EE Student Information

The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring Quarter through Academic Year 2020-2021: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

ISL Colloquium presents "The Robustness Problem"

The Robustness Problem
Thursday, January 9, 2020 - 4:30pm
Packard 101
Justin Gilmer, Research Scientist, Google Brain
Abstract / Description: 

Despite impressive performance on many benchmarks, state-of-the-art machine learning algorithms have been shown to be extremely brittle on out-of-distribution inputs. While there has been a focus in recent years on robustness to small lp-perturbations, this talk will discuss robustness to more general types of corruptions. We will investigate several questions related to robustness: Why are current models so brittle? Is recent work on lp-robustness making progress towards robustness to distribution shift? How should we best measure model robustness to ensure that models can be safely deployed in complex dynamic environments? Additionally, we will present experiments showing how models latch onto spurious correlations in image data, and how data augmentation shifts model bias towards different features in the data, resulting in trade-offs in the robustness properties of the model.

The Information Systems Laboratory Colloquium (ISLC) is typically held in Packard 101 every Thursday at 4:30 pm during the academic year. Coffee and refreshments are served at 4pm in the second floor kitchen of Packard Bldg.

The Colloquium is organized by graduate students Joachim Neu, Tavor Baharav and Kabir Chandrasekher. To suggest speakers, please contact any of the students.


Justin is a Research Scientist at Google Brain. He has a broad set of research interests, from graph neural networks to model interpretability. Much of his current focus is on building robust statistical classifiers that can generalize well in dynamic environments in the real world. He holds a PhD in Theoretical Mathematics from Rutgers University.