EE Student Information

The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring Quarter through Academic Year 2020-2021: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

Statistics Seminar presents "Scaled minimax optimality in high-dimensional linear regression: A non-convex algorithmic regularization approach"

Topic: 
Scaled minimax optimality in high-dimensional linear regression: A non-convex algorithmic regularization approach
Tuesday, September 29, 2020 - 4:30pm
Venue: 
Zoom ID 973 5368 4241 (+password)
Speaker: 
Mohamed Ndaoud (University of Southern California)
Abstract / Description: 

The question of fast convergence in the classical problem of high-dimensional linear regression has been extensively studied. Arguably, one of the fastest procedures in practice is Iterative Hard Thresholding (IHT). Still, IHT relies strongly on the knowledge of the true sparsity parameters. In this talk, we present a novel fast procedure for estimation in high-dimensional linear regression. Taking advantage of the interplay between estimation, support recovery and optimization, we achieve both optimal statistical accuracy and fast convergence. The main advantage of our procedure is that it is fully adaptive, making it more practical than state-of-the-art IHT methods. Our procedure achieves optimal statistical accuracy faster than, for instance, classical algorithms for the Lasso. Moreover, we establish sharp optimal results for both estimation and support recovery. As a consequence, we present a new iterative hard thresholding algorithm for high-dimensional linear regression that is scaled minimax optimal (achieves the estimation error of the oracle that knows the sparsity pattern if possible), fast and adaptive.