EE Student Information

The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring Quarter through Academic Year 2020-2021: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

ISL Colloquium presents "Extreme imaging with statistical signal processing"

Extreme imaging with statistical signal processing
Thursday, November 21, 2019 - 4:30pm
Packard 101
Christopher Metzler (Stanford)
Abstract / Description: 

Emerging technologies have given us an unprecedented ability to measure and manipulate light: We can now time-stamp individual photons and adaptively shape the phase profile of a laser beam. These capabilities stand to fundamentally change how we approach many imaging problems. However, using these capabilities effectively requires us to rethink how we process optical signals.

Statistical signal processing is a powerful lens through which to view imaging. It allows us to abstract complex physical problems into manageable representations and develop unconventional solutions.

In this talk I will briefly discuss how statistical signal processing can be used to solve four extreme imaging problems - problems for which conventional imaging techniques are doomed to fail: (1) Reconstructing a hidden object from measurements captured through the keyhole of a door. (2) Imaging through 27 attenuation lengths of fog. (3) Characterizing scattering media with intensity-only measurements. (4) Single-pixel compressive imaging without explicit priors nor ground-truth training data.

The Information Systems Laboratory Colloquium (ISLC)

is typically held in Packard 101 every Thursday at 4:30 pm during the academic year. Coffee and refreshments are served at 4pm in the second floor kitchen of Packard Bldg.

The Colloquium is organized by graduate students Joachim Neu, Tavor Baharav and Kabir Chandrasekher. To suggest speakers, please contact any of the students.

To receive email notifications of seminars you can join the ISL mailing list.


Chris Metzler is an Intelligence Community Postdoctoral Research Fellow in the Stanford Computational Imaging Lab. Prior to that, he was an NSF and NDSEG Graduate Research Fellow in the Digital Signal Processing Lab at Rice University. His research applies signal processing and machine learning to solve challenging computational imaging problems.