EE Student Information

EE Student Information, Spring Quarter 19-20: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

SCIEN Colloquium presents Image Domain Transfer

Topic: 
Image Domain Transfer
Wednesday, January 9, 2019 - 4:30pm
Venue: 
Packard 101
Speaker: 
Dr. Jan Kautz (NVIDIA)
Abstract / Description: 

Image domain transfer includes methods that transform an image based on an example, commonly used in photorealistic and artistic style transfer, as well as learning-based methods that learn a transfer function based on a training set. These are usually based on generative adversarial networks (GANs), and can be supervised or unsupervised as well as unimodal or multimodal. I will present a number of our recent methods in this space that can be used to translate, for instance, a label map to a realistic street image, a day time street image to a night time street image, a dog to different cat breeds, and many more.

Bio:

Jan is VP of Learning and Perception Research at NVIDIA. He leads the Learning & Perception Research team, working predominantly on computer vision problems (from low-level vision through geometric vision to high-level vision), as well as machine learning problems (including deep reinforcement learning, generative models, and efficient deep learning). Before joining NVIDIA in 2013, Jan was a tenured faculty member at University College London. He holds a BSc in Computer Science from the University of Erlangen-Nürnberg (1999), an MMath from the University of Waterloo (1999), received his PhD from the Max-Planck-Institut für Informatik (2003), and worked as a post-doctoral researcher at the Massachusetts Institute of Technology (2003-2006).