SCIEN and EE292E present "Miniature Optical Endoscopes for Early-Stage Cancer Detection"
With multiple mechanisms of contrast, high sensitivity, high resolution, and the possibility to create miniature, inexpensive devices, light-based techniques have tremendous potential to positively impact cancer detection and survival. Many organs of the body can be reached in a minimally-invasive fashion with small flexible endoscopes. Some organs, such as the fallopian tubes and ovaries, require extremely miniature (sub-mm) and flexible endoscopes to avoid tissue cutting. Additionally, some modalities, such as side-viewing optical coherence tomography, are naturally suited to miniature endoscopes, whereas others like forward-viewing reflectance or fluorescence imaging, may require performance tradeoffs. The development of small, robust and fiber-delivered advanced light sources, miniature fiber bundles, and sensitive detectors has aided the development of novel miniature endoscopes. In this talk, I will discuss our recent advancements in endoscope design for multimodality optical early detection of ovarian cancer.