EE Student Information

The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring Quarter through Academic Year 2020-2021: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

EE380 Computer Systems Colloquium: The Future of Wireless Communications Hint: It's not a linear amplifier

The Future of Wireless Communications Hint: It's not a linear amplifier
Wednesday, May 16, 2018 - 4:30pm
Gates B03
Doug Kirkpatrick (Eridan Communications, Inc.)
Abstract / Description: 

Wireless communications are ubiquitous in the 21 st century--we use them to read the newspaper, talk to our colleagues or children, watch sporting events or other forms of entertainment, and to monitor and control the environment we live ins-- among just a few. This exponentiation of demand for wireless capacity has driven a new era of innovation in this space because spectrum and energy are expensive and constrained resources.

The future of wireless communications will demand leaps in spectrum efficiency, bandwidth efficiency, and power efficiency for successful technology deployments. Key applications that will fundamentally change how we interact with wireless systems and the demands we place on wireless technologies include Dynamic Spectrum Access Networks, massive MIMO, and the evasive unicorn of the "universal handset". While each of these breakthrough "system" capabilities make simultaneous demands of spectrum efficiency, bandwidth efficiency, and power efficiency, the current suite of legacy technologies forces system designers to make undesirable trade-offs because of the limitations of linear amplifier technology.

Eridan's solution is the antithesis of "linear". The Switch Mode Mixer Modulator (SMs3 ) technology emphasizes precision and flexibility, and simultaneously delivers spectrum efficiency, bandwidth efficiency, and power efficiency. The resulting capabilities dramatically increase total wireless capacity with minimum need for expanding operations into extended regions of the wireless spectrum.

This presentation will discuss the driving forces behind wireless system performance, the physics of linear amplifiers and SM3, measured performance of SM3 systems, and the implications for wireless system capabilities in the near future.


Dr. Kirkpatrick is the co-founder and CEO of Eridan Communications, Inc., a Santa Clara based company developing transceiver products for the next generations of wireless communications -- 5G and beyond. Dr. Kirkpatrick is also a founding General Partner of InnerProduct Partners (IPP), a San Francisco based early stage VC firm, and the acting CEO of a very early stage startup in rare-earth- free permanent magnets based in Cleveland. Previous to InnerProduct Partners, from 2010-2013 he was a partner at Vantage Point Capital Partners, a large multi- stage VC firm, also based in the San Francisco Bay area.
Prior to Vantage Point Capital Partners, from 2002--2010, Dr. Kirkpatrick was a Program Manager and Chief Scientist at the Defense Advanced Research Projects Agency (DARPA). While he was at DARPA he started and managed programs that, among other things, developed and deployed the first LED flashlights, started and validated the DOD path to bio renewable jet fuel, developed and demonstrated ultra-high efficiency solar cells, developed and demonstrated full 3d dynamic holographic displays, and developed and demonstrated portable tools for the rapid de-novo synthesis of DNA up to 10,000 base pairs long. In addition to his DARPA role he was simultaneously the Senior Technologist for Technology Productization for the Undersecretary for Acquisition, Technology, and Logistics in the Department of Defense. Prior to his tour at DARPA he was the VP for R&D at Fusion Lighting, a lighting technology startup in the greater Washington DC area, and before that a VP and Division Manager for Science Applications International Corporation, also in the greater Washington DC area.

Dr. Kirkpatrick is a Fellow of the American Physics Society, a Member of the IEEE, and a Member of the Materials Research Society. Dr. Kirkpatrick holds a BS degree in Physics and Mathematics (1980) from the College of William and Mary and a Ph.D. in Physics from M.I.T. (1988).