EE Student Information

The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring Quarter through Academic Year 2020-2021: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

SCIEN Colloquium presents Microscopic particle localization in 3D and in multicolor

Microscopic particle localization in 3D and in multicolor
Wednesday, February 6, 2019 - 4:30pm
Packard 101
Professor Yoav Shechtman (Technion)
Abstract / Description: 

Precise determination of the position of a single point source (e.g. fluorescent molecule/protein, quantum dot) is at the heart of microscopy methods such as single particle tracking and super-resolution localization microscopy ((F)PALM, STORM). Localizing a point source in all three dimensions, i.e. including depth, poses a significant challenge; the depth of field of a standard high-NA microscope is fundamentally limited, and its pointspread-function (PSF), namely, the shape that a point source creates in the image plane, contains little information about the emitter's depth. Various techniques exist that enable 3D localization, prominent among them being PSF engineering, in which the PSF of a microscope is modified to encode the depth of the source. This is achieved by shaping the wavefront of the light emitted from the sample, using a phase mask in the pupil (Fourier) plane of the microscope.

In this talk, I will describe how our search for the optimal PSF for 3D localization, using tools from estimation theory, led to the development of microscopy systems with unprecedented capabilities in terms of depth of field and spectral discrimination. Such methods enable fast, precise, non-destructive localization in thick samples and in multicolor. Applications of these novel advances will be demonstrated, including super-resolution imaging, tracking biomolecules in living cells and microfluidic flow profiling. I will also present our most recent results: 1. Application of deep learning for solving difficult localization problems (high density, low SNR, multicolor imaging), and 2. Precise refractometry from minute volumes by super-critical-angle fluorescence.


Assistant Professor Yoav Shechtman currently leads the Nano-Bio-Optics lab at the Technion, Israel Institute of Technology. Yoav Finished all degrees at the Technion: BSc in Physics and Electrical Engineering (2007), Phd (2013), and then completed a postdoc at Stanford University (2016), developing super-resolution microscopy methods with W.E. Moerner. His research interests lie mainly in developing and applying optical and signal processing methods for nanoscale imaging challenges. Among Yoav's awards and recognitions: 2013 Hershel Rich Innovation Award, 2016 Technion Career Advancement Chair, 2017 Zuckerman Faculty Scholar, 2018 Early Career Award of the International Association for Medical and Biological Engineering (IAMBE), 2018 European Research Council starting grant.