SmartGrid Seminar: Optimization, Inference and Learning for District-Energy Systems

Optimization, Inference and Learning for District-Energy Systems
Thursday, November 2, 2017 - 1:30pm
Y2E2 111
Misha Chertkov (Los Alamos National Laboratory)
Abstract / Description: 

We discuss how Optimization, Inference and Learning (OIL) methodology is expected to re-shape future demand-response technologies acting across interdependent energy, i.e. power, natural gas andheating/cooling, infrastructures at the district/metropolitan/distribution level. We describe hierarchy ofdeterministic and stochastic planning and operational problems emerging in the context of physical flows over networks associated with the laws of electricity, gas-, fluid- and heat-mechanics. We proceed to illustratedevelopment and challenges of the physics-informed OIL methodology on examples of: a) Graphical Models approach applied to a broad spectrum of the energy flow problems, including online reconstruction of the grid(s) topology from measurements; b) Direct and inverse dynamical problems for timely delivery of services in the district heating/cooling systems; c) Ensemble Control of the phase-space cycling energy loads via Markov Decision Process (MDP) and related reinforcement learning approaches.


Dr. Chertkov's areas of interest include statistical and mathematical physics applied to energy andcommunication networks, machine learning, control theory, information theory, computer science, fluid mechanics and optics. Dr. Chertkov received his Ph.D. in physics from the Weizmann Institute of Science in 1996, and his M.Sc. in physics from Novosibirsk State University in 1990. After his Ph.D., Dr. Chertkov spent three years at Princeton University as a R.H. Dicke Fellow in the Department of Physics. He joined Los Alamos National Lab in 1999, initially as a J.R. Oppenheimer Fellow in the Theoretical Division. Since 2001 he is a technical staff member at LANL. Since 2012 Dr. Chertkov is advising SkolkovoTech -- new graduate school in Moscow/Russia. He also has an adjunct professor affiliation with the Department of Industrial & Operations Engineering of the U of Michigan, Ann Arbor. Dr. Chertkov has published more than 180 papers. He is an editor of the Journal of Statistical Mechanics (JSTAT), associate editor of IEEE Transactions on Control of Network Systems, member ofthe Editorial Board of Scientific Reports (Nature Group), a fellow of the American Physical Society (APS) and asenior member of IEEE.