EE Student Information

The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring Quarter through Academic Year 2020-2021: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

Probability Seminar presents "Universality for lozenge tiling local statistics"

Universality for lozenge tiling local statistics
Monday, January 13, 2020 - 4:00pm
Sequoia Hall Room 200
Amol Aggarwal (Harvard)
Abstract / Description: 

The statistical behavior of random tilings of large domains has been an intense topic of mathematical research for decades, partly since they highlight a central phenomenon in physics: local behaviors of highly correlated systems can be very sensitive to boundary conditions. Indeed, a salient feature of random tiling models is that the local densities of tiles can differ considerably in different regions of the domain, depending on the boundary conditions. Thus, a question of interest, originally mentioned by Kasteleyn in 1961, is how the shape of the domain affects the local behavior of a random tiling. In this talk, we outline recent work that provides an answer (originally predicted by Cohn–Kenyon–Propp) to this question for random lozenge tilings of essentially arbitrary domains. The proof will proceed by locally coupling a uniformly random lozenge tiling with a model of Bernoulli random walks conditioned to never intersect. Central to implementing this procedure is to establish a local law for the random tiling, which states that the associated height function is approximately linear on any mesoscopic scale.