EE Student Information

The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring Quarter through Academic Year 2020-2021: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

SystemX BONUS seminar presents "Fault-Tolerant Quantum Computing with Silicon Photonics"

Fault-Tolerant Quantum Computing with Silicon Photonics
Tuesday, October 27, 2020 - 2:00pm
Zoom ID: 920 2334 9868; +passcode
Dr. Mercedes Gimeno-Segovia (PsiQuantum)
Abstract / Description: 

Quantum computers promise a new paradigm of computation where information is processed in a way that has no classical analogue. However, the known problems for which quantum computers offer a computational advantage, require long gate sequences and large number of qubits. Error-correction codes and fault-tolerant gate implementation require the encoding of logical qubits on a large number of physical qubits, and given the overheads, it is expected that general purpose quantum computers will have millions of physical qubits, thus requiring an underlying qubit technology that can be manufactured at scale. Photons make great qubits, they are cheap to produce, resilient to noise and the only known option for quantum networks. Most crucially, they can be efficiently manipulated with silicon photonics, an intrinsically scalable and manufacturable platform in which all the fundamental quantum gates can be implemented. In this talk, I will describe an architecture for universal fault-tolerant quantum computing based on linear optics, in the process I will explain how measurement-induced non-linearity can overcome the challenge of creating entanglement and how loss can be effectively tackled with error correcting codes.


Mercedes Gimeno-Segovia is Sr. Director of Quantum Architecture at PsiQuantum Corp. She received her PhD from Imperial College London for her work on linear optical quantum computing. After postdoctoral positions in Bristol (UK) and Calgary (Canada), she joined PsiQuantum in 2017, where she leads a team working on the design and development of an architecture for universal fault-tolerant quantum computing using silicon photonics. She is the author of the O'Reilly book "Programming Quantum Computers: Essential Algorithms and Code Samples".