EE Student Information

The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring Quarter through Academic Year 2020-2021: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

Statistics Department Seminar presents "The blessings of multiple causes"

The blessings of multiple causes
Thursday, February 13, 2020 - 4:30pm
Sloan Mathematics Center, Room 380C
Yixin Wang (Columbia University)
Abstract / Description: 

Causal inference from observational data is a vital problem, but it comes with strong assumptions. Most methods assume that we observe all confounders, variables that affect both the causal variables and the outcome variables. But whether we have observed all confounders is a famously untestable assumption. We describe the deconfounder, a way to do causal inference from observational data allowing for unobserved confounding. How does the deconfounder work? The deconfounder is designed for problems of multiple causal inferences: scientific studies that involve many causes whose effects are simultaneously of interest. The deconfounder uses the correlation among causes as evidence for unobserved confounders, combining unsupervised machine learning and predictive model checking to perform causal inference. We study the theoretical requirements for the deconfounder to provide unbiased causal estimates, along with its limitations and tradeoffs. We demonstrate the deconfounder on real-world data and simulation studies.