## EE Student Information

### The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring Quarter through Academic Year 2020-2021: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

#### Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

# Statistics Department Seminar presents "Testing goodness-of-fit and conditional independence with approximate co-sufficient sampling"

Topic:
Testing goodness-of-fit and conditional independence with approximate co-sufficient sampling
Tuesday, July 21, 2020 - 4:30pm
Venue:
Meeting ID 941 3461 3493 (+password)
Speaker:
Rina Foygel Barber, University of Chicago
Abstract / Description:

Goodness-of-fit (GoF) testing is ubiquitous in statistics, with direct ties to model selection, confidence interval construction, conditional independence testing, and multiple testing. While testing the GoF of a simple null hypothesis provides an analyst great flexibility in the choice of test statistic while still ensuring validity, most GoF tests for composite null hypotheses are far more constrained, as the test statistic must have a tractable distribution over the entire null model space. A notable exception is co-sufficient sampling (CSS), which resamples. But CSS testing requires the null model to have a compact (in an information-theoretic sense) sufficient statistic, which only holds for a very limited class of models; even for a null model as simple as logistic regression, CSS testing is powerless. In this work, we leverage the concept of approximate sufficiency to generalize CSS testing to essentially any parametric model with an asymptotically-efficient estimator; we call our extension "approximate CSS" (aCSS) testing. We quantify the finite-sample Type I error inflation of aCSS testing and show that it is vanishing under standard maximum likelihood asymptotics, for any choice of test statistic. We also apply our proposed procedure both theoretically and in simulation to a number of models of interest.

This work is joint with Lucas Janson.