EE Student Information

The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring & Summer Quarters 19-20: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

SCIEN Seminar presents "The Role of Fundamental Limits in 3D Imaging Systems: From Looking around Corners to Fast 3D Cameras"

The Role of Fundamental Limits in 3D Imaging Systems: From Looking around Corners to Fast 3D Cameras
Wednesday, April 15, 2020 - 4:30pm
Zoom (join SCIEN mail list to receive meeting ID)
Prof. Florian Willomitzer (Northwestern Univ)
Abstract / Description: 

The knowledge about limits is a precious commodity in computational imaging: By knowing that our imaging device already operates at the physical limit (e.g. of resolution), we can avoid unnecessary investments in better hardware, such as faster detectors, better optics or cameras with higher pixel resolution. Moreover, limits often appear as uncertainty products, making it possible to bargain with nature for a better measurement by sacrificing less important information.

In this talk, the role of physical and information limits in computational imaging will be discussed using examples from two of my recent projects: 'Synthetic Wavelength Holography' and the 'Single-Shot 3D Movie Camera'.

Synthetic Wavelength Holography is a novel method to image hidden objects around corners and through scattering media. While other approaches rely on time-of-flight detectors, which suffer from technical limitations in spatial and temporal resolution, Synthetic Wavelength Holography works at the physical limit of the space-bandwidth product. Full field measurements of hidden objects around corners or through scatterers reaching sub-mm resolution will be presented.

The single-shot 3D movie camera is a highly precise 3D sensor for the measurement of fast macroscopic live scenes. From each 1 Mpix camera frame, the sensor delivers 300,000 independent 3D points with high resolution. The single-shot ability allows for a continuous 3D measurement of fast moving or deforming objects, resulting in a continuous 3D movie. Like a hologram, each movie-frame encompasses the full 3D information about the object surface, and the observation perspective can be varied while watching the 3D movie.


Florian Willomitzer works as a Research Assistant Professor in the Computational Photography Lab at Northwestern University, IL. Florian graduated from the University of Erlangen Nuremberg, Germany, where he received his Ph.D. degree with honors ('summa cum laude') in 2017. During his doctoral studies he investigated physical and information theoretical limits of optical 3D-sensing and implemented sensors that operate close to these limits. Concurrent to his activity at the Erlangen University, Florian was a freelancer in the research group's spin-off company '3DShape GmbH' and worked as a high school part time teacher for physics.

At Northwestern University, Florian develops novel methods to image hidden objects through scattering media or around corners. Moreover, his research is focused on high-resolution holographic displays, the implementation of highprecision metrology methods in low-cost mobile handheld devices, and novel techniques to overcome traditional resolution limitations and dynamic range restrictions in 3D and 2D imaging.