve the new Fisher information lower bounds.

Date and Time: 
Friday, February 22, 2019 - 1:15pm
Venue: 
Packard 202

IT Forum presents "Student Evaluations, Quantifauxcation, and Gender Bias"

Topic: 
Student Evaluations, Quantifauxcation, and Gender Bias
Abstract / Description: 

Student evaluations of teaching (SET) are widely used in academic personnel decisions as a measure of teaching effectiveness. The way SET are used is statistically unsound--but worse, SET are biased and unreliable. Observational evidence shows that student ratings vary with instructor gender, ethnicity, and attractiveness; with course rigor, mathematical content, and format; and with students' grade expectations. Experiments show that the majority of student responses to some objective questions can be demonstrably false. A recent randomized experiment shows that giving students cookies increases SET scores. Randomized experiments show that SET are negatively associated with objective measures of teaching effectiveness and biased against female instructors by an amount that can cause more effective female instructors to get lower SET than less effective male instructors. Gender bias also affects how students rate objective aspects of teaching. It is not possible to adjust for the bias, because it depends on many factors, including course topic and student gender. Students are uniquely situated to observe some aspects of teaching and students' opinions matter. But for the purposes of evaluating and improving teaching quality, SET are biased, unreliable, and subject to strategic manipulation. Reliance on SET for employment decisions disadvantages protected groups and may violate federal law. For some administrators, risk mitigation might be a more persuasive argument than equity for ending reliance on SET in employment decisions: union arbitration and civil litigation over institutional use of SET are on the rise. Several major universities in the U.S. and Canada have already de-emphasized, substantially re-worked, or abandoned reliance on SET for personnel decisions.

Date and Time: 
Friday, February 8, 2019 - 1:15pm
Venue: 
Packard 202

Pages

Optics and Electronics Seminar

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

OSA/SPIE, SPRC and Ginzton Lab present "Frequency comb-based nonlinear spectroscopy"

Topic: 
Frequency comb-based nonlinear spectroscopy
Abstract / Description: 

Rapid and precise measurements are and always have been of interest in science and technology partly because of their numerous practical applications. Since their development, frequency comb-based methods have revolutionized optical measurements. They simultaneously provide high resolution, high sensitivity, and rapid acquisition times. These methods are being developed for use in many fields, from atomic and molecular spectroscopy, to precision metrology, to spectral LIDAR and even atmospheric monitoring. However they cannot address the issues of inhomogeneously broadened transitions or sample heterogeneity. This is especially important for remote chemical sensing applications.

In this talk I will discuss a novel optical method, that I recently developed, which overcomes these limitations. I will demonstrate its capabilities for probing extremely weak fundamental processes as well as its applications for rapid and high resolution chemical sensing.

 

References:

B. Lomsadze, B. Smith and S. T. Cundiff. "Tri-comb spectroscopy". Nature Photonics 12, 676, 2018.
B. Lomsadze and S. T. Cundiff. "Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions." Physical Review Letters 120, 233401, 2018.
B. Lomsadze and S. T. Cundiff. "Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy". Science 357, 1389, 2017
B. Lomsadze and S. T. Cundiff. "Frequency comb-based four-wave-mixing spectroscopy". Optics letters 42, 2346, 2017

Date and Time: 
Wednesday, June 12, 2019 - 4:15pm
Venue: 
Allen 101X

RESCHEDULED: OSA/SPIE, SPRC and Ginzton Lab present "Frequency comb-based nonlinear spectroscopy"

Topic: 
RESCHEDULED: Frequency comb-based nonlinear spectroscopy: Bridging the gap between fundamental science and cutting-edge technology
Abstract / Description: 

RESCHEDULED for June 12

Rapid and precise measurements are and always have been of interest in science and technology partly because of their numerous practical applications. Since their development, frequency comb-based methods have revolutionized optical measurements. They simultaneously provide high resolution, high sensitivity, and rapid acquisition times. These methods are being developed for use in many fields, from atomic and molecular spectroscopy, to precision metrology, to spectral LIDAR and even atmospheric monitoring. However they cannot address the issues of inhomogeneously broadened transitions or sample heterogeneity. This is especially important for remote chemical sensing applications.

In this talk I will discuss a novel optical method, that I recently developed, which overcomes these limitations. I will demonstrate its capabilities for probing extremely weak fundamental processes as well as its applications for rapid and high resolution chemical sensing.

 

References:

B. Lomsadze, B. Smith and S. T. Cundiff. "Tri-comb spectroscopy". Nature Photonics 12, 676, 2018.
B. Lomsadze and S. T. Cundiff. "Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions." Physical Review Letters 120, 233401, 2018.
B. Lomsadze and S. T. Cundiff. "Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy". Science 357, 1389, 2017
B. Lomsadze and S. T. Cundiff. "Frequency comb-based four-wave-mixing spectroscopy". Optics letters 42, 2346, 2017

Date and Time: 
Wednesday, March 20, 2019 - 4:15pm
Venue: 
Allen 101X

AP483 Optics & Electronics Seminar presents Ultrafast X-ray diffraction imaging with Free Electron Lasers

Topic: 
Ultrafast X-ray diffraction imaging with Free Electron Lasers
Abstract / Description: 

The advent of X-ray Free Electron Lasers (FELs) opens the door for unprecedented studies on non-crystallin nanoparticles with high spatial and temporal resolutions. In the recent past, ultrafast X-ray imaging studies with intense, femtosecond short FEL pulses have elucidated hidden processes in individual fragile specimens, which are inaccessible with conventional imaging techniques. Examples include airborne soot particle formation [1], metastable states in the synthesis of metal nanoparticles [2] and transient vortices in superfluid quantum systems [3] . Theoretically, ultrafast coherent diffraction X-ray imaging (CDI) could achieve atomic resolution in combination with sub-femtosecond temporal precision. Currently, the spatial resolution of ultrafast X-ray CDI is limited to several nanometers due to a combination of several factors such as X-ray photon flux, image imperfections and ultimately, sample damage [4] .

In this talk, I will present several experimental studies, which address these limitations and/or demonstrate the potential of ultrafast CDI. In the first part of the talk, I will report on a novel "in-flight" holographic method which overcomes the phase problem and paves the way for high-resolution X-ray imaging in presence of noise and image imperfections [5]. The second part will focus on potential applications of ultrafast X-ray CDI such as visualization of irreversible light-induced dynamics at the nanoscale with nanometer and sub-femtosecond resolutions [6]. In the third part, I will present world's first diffraction images of heavy atom nanoparticles recorded with isolated soft X-ray attosecond pulses. The study indicates that the combination of the optimal pulse length and X-ray energy can significantly deviate from linear models and control over transient resonances might be an efficient pathway for the improvement of spatial resolution [7] .

In summary, ultrafast CDI is a powerful method for studies of transient non-equilibrium dynamics at the nanoscale. The increasing number of X-ray FEL facilities, and the constant improvement in accelerator and X-ray focusing technology will broaden our capabilities to observe transient states of matter. This development will have a significant impact on research fields such as catalysis, nanophotonics, matter under extreme conditions, light-matter interactions and biological studies.

[1] Loh, N. D. et al. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 486, 513–517 (2012).
[2] Barke, I. et al. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering. Nat. Commun. 6, (2015):6187.
[3] Gomez, L. F. et al. Shapes and vorticities of superfluid helium nanodroplets. Science 345, 906–909 (2014).
[4] Aquila, Andrew, et al., The linac coherent light source single particle imaging road map., Structur. Dyn. 2.4 (2015): 041701
[5] Gorkhover,T. et al., Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles. Nat. Phot. 10, (2016):93.
[6] Gorkhover,T.,et al., Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. Nat. Phot. 12.3, (2018): 150.
[7] Kuschel, S., et al, in prep.

Date and Time: 
Monday, January 14, 2019 - 4:15pm
Venue: 
Spilker 232

John G. Linvill Distinguished Seminar on Electronic Systems Technology

Topic: 
Internet of Things and Internet of Energy for Connecting at Any Time and Any Place
Abstract / Description: 

In this presentation, I would like to discuss with you how to establish a sustainable and smart society through the internet of energy for connecting at any time and any place. I suspect that you have heard the phrase, "Internet of Energy" less often. The meaning of this phrase is simple. Because of a ubiquitous energy transmission system, you do not need to worry about a shortage of electric power. One of the most important items for establishing a sustainable society is [...]


"Inaugural Linvill Distinguished Seminar on Electronic Systems Technology," EE News, July 2018

 

Date and Time: 
Monday, January 14, 2019 - 4:30pm
Venue: 
Hewlett 200

Optics & Electronics Seminar presents New designer materials: Sculpting electromagnetic fields on the atomic scale

Topic: 
New designer materials: Sculpting electromagnetic fields on the atomic scale
Abstract / Description: 

New optical nanomaterials hold the potential for breakthroughs in a wide range of areas from ultrafast optoelectronics such as modulators, light sources and hyperspectral detectors, to efficient upconversion for energy applications, bio-sensing and on-chip components for quantum information science. An exciting opportunity to realize such new nanomaterials lies in controlling the local electromagnetic environment on the atomic- and molecular-scale, (~1-10 nm) which enables extreme local field enhancements. We use creative nanofabrication techniques at the interface between chemistry and physics to realize this new regime, together with advanced, ultrafast optical techniques to probe the emerging phenomena. Here, I will provide an overview of our recent research including high-speed thermal photodetectors, ultrafast spontaneous emission and enhanced biosensors.

Date and Time: 
Monday, November 26, 2018 - 4:15pm
Venue: 
Spilker 232

Detecting Single Photons with Superconductors

Topic: 
Detecting Single Photons with Superconductors
Abstract / Description: 

From space communications to quantum communications to sensing dark matter, ultrasenstive, ultrafast photodetectors are required. But conventional detector technologies often fall short, exhibiting noise, slow response times, poor sensitivity, or a combination of these issues. In contrast, superconducting detectors based on nanowires provide a unique combination of high speed, excellent efficiency, and low noise. Their underlying physical operating mechanism also provides a rich parameter space for application of physics across the optical, condensed-matter, and microwave domains. For example, we have recently used an ultra-slow plasmonic microwave mode in the nanowires to demonstrate single-photon-sensitive imaging. This rich physical parameter space for engineering has has resulted in improved device performance and extended the impact of these devices even further.

Date and Time: 
Tuesday, November 27, 2018 - 4:15pm
Venue: 
Packard 101

OSA/SPIE Seminar presents Photovoltaic Restoration of Sight in Retinal Degeneration

Topic: 
Photovoltaic Restoration of Sight in Retinal Degeneration
Abstract / Description: 

Retinal degenerative diseases lead to blindness due to loss of the "image capturing" photoreceptors, while neurons in the "image-processing" inner retinal layers are relatively well preserved. Information can be reintroduced into the visual system using electrical stimulation of the surviving inner retinal neurons. Some electronic retinal prosthetic systems have been already approved for clinical use, but they provide low resolution and involve very difficult implantation procedures.

We developed a photovoltaic subretinal prosthesis which converts light into pulsed electric current, stimulating the nearby inner retinal neurons. Visual information is projected onto the retina from video goggles using pulsed nearinfrared (~880nm) light. This design avoids the use of bulky electronics and wiring, thereby greatly reducing the surgical complexity. Optical activation of the photovoltaic pixels allows scaling the implants to thousands of electrodes. In preclinical studies, we found that prosthetic vision with subretinal implants preserves many features of natural vision, including flicker fusion at high frequencies (>20 Hz), adaptation to static images, center-surround organization and non-linear summation of subunits in receptive fields, providing high spatial resolution. Results of the clinical trial with our implants (PRIMA, Pixium Vision) having 100µm pixels, as well as preclinical measurements with 75 and 55µm pixels, confirm that spatial resolution of prosthetic vision can reach the sampling density limit.

For a broad acceptance of this technology by patients who lost central vision due to age-related macular degeneration, visual acuity should exceed 20/100, which requires pixels smaller than 25µm. I will describe the fundamental limitations in electro-neural interfaces and 3-dimensional configurations which should enable such a high spatial resolution. Ease of implantation of these wireless arrays, combined with high resolution opens the door to highly functional restoration of sight.

Date and Time: 
Thursday, November 15, 2018 - 3:45pm
Venue: 
Shriram 262

AP483, Ginzton Lab, & AMO Seminar Series presents Impact of Structural Correlation and Monomer Heterogeneity in the Phase Behavior of Soft Materials and Chromosomal DNA

Topic: 
Impact of Structural Correlation and Monomer Heterogeneity in the Phase Behavior of Soft Materials and Chromosomal DNA
Abstract / Description: 

Polymer self-assembly plays a critical role in a range of soft-material applications and in the organization of chromosomal DNA in living cells. In many cases, the polymer chains are composed of incompatible monomers that are not regularly arranged along the chains. The resulting phase segregation exhibits considerable heterogeneity in the microstructures, and the size scale of these morphologies can be comparable to the statistical correlation that arises from the molecular rigidity of the polymer chains. To establish a predictive understanding of these effects, molecular models must retain sufficient detail to capture molecular elasticity and sequence heterogeneity. This talk highlights efforts to capture these effects using analytical theory and computational modeling. First, we demonstrate the impact of structural rigidity on the phase segregation of copolymer chain in the melt phase, resulting in non-universal phase phenomena due to the interplay of concentration fluctuations and structural correlation. We then demonstrate how these effects impact the phase behavior in statistical random copolymers and in heterogeneous copolymers based on chromosomal DNA properties. With these results, we demonstrate that the spatial segregation of DNA in living cells can be predicted using a heterogeneous copolymer model of microphase segregation.

Date and Time: 
Monday, November 5, 2018 - 4:15pm
Venue: 
Spilker 232

OSA/SPIE Seminar: Entanglement across disciplines

Topic: 
Entanglement across disciplines
Abstract / Description: 

As physicists or engineers we may be aware that philosophers and historians have long been interested in quantum theory and its potential ontological implications. Over the past few decades, diverse new branches of the humanities and social sciences have begun to grapple with aspects of quantum physics and to offer radical interpretive approaches. In this talk I'll briefly introduce some of these developments and then invite the audience to participate in an open discussion. The presentation will be non-technical in nature but I'll assume that everyone is familiar with the structure and application of quantum theory.

Date and Time: 
Wednesday, October 31, 2018 - 4:00pm
Venue: 
Spilker 232

Pages

SCIEN Talk

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

SCIEN presents "Augmented Reality Handbooks"

Topic: 
Augmented Reality Handbooks
Abstract / Description: 

Handbooks are an essential requirement for understanding and using many artifacts found in our daily life. We use handbooks to understand how things work and how to maintain them. Most handbooks still exist on paper relying on graphical illustrations and accompanying textual explanations to convey the relevant information to the reader. With the success of video sharing platforms a large body of video tutorials available for nearly every aspect of life became available. Video tutorials can often expand printed handbooks with the demonstrations of actions required to solve certain tasks. However, interpreting printed manuals and video tutorials often requires a certain mental effort since users have to match printed images or video frames with the physical object in their environment.


Augmented Reality (AR) has been demonstrated to be effective of presenting information traditionally provided in printed handbooks and video tutorials. However, creating interactive illustrative graphics for AR is costly and requires specially trained authors. In this this talk, I will present research towards the automation of the authoring process of AR handbooks by interactively retargeting conventional, two-dimensional image and video data into three-dimensional AR handbooks. In addition, I will present interaction, visualization and rendering techniques tailored for AR handbooks.

Date and Time: 
Wednesday, June 5, 2019 - 4:30pm
Venue: 
Packard 101

SCIEN presents "Computational Imaging at Light"

Topic: 
Computational Imaging at Light
Abstract / Description: 

Light develops computational imaging technologies that utilize heterogenous constellations of small cameras to create sophisticated imaging effects. This enables the company to provide hardware solutions that are compact – they can easily fit into a cell phone, or a similar small form factor. In this talk, I will review the recent progress of computational imaging research done at the company.

Date and Time: 
Wednesday, May 29, 2019 - 4:30pm
Venue: 
Packard 101

SCIEN presents "Phase change materials as functional photonic elements in future computing and displays"

Topic: 
Phase change materials as functional photonic elements in future computing and displays
Abstract / Description: 

Photonics has always been the technology of the future. Light is faster, can multiplex etc. have all been "good" arguments for several decades and the ushering in of optical computing has perpetually been just a few years away. However, over the last decade, with the advent of micro-and nanofabrication techniques and phenomenal advances in photonics, that era seems to have finally arrived. The ability to create integrated optical circuits on a chip is near. But (and yes, there's always a but) you need "functional" materials that can be used to control and manipulate this flow of information. In electronics, doping silicon results in one of the most versatile functional materials ever employed by humanity. And that can used to efficiently route electrical signals. How do you do that optically? I hope to convince you that whatever route photonics takes, a class of materials known as phase change materials, will play a key role in its commercialization. These materials can be addressed electrically, and whilst this can be used to control optical signals on photonic circuits this can also be used to create displays and smart windows. In this talk, I hope to give a whistle-stop tour of these applications of these materials with a view towards their near-term applications in displays, and their longer-term potential ranging from integrated photonic memories to machine-learning hardware components.

Date and Time: 
Wednesday, May 15, 2019 - 4:30pm
Venue: 
Packard 101

SCIEN presents "Computational Imaging with Single-Photon Detectors"

Topic: 
Computational Imaging with Single-Photon Detectors
Abstract / Description: 

Active 3D imaging systems, such as LIDAR, are becoming increasingly prevalent for applications in autonomous vehicle navigation, remote sensing, human-computer interaction, and more. These imaging systems capture distance by directly measuring the time it takes for short pulses of light to travel to a point and return. With emerging sensor technology we can detect down to single arriving photons and identify their arrival at picosecond timescales, enabling new and exciting imaging modalities. In this talk, I discuss trillion-frame-per-second imaging, efficient depth imaging with sparse photon detections, and imaging objects hidden from direct line of sight.

Date and Time: 
Wednesday, May 8, 2019 - 4:30pm
Venue: 
Packard 101

SCIEN presents "3D Computer Vision: Challenges and Beyond"

Topic: 
3D Computer Vision: Challenges and Beyond
Abstract / Description: 

3D Computer Vision (3D Vision) techniques have been the key solutions to various scene perception problems such as depth from image(s), camera/object pose estimation, localization and 3D reconstruction of a scene. These solutions are the major part of many AI applications including AR/VR, autonomous driving and robotics. In this talk, I will first review several categories of 3D Vision problems and their challenges. Given the category of static scene perception, I will introduce several learning-based depth estimation methods such as PlaneRCNN, Neural RGBD, and camera pose estimation methods including MapNet as well as few registration algorithms deployed in NVIDIA's products. I will then introduce more challenging real world scenarios where scenes contain non-stationary rigid changes, non-rigid motions, or varying appearance due to the reflectance and lighting changes, which can cause scene reconstruction to fail due to the view dependent properties. I will discuss several solutions to these problems and conclude by summarizing the future directions for 3D Vision research that are being conducted by NVIDIA's learning and perception research (LPR) team.

Date and Time: 
Wednesday, May 1, 2019 - 4:30pm
Venue: 
Packard 101

SCIEN presents "Challenges in surgical imaging: Surgical and pathological devices"

Topic: 
Challenges in surgical imaging: Surgical and pathological devices
Abstract / Description: 

Cancer is a surgically treated disease; almost 80% of early stage solid tumors undergo surgery at some point in their treatment course. The biggest gap in quality remains the high rate of tumor-positive margins in surgical resections. The biggest barrier is that only a limited amount of the tissue can be sampled for frozen section analysis (< 5%). The biggest challenge is to develop equipment to direct frozen section analysis to the most area on the specimen most likely to contain a positive margin. To this end, we developed intraoperative devices to leverage molecular imaging during and immediately after cancer resections.

Date and Time: 
Wednesday, April 24, 2019 - 4:30pm
Venue: 
Packard 101

SCIEN presents "Imaging a Black Hole with the Event Horizon Telescope"

Topic: 
Imaging a Black Hole with the Event Horizon Telescope
Abstract / Description: 

This talk will present the methods and procedures used to produce the first results from the Event Horizon Telescope. It is theorized that a black hole will leave a "shadow" on a background of hot gas. Taking a picture of this black hole shadow could help to address a number of important scientific questions, both on the nature of black holes and the validity of general relativity. Unfortunately, due to its small size, traditional imaging approaches require an Earth-sized radio telescope. In this talk, I discuss techniques we have developed to photograph a black hole using the Event Horizon Telescope, a network of telescopes scattered across the globe. Imaging a black hole's structure with this computational telescope requires us to reconstruct images from sparse measurements, heavily corrupted by atmospheric error.

Date and Time: 
Wednesday, April 17, 2019 - 4:45pm
Venue: 
Hewlett 200

SCIEN presents "syGlass: Visualization, Annotation, and Communication of Very Large Image Volumes in Virtual Reality"

Topic: 
syGlass: Visualization, Annotation, and Communication of Very Large Image Volumes in Virtual Reality
Abstract / Description: 

Scientific researchers now utilize advanced microscopes to collect very large volumes of image data. These volumes often contain morphologically complex structures that can be difficulty to comprehend on a 2D monitor, even with 3D projection. syGlass is a software stack designed specifically for the visualization, exploration, and annotation of very large image volumes in virtual reality. This technology provides crucial advantages to exploring 3D volumetric data by correctly leveraging neurological processes and pipelines in the visual cortex, reducing cognitive load and search times, while increasing insight and annotation accuracy. The talk will provide a brief overview of new microscope technology, a description of the syGlass stack and product, some real use-cases from various labs around the world, and conclude with predictions and plans for the future of scientific communication.

Date and Time: 
Wednesday, April 3, 2019 - 4:30pm
Venue: 
Packard 101

SCIEN Colloquium and EE292E present "Fundamental Limits of Cell Phone Cameras"

Topic: 
Fundamental Limits of Cell Phone Cameras
Abstract / Description: 

For the vast majority of people in the world, the best camera they have ever owned is in their current cell phone. Sales of phone camera modules approached $30 billion in 2018, almost three times the sales of all lasers, and will soon exceed four times the sales of all lasers. This is one of the most ubiquitous and successful optical devices ever. Fundamental laws of physics limit the performance of smartphone cameras, and these laws act against the marketing-driven aspiration for thinner and thinner camera modules. I shall show that the single most important optical parameter is the lens diameter D.

Date and Time: 
Wednesday, March 6, 2019 - 4:30pm
Venue: 
Packard 101

Pages

SmartGrid

Smart Grid Seminar: From Grid Eye to Grid Mind

Topic: 
From Grid Eye to Grid Mind -Data-driven Autonomous Grid Dispatch and Control Based on PMU Measurements
Abstract / Description: 

Power systems are facing grand challenges from increasing dynamics and stochastics from both the generation and the demand sides. This has caused great difficulty in designing and implementing optimal control for the grid in real time. Tremendous efforts have been spent in the past on computational methods and advanced modeling techniques that provide faster and better situational awareness, based on measurements from advanced grid sensors, PMU as an example. However, as grid operators are heavily involved in the decision-making process, the entire procedure has not been made fully automated, limiting the potential of such applications. That is, not only does the 'grid' need to perceive faster, it also needs to think and act faster. Towards this end, sub-second autonomous control schemes need to be developed. Over the past years, the PMU & System Analytics Group at GEIRI North America has built up an autonomous grid dispatch and control platform using deep reinforcement learning, the Grid Mind. Combined with Grid Eye, the grid monitoring and situational awareness platform, Grid Mind has demonstrated promise in helping address the pressing issues modern power systems faces. This talk will summarize this developmental effort while focusing on the key technologies utilized for the Grid Mind framework.

Date and Time: 
Thursday, May 9, 2019 - 1:30pm
Venue: 
Y2E2 111

Smart Grid Seminar: Integration of Electric Vehicles

Topic: 
Engineering System Integration of Renewable Energy, Water, and Electric Vehicles: Perspectives from New England & Abu Dhabi
Abstract / Description: 

Recently, the academic and industrial literature has arrived at a consensus in which the electric power grid evolves to a more intelligent, responsive, and dynamic system that propels the sustainable energy transition. This evolution is caused by several drivers including decarbonization, growing electricity demand, deregulation of electricity markets, active end-user participation, and digital innovations in energy technologies. On the supply side, the introduction of variable energy resources (VERs), like solar and wind, necessitates fundamental changes in the power grid's dynamic operation. VER forecasts are uncertain and their profiles are intermittent thus requiring greater quantities of operating reserves. In such a case, fast-ramping natural gas and hydro-electric power plants take on a prominent grid balancing role. At higher levels of solar PV and wind generation, dispatchable demand-side resources become the only remaining option for grid balancing. These devices are not just energy artifacts, but also exist within other engineering systems. Consequently, their integration gives rise to new multi-disciplinary challenges such as electrified transportation and the energy-water nexus. This presentation seeks to shed light on the increasingly intertwined futures of energy, water, and transportation resources. It draws upon three full-scale case studies: The ISO New England System Operational Analysis and Renewable Energy Integration Study, New England Energy-Water Nexus Study, and Abu Dhabi Electric Vehicle Integration Study. Together, these studies show that while all three types of resources have the potential to disrupt the other, they can also be harmonized to create sustainable synergies across all three engineering systems

Date and Time: 
Thursday, April 18, 2019 - 1:30pm
Venue: 
Y2E2 111

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

SmartGrid Seminar presents "New Hope for Smart Meter Data Analytics"

Topic: 
New Hope for Smart Meter Data Analytics
Abstract / Description: 

The deployment of smart meters throughout California a decade ago resulted in a host of startups with ideas to leverage the new wealth of data to reduce energy consumption and customer bills. But few if any profitable businesses emerged. More recently, new state legislation and regulatory changes support a "pay for performance" approach to energy efficiency that holds great promise for innovative data analytics. This talk will focus on the opportunity, HEA's participation, and the remaining barriers. needs, without needing reformulations of existing scheduling approaches, and therefore to be able to use them in actual system operation.

Date and Time: 
Thursday, April 11, 2019 - 1:30pm
Venue: 
Y2E2 111

John G. Linvill Distinguished Seminar on Electronic Systems Technology

Topic: 
Internet of Things and Internet of Energy for Connecting at Any Time and Any Place
Abstract / Description: 

In this presentation, I would like to discuss with you how to establish a sustainable and smart society through the internet of energy for connecting at any time and any place. I suspect that you have heard the phrase, "Internet of Energy" less often. The meaning of this phrase is simple. Because of a ubiquitous energy transmission system, you do not need to worry about a shortage of electric power. One of the most important items for establishing a sustainable society is [...]


"Inaugural Linvill Distinguished Seminar on Electronic Systems Technology," EE News, July 2018

 

Date and Time: 
Monday, January 14, 2019 - 4:30pm
Venue: 
Hewlett 200

SmartGrid Seminar presents "Electricity Network Design and Operation in an Era of Solar and Storage"

Topic: 
Electricity Network Design and Operation in an Era of Solar and Storage
Abstract / Description: 

As prices for solar photovoltaics and battery energy storage plummet, grids around the globe are undergoing tremendous changes. How should we design and operate grids in the future in the presence of these technologies? This talk will cover some of my group's recent efforts to answer this question, focusing on a new approach to decentralized network optimization – a variant of the primal-dual subgradient method — that can be used to enable grid-integration of distributed energy resources such as solar photovoltaics, batteries and electric vehicles. I will then discuss how grids should be built in the future when distributed energy resource costs are so low. Using a simple concept called an iso-reliability curve, I will explain a method to identify cost-optimal fully decentralized systems – i.e. standalone solar home systems. After applying this method to a large solar resource dataset, I will present results indicating that in many unelectrified parts of the world, future decentralized systems will be able to deliver electricity at costs and reliabilities better than existing centralized grids.


The seminars are scheduled for 1:30 pm on the dates listed above. The speakers are renowned scholars or industry experts in power and energy systems. We believe they will bring novel insights and fruitful discussions to Stanford. This seminar is offered as a 1 unit seminar course, CEE 272T/EE292T. Interested students can take this seminar course for credit by completing a project based on the topics presented in this course.

 

Yours sincerely,
Smart Grid Seminar Organization Team,

Ram Rajagopal, Associate Professor, Civil & Environmental Engineering, and Electrical Engineering
Sila Kiliccote, Managing Director of Grid Innovations, Bits & Watts 
Chin-Woo Tan, Director, Stanford Smart Grid Lab 
Yuting Ji, Postdoctoral Scholar, Civil and Environmental Engineering

Date and Time: 
Thursday, December 6, 2018 - 1:30pm
Venue: 
Y2E2 111

SmartGrid Seminar: Battery storage

Topic: 
Battery storage: New Applications, Markets and Business Models
Abstract / Description: 

Since 2015, Tesla has installed a total of over one gigawatt-hour of energy storage that is critical for using renewable energy at scale. Over 20,000 customers across 40 countries are using Tesla stationary storage products for a variety of sustainable energy applications: powering filtration systems for clean water in Puerto Rico, stabilizing the grid in Australia, cooling classrooms in Hawaii, and powering entire islands in the South Pacific, etc. This talk will introduce the general efforts of Tesla's Energy Optimization Team, which develops the "brain" of its energy storage products. Optimization and machine learning techniques are utilized on all different products. A few recent projects will also be presented.


The seminars are scheduled for 1:30 pm on the dates listed above. The speakers are renowned scholars or industry experts in power and energy systems. We believe they will bring novel insights and fruitful discussions to Stanford. This seminar is offered as a 1 unit seminar course, CEE 272T/EE292T. Interested students can take this seminar course for credit by completing a project based on the topics presented in this course.

 

Yours sincerely,
Smart Grid Seminar Organization Team,

Ram Rajagopal, Associate Professor, Civil & Environmental Engineering, and Electrical Engineering
Sila Kiliccote, Managing Director of Grid Innovations, Bits & Watts 
Chin-Woo Tan, Director, Stanford Smart Grid Lab 
Yuting Ji, Postdoctoral Scholar, Civil and Environmental Engineering

Date and Time: 
Thursday, November 15, 2018 - 1:30pm
Venue: 
Y2E2 111

SmartGrid Seminar presents Power Electronics: A Key Enabling Technology for Smart Grid

Topic: 
Power Electronics: A Key Enabling Technology for Smart Grid
Abstract / Description: 

Power electronic converters impact all aspects of power systems – generation (renewable), transmission, distribution and end use. Power electronics is the key technology that enables reliable and secure integration of very large-scale renewable resources to the grid, new architectures including micro-grids, distributed grid control, and the rapid shift to electric transportation. This talk will highlight power electronics and controls in advanced PV inverters, wind energy systems, solid-state transformers and EV infrastructure. Key concepts that explain how the advanced functionalities are realized will be described. Recent advances in high voltage power electronics with wide bandgap devices, new topologies, and emerging trends and research challenges will be presented.


The seminars are scheduled for 1:30 pm on the dates listed above. The speakers are renowned scholars or industry experts in power and energy systems. We believe they will bring novel insights and fruitful discussions to Stanford. This seminar is offered as a 1 unit seminar course, CEE 272T/EE292T. Interested students can take this seminar course for credit by completing a project based on the topics presented in this course.

 

Yours sincerely,
Smart Grid Seminar Organization Team,

Ram Rajagopal, Associate Professor, Civil & Environmental Engineering, and Electrical Engineering
Sila Kiliccote, Managing Director of Grid Innovations, Bits & Watts
Chin-Woo Tan, Director, Stanford Smart Grid Lab
Yuting Ji, Postdoctoral Scholar, Civil and Environmental Engineering

Date and Time: 
Thursday, November 8, 2018 - 1:30pm
Venue: 
Y2E2 111

SmartGrid Seminar: Clean Energy at the Crossroads: A Look Ahead Through the Eyes of an Environmental Economist

Topic: 
Clean Energy at the Crossroads: A Look Ahead Through the Eyes of an Environmental Economist
Abstract / Description: 

California has the will, ambition, technology and legal requirement to decarbonize our energy sector by 2045. In the dozen years since passage of AB32, we have made great progress but we may be making some grave mistakes. In this discussion, Dr. Fine describes how distributed energy resources are presenting new opportunities in distribution resources, transmission and procurement planning, and market reforms that will determine if our clean energy future is one that is affordable for all.

Date and Time: 
Thursday, October 11, 2018 - 1:30pm
Venue: 
Y2E2 111

Pages

Stanford's NetSeminar

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

John G. Linvill Distinguished Seminar on Electronic Systems Technology

Topic: 
Internet of Things and Internet of Energy for Connecting at Any Time and Any Place
Abstract / Description: 

In this presentation, I would like to discuss with you how to establish a sustainable and smart society through the internet of energy for connecting at any time and any place. I suspect that you have heard the phrase, "Internet of Energy" less often. The meaning of this phrase is simple. Because of a ubiquitous energy transmission system, you do not need to worry about a shortage of electric power. One of the most important items for establishing a sustainable society is [...]


"Inaugural Linvill Distinguished Seminar on Electronic Systems Technology," EE News, July 2018

 

Date and Time: 
Monday, January 14, 2019 - 4:30pm
Venue: 
Hewlett 200

Claude E. Shannon's 100th Birthday

Topic: 
Centennial year of the 'Father of the Information Age'
Abstract / Description: 

From UCLA Shannon Centennial Celebration website:

Claude Shannon was an American mathematician, electrical engineer, and cryptographer known as "the father of information theory". Shannon founded information theory and is perhaps equally well known for founding both digital computer and digital circuit design theory. Shannon also laid the foundations of cryptography and did basic work on code breaking and secure telecommunications.

 

Events taking place around the world are listed at IEEE Information Theory Society.

Date and Time: 
Saturday, April 30, 2016 - 12:00pm
Venue: 
N/A

NetSeminar

Topic: 
BlindBox: Deep Packet Inspection over Encrypted Traffic
Abstract / Description: 

SIGCOMM 2015, Joint work with: Justine Sherry, Chang Lan, and Sylvia Ratnasamy

Many network middleboxes perform deep packet inspection (DPI), a set of useful tasks which examine packet payloads. These tasks include intrusion detection (IDS), exfiltration detection, and parental filtering. However, a long-standing issue is that once packets are sent over HTTPS, middleboxes can no longer accomplish their tasks because the payloads are encrypted. Hence, one is faced with the choice of only one of two desirable properties: the functionality of middleboxes and the privacy of encryption.

We propose BlindBox, the first system that simultaneously provides both of these properties. The approach of BlindBox is to perform the deep-packet inspection directly on the encrypted traffic. BlindBox realizes this approach through a new protocol and new encryption schemes. We demonstrate that BlindBox enables applications such as IDS, exfiltration detection and parental filtering, and supports real rulesets from both open-source and industrial DPI systems. We implemented BlindBox and showed that it is practical for settings with long-lived HTTPS connections. Moreover, its core encryption scheme is 3-6 orders of magnitude faster than existing relevant cryptographic schemes.

Date and Time: 
Wednesday, November 11, 2015 - 12:15pm to 1:30pm
Venue: 
Packard 202

NetSeminar

Topic: 
Precise localization and high throughput backscatter using WiFi signals
Abstract / Description: 

Indoor localization holds great promise to enable applications like location-based advertising, indoor navigation, inventory monitoring and management. SpotFi is an accurate indoor localization system that can be deployed on commodity WiFi infrastructure. SpotFi only uses information that is already exposed by WiFi chips and does not require any hardware or firmware changes, yet achieves the same accuracy as state-of-the-art localization systems.

We then talk about BackFi, a novel communication system that enables high throughput, long range communication between very low power backscatter IoT sensors and WiFi APs using ambient WiFi transmissions as the excitation signal. We show via prototypes and experiments that it is possible to achieve communication rates of up to 5 Mbps at a range of 1 m and 1 Mbps at a range of 5 meters. Such performance is an order to three orders of magnitude better than the best known prior WiFi backscatter system.

Date and Time: 
Thursday, October 15, 2015 - 12:15pm to 1:30pm
Venue: 
Gates 104

NetSeminar

Topic: 
BlindBox: Deep Packet Inspection over Encrypted Traffic
Abstract / Description: 

SIGCOMM 2015, Joint work with: Justine Sherry, Chang Lan, and Sylvia Ratnasamy

Many network middleboxes perform deep packet inspection (DPI), a set of useful tasks which examine packet payloads. These tasks include intrusion detection (IDS), exfiltration detection, and parental filtering. However, a long-standing issue is that once packets are sent over HTTPS, middleboxes can no longer accomplish their tasks because the payloads are encrypted. Hence, one is faced with the choice of only one of two desirable properties: the functionality of middleboxes and the privacy of encryption.

We propose BlindBox, the first system that simultaneously provides both of these properties. The approach of BlindBox is to perform the deep-packet inspection directly on the encrypted traffic. BlindBox realizes this approach through a new protocol and new encryption schemes. We demonstrate that BlindBox enables applications such as IDS, exfiltration detection and parental filtering, and supports real rulesets from both open-source and industrial DPI systems. We implemented BlindBox and showed that it is practical for settings with long-lived HTTPS connections. Moreover, its core encryption scheme is 3-6 orders of magnitude faster than existing relevant cryptographic schemes.

Date and Time: 
Wednesday, October 7, 2015 - 12:15pm to 1:30pm
Venue: 
AllenX Auditorium

Pages

Statistics and Probability Seminars

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

OSA/SPIE, SPRC and Ginzton Lab present "Frequency comb-based nonlinear spectroscopy"

Topic: 
Frequency comb-based nonlinear spectroscopy
Abstract / Description: 

Rapid and precise measurements are and always have been of interest in science and technology partly because of their numerous practical applications. Since their development, frequency comb-based methods have revolutionized optical measurements. They simultaneously provide high resolution, high sensitivity, and rapid acquisition times. These methods are being developed for use in many fields, from atomic and molecular spectroscopy, to precision metrology, to spectral LIDAR and even atmospheric monitoring. However they cannot address the issues of inhomogeneously broadened transitions or sample heterogeneity. This is especially important for remote chemical sensing applications.

In this talk I will discuss a novel optical method, that I recently developed, which overcomes these limitations. I will demonstrate its capabilities for probing extremely weak fundamental processes as well as its applications for rapid and high resolution chemical sensing.

 

References:

B. Lomsadze, B. Smith and S. T. Cundiff. "Tri-comb spectroscopy". Nature Photonics 12, 676, 2018.
B. Lomsadze and S. T. Cundiff. "Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions." Physical Review Letters 120, 233401, 2018.
B. Lomsadze and S. T. Cundiff. "Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy". Science 357, 1389, 2017
B. Lomsadze and S. T. Cundiff. "Frequency comb-based four-wave-mixing spectroscopy". Optics letters 42, 2346, 2017

Date and Time: 
Wednesday, June 12, 2019 - 4:15pm
Venue: 
Allen 101X

RESCHEDULED: OSA/SPIE, SPRC and Ginzton Lab present "Frequency comb-based nonlinear spectroscopy"

Topic: 
RESCHEDULED: Frequency comb-based nonlinear spectroscopy: Bridging the gap between fundamental science and cutting-edge technology
Abstract / Description: 

RESCHEDULED for June 12

Rapid and precise measurements are and always have been of interest in science and technology partly because of their numerous practical applications. Since their development, frequency comb-based methods have revolutionized optical measurements. They simultaneously provide high resolution, high sensitivity, and rapid acquisition times. These methods are being developed for use in many fields, from atomic and molecular spectroscopy, to precision metrology, to spectral LIDAR and even atmospheric monitoring. However they cannot address the issues of inhomogeneously broadened transitions or sample heterogeneity. This is especially important for remote chemical sensing applications.

In this talk I will discuss a novel optical method, that I recently developed, which overcomes these limitations. I will demonstrate its capabilities for probing extremely weak fundamental processes as well as its applications for rapid and high resolution chemical sensing.

 

References:

B. Lomsadze, B. Smith and S. T. Cundiff. "Tri-comb spectroscopy". Nature Photonics 12, 676, 2018.
B. Lomsadze and S. T. Cundiff. "Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions." Physical Review Letters 120, 233401, 2018.
B. Lomsadze and S. T. Cundiff. "Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy". Science 357, 1389, 2017
B. Lomsadze and S. T. Cundiff. "Frequency comb-based four-wave-mixing spectroscopy". Optics letters 42, 2346, 2017

Date and Time: 
Wednesday, March 20, 2019 - 4:15pm
Venue: 
Allen 101X

John G. Linvill Distinguished Seminar on Electronic Systems Technology

Topic: 
Internet of Things and Internet of Energy for Connecting at Any Time and Any Place
Abstract / Description: 

In this presentation, I would like to discuss with you how to establish a sustainable and smart society through the internet of energy for connecting at any time and any place. I suspect that you have heard the phrase, "Internet of Energy" less often. The meaning of this phrase is simple. Because of a ubiquitous energy transmission system, you do not need to worry about a shortage of electric power. One of the most important items for establishing a sustainable society is [...]


"Inaugural Linvill Distinguished Seminar on Electronic Systems Technology," EE News, July 2018

 

Date and Time: 
Monday, January 14, 2019 - 4:30pm
Venue: 
Hewlett 200

Statistics Seminar: Inference, Computation, and Visualization for Convex Clustering and Biclustering

Topic: 
Inference, Computation, and Visualization for Convex Clustering and Biclustering
Abstract / Description: 

Hierarchical clustering enjoys wide popularity because of its fast computation, ease of interpretation, and appealing visualizations via the dendogram and cluster heatmap. Recently, several have proposed and studied convex clustering and biclustering which, similar in spirit to hierarchical clustering, achieve cluster merges via convex fusion penalties. While these techniques enjoy superior statistical performance, they suffer from slower computation and are not generally conducive to representation as a dendogram. In the first part of the talk, we present new convex (bi)clustering methods and fast algorithms that inherit all of the advantages of hierarchical clustering. Specifically, we develop a new fast approximation and variation of the convex (bi)clustering solution path that can be represented as a dendogram or cluster heatmap. Also, as one tuning parameter indexes the sequence of convex (bi)clustering solutions, we can use these to develop interactive and dynamic visualization strategies that allow one to watch data form groups as the tuning parameter varies. In the second part of this talk, we consider how to conduct inference for convex clustering solutions that addresses questions like: Are there clusters in my data set? Or, should two clusters be merged into one? To achieve this, we develop a new geometric representation of Hotelling's T2-test that allows us to use the selective inference paradigm to test multivariate hypotheses for the first time. We can use this approach to test hypotheses and calculate confidence ellipsoids on the cluster means resulting from convex clustering. We apply these techniques to examples from text mining and cancer genomics.

This is joint work with John Nagorski and Frederick Campbell.


The Statistics Seminars for Winter Quarter will be held in Room 380Y of the Sloan Mathematics Center in the Main Quad at 4:30pm on Tuesdays. 

Date and Time: 
Tuesday, March 13, 2018 - 4:30pm
Venue: 
Sloan Mathematics Building, Room 380Y

Pages

SystemX

SystemX BONUS LECTURE: Run-time computation for enhanced integrated circuits and systems

Topic: 
Run-time computation for enhanced integrated circuits and systems
Abstract / Description: 

For over half a century, Integrated Circuits have been designed and developed (rather successfully) toward the goal of enhancing computing performance and efficiency. During this time, the relationship between circuit design and computing has remained largely one-directional: Careful, detailed circuit design is performed in the service of building computing systems. Notwithstanding a post-Moore and post-Dennard reality, the impressive strides made by digital computing thus far prompt an important question which re-examines the traditional circuit-computing relationship: Can runtime computing itself be used to enhance circuit and system capabilities? If so, under which conditions and to what extent?

In this talk, I will present recent efforts in my group that represent two different ways that computing can augment circuit capabilities to (1) overcome limitations inherent in circuit design; and (2) enable rapid, time-optimal control of integrated control systems. The effectiveness and limitations of both efforts are examined through a representative test-chip design. These efforts have yielded a robust True-Random Number Generators (TRNGs) demonstrating the lowest measured energy-per-bit (2.58pJ/bit), and an all-digital PLLs (ADPLLs) for system clocking applications with the fastest demonstrated cold-start and re-lock times (16 Refclk cycles, mean).

Date and Time: 
Friday, April 26, 2019 - 2:00pm
Venue: 
Gates 104

SystemX presents Life in Space

Topic: 
Life in Space: Microfluidic Systems Enable the Study of Terrestrial Microbes in Space and the Search for Life on the Solar System’s Icy Moons
Abstract / Description: 

We develop miniaturized integrated bio/analytical instruments and platforms to conduct economical, frequent, autonomous life-science experiments in outer space. The technologies represented by several of our recent 5-kg "free-flyer" small-satellite missions are the basis of a rapidly growing suite of miniaturized biologically- and chemically-oriented instrumentation now enabling a new generation of in-situ space science experiments. Over the past decade, our missions have included studies of space-environment-related changes in gene expression, drug dose response, microbial longevity and metabolism, and the degradation of biomarker molecules. The science and technology of one of these missions, the O/OREOS (Organism/Organic Response to Orbital Stress) Nanosatellite, will be highlighted in the context of conducting biological and chemical experiments in outer space using miniaturized integrated systems.

We have recently begun to adapt and apply our spaceflight-compatible microfluidic and bioanalytical technologies to the challenge of finding molecular and structural indications of microbial life on the so-called icy worlds of our solar system, particularly the moons Europa and Enceladus. The design, development, and laboratory testing of the Sample Processor for Life on Icy Worlds (SPLIce) system, a microfluidic sample-processing "front end" to enable autonomous detection of signatures of life and measurements of habitability parameters on icy worlds, will be described. SPLIce is under development to support two nominal mission scenarios: a fly-through of Enceladus' icy plumes, expected to yield ~ 2 µL of ice particles/square meter of collector area, and a Europan lander, the rasp-based sampling system of which is anticipated to deliver 1 – 5 mL of icy solids for analysis.

Date and Time: 
Thursday, April 25, 2019 - 4:30pm
Venue: 
Huang 018

#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces

Topic: 
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces
Abstract / Description: 

Individuals of all genders invited to be a part of:
#StanfordToo: A Conversation about Sexual Harassment in Our Academic Spaces, where we will feature real stories of harassment at Stanford academic STEM in a conversation with Provost Drell, Dean Minor (SoM), and Dean Graham (SE3). We will have plenty of time for audience discussion on how we can take concrete action to dismantle this culture and actively work towards a more inclusive Stanford for everyone. While our emphasis is on STEM fields, we welcome and encourage participation from students, postdocs, staff, and faculty of all academic disciplines and backgrounds.

Date and Time: 
Friday, April 19, 2019 - 3:30pm
Venue: 
STLC 111

SystemX presents "A VC's View of the Quantum Computing Landscape"

Topic: 
A VC's View of the Quantum Computing Landscape
Abstract / Description: 

Quantum Computing has been getting lots of buzz recently but does its current state live up to the hype? This talk will survey the state of the industry from the perspective of a venture capitalist.

Date and Time: 
Thursday, April 18, 2019 - 4:30pm
Venue: 
Huang Building, Room 018

SystemX BONUS LECTURE: Emerging Nanoelectronics Through Two- and Three-Dimensional Materials Analysis

Topic: 
Emerging Nanoelectronics Through Two- and Three-Dimensional Materials Analysis
Abstract / Description: 

Next-generation nanoelectronics for logic and memory are based on devices increasingly smaller, more three-dimensional in shape and containing even more types of materials. Evaluating nanometre-scale features of such devices, including carrier profiling, strain, electrical and chemical properties represents a challenge for materials catherization. Here, after introducing the current and proposed logic and memory devices at advanced nodes, I will present dedicated two- and three-dimensional analysis methods to merge our present capability of materials characterization with site-specific and failure analysis. Different techniques are presented and combined to maximize our sensing capability and boost the process development of various emerging technologies, including fin-based field-effect transistors (FinFET) and various types of non-volatile resistive switching memories.

Date and Time: 
Monday, April 15, 2019 - 4:30pm
Venue: 
Packard 202

SystemX presents Efficient Computing for AI and Robotics

Topic: 
Efficient Computing for AI and Robotics
Abstract / Description: 

Computing near the sensor is preferred over the cloud due to privacy and/or latency concerns for a wide range of applications including robotics/drones, self-driving cars, smart Internet of Things, and portable/wearable electronics. However, at the sensor there are often stringent constraints on energy consumption and cost in addition to the throughput and accuracy requirements of the application. In this talk, we will describe how joint algorithm and hardware design can be used to reduce energy consumption while delivering real-time and robust performance for applications including deep learning, computer vision, autonomous navigation/exploration and video/image processing. We will show how energy-efficient techniques that exploit correlation and sparsity to reduce compute, data movement and storage costs can be applied to various tasks including image classification, depth estimation, super-resolution, localization and mapping.

Date and Time: 
Thursday, April 11, 2019 - 4:30pm
Venue: 
Huang Building, Room 018

SystemX BONUS LECTURE: Advances in III-N Devices and Integration for High-Speed and Power Applications

Topic: 
Advances in III-N Devices and Integration for High-Speed and Power Applications
Abstract / Description: 

The use of unconventional devices, along with exploitation of unique properties of the III-N material system, has the potential to significantly impact both high frequency and high-power systems. In this talk, several device technologies being explored at the University of Notre Dame will be described. Recent demonstrations of scaled GaN-based HEMTs having experimentally-demonstrated ft's of over 370 GHz, indicate that GaN-based devices are attractive not just for microwave power amplification, but also for mm-wave and mixed-signal circuit applications as well. The aggressive device scaling that enables these high speeds also led to the observation of room-temperature plasma wave propagation in GaN-channel HEMTs, suggesting additional avenues for high-frequency device design as well as phenomena to be leveraged for enhanced functionality. In addition, the large polar optical phonon energy in GaN results in transport properties that are distinctly different from most other III-V materials; this can be exploited to engineer devices for improved performance. The details of impact ionization in GaN—important for both power devices and devices such as IMPATT diodes—have also recently been explored and will be presented. Novel processing schemes for heterogeneous integration, high-field edge termination, and thermal management of III-N devices—critical to the exploiation of GaN for high power applications—will also be presented.

Date and Time: 
Friday, April 5, 2019 - 10:30am
Venue: 
Allen 101X

SystemX BONUS lecture: Micro-Assembly Printer - a New Tool For Integrating Nanodevices

Topic: 
Micro-Assembly Printer - a New Tool For Integrating Nanodevices
Abstract / Description: 

While lithography was a key technology for making transistors into complex integrated circuits, micro-assembly is potentially a key technology for making nanotechnology into large, complex, heterogeneous, custom systems. We aim to build a new tool for integrating millions of pre-fabricated chiplets or micro-objects into systems, based on deterministic micro-assembly and transfer. The process uses chips initially in solution, and then sorts, transports, and orients chips with directed electrostatic assembly and parallel control. Assemblies are then transferred to final substrates with a stamp or continuous feed roll-based methods, and then electrically interconnected. The current laboratory systems have handled small chips (10 um – 500 um), demonstrated fine registration (<1 um and <1°), and produced centimeter scale outputs. Ultimately, massively parallel automated microassembly, analogous to a xerographic printer using microchips instead of toner, could be used for integrating circuits, microLEDs and other semiconductor components into complex, heterogeneous systems.

Date and Time: 
Monday, April 8, 2019 - 4:30pm
Venue: 
Packard 202

SystemX presents Quantum Computing: Status and Prospects

Topic: 
Quantum Computing: Status and Prospects
Abstract / Description: 

Quantum computing is a paradigm for computing that potentially allows certain classes of problems to be solved far more quickly than is possible on conventional computers. There has recently been large progress in the development of intermediate-scale quantum-computer prototypes, thanks to commitments from a number of industrial players, including IBM, Google, Microsoft, Intel, and several startup companies. In this talk I will introduce what quantum computers are, what promise they have to solve difficult computational problems, what problems we can expect might be solved using upcoming hardware prototypes over the next few years, and what major outstanding challenges for the field remain. I will emphasize problems in optimization, quantum simulation, and machine learning.

Date and Time: 
Thursday, April 4, 2019 - 4:30pm
Venue: 
Huang Building, Room 018

SystemX Seminar presents "Flexible microsystems for neural implants and bioelectronics medicine"

Topic: 
Flexible microsystems for neural implants and bioelectronics medicine
Abstract / Description: 

Neural implants need to establish stable and reliable interfaces to the target structure for chronic application in neurosciences as well as in clinical applications. They have to record electrical neural signals, excite neural cells or fibers by means of electrical stimulation. In case of optogenetic experiments, optical stimulation by integrated light sources or waveguides must be integrated on implants. Metabolic monitoring and detection of neurotransmitter concentrations is also part of the research agenda but not yet mature enough for translation in chronic clinical applications. Proper selection of substrate, insulation and electrode materials is of utmost importance to bring the interface in close contact with the neural target structures, minimize foreign body reaction after implantation and maintain functionality over the complete implantation period. Our work has focused on polymer substrates with integrated thin-film metallization as core of our flexible neural interfaces approach and silicone rubber with metal sheets. Micromachining and laser structuring are the main technologies for electrode array manufacturing. Designing applications for implants in the peripheral and central nervous system needs integration of components, the connection of cables and connectors to both, electrode arrays and hermetic packages containing electronic circuitry for recording, stimulation and signal processing. Failure of one of the components or connections stops the function of the whole system. We present an exemplary implant system and discuss state of the art materials and manufacturing techniques as well as prominent failure modes. Thin-film substrates and hybrid combinations with silicone rubber substrates serve as neural interfaces. Adhesion layers have been integrated to obtain long term stability of polyimide-platinum sandwiches. Hermetic packages with dozens of electrical feed-throughs need novel approaches to meet the desire of implants with hundreds of electrode channels. Reliability data from long-term ageing studies and chronic experiments show the applicability of thin-film implants for stimulation and recording and ceramic packages for electronics protection. Examples of sensory feedback after amputation trauma, vagal nerve stimulation to treat hypertension and chronic recordings from the brain surface display opportunities and challenges of these miniaturized implants. System assembly and interfacing microsystems to robust cables and connectors still is a major challenge in translational research and transition of research results into medical products.

Date and Time: 
Monday, March 25, 2019 - 2:00pm
Venue: 
Allen 101X

Pages

Subscribe to RSS - Seminar / Colloquium