EE Student Information

The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring Quarter through Academic Year 2020-2021: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

EE Colloquium "Nanoscale Circuits for Light and Energy"

Nanoscale Circuits for Light and Energy
Wednesday, May 29, 2019 - 9:00am
Hewlett 102
Dan Congreve (Rowland Institute, Harvard University)
Abstract / Description: 

Controlling excitons, charge, and spin at the nanoscale has opened up numerous exciting opportunities. In particular, using individual material systems as building blocks to construct nanoscale 'circuits' has allowed us to uncover novel physics, applications, and devices. In this talk, I will show how we can use these circuits to build the next generation of solutions to the challenges facing us.

First, photon upconversion and downconversion allow us to convert between colors of light while conserving energy. We demonstrate that controlling exciton flow between organics and colloidal nanocrystals allows us to achieve quantum efficiencies greater than 100% utilizing downconversion and infrared-to-visible harvesting using upconversion. Further, we show how these circuits can be applied to the real world, performing photochemistry using infrared light instead of visible, opening the door for in vivo applications.

Similar opportunities can be found in perovskites: these materials have great potential, but commercialization opportunities are currently limited by poor stability and the low quality of blue emitters. Here, we show that controlling energy transfer between an atomic dopant and the perovskite host allows for greatly improved luminescence and stability, providing an important step towards commercializing perovskite devices.


Dan Congreve received his B.S. and M.S. in Electrical Engineering from Iowa State in 2011, working with Vik Dalal studying defect densities of nano-crystalline and amorphous silicon. He received his PhD in Electrical Engineering from MIT in 2015, studying under Marc Baldo. His thesis work focused on photonic energy conversion using singlet fission and triplet fusion as downconverting and upconverting processes, respectively. He then studied perovskite nanoplatelets and their applications as a postdoc with Will Tisdale before joining the Rowland Institute in August 2016. His current research interests focus on understanding charge, exciton, and spin transport at the nanoscale and using that understanding to construct novel devices.