Applied Physics/Physics Colloquium: Photovoltaic Restoration of Sight in Retinal Degeneration

Photovoltaic Restoration of Sight in Retinal Degeneration
Tuesday, October 2, 2018 - 4:30pm
Hewlett 200
Daniel Palanker (Stanford University)
Abstract / Description: 

Retinal degenerative diseases lead to blindness due to loss of the "image capturing" photoreceptors, while neurons in the "image-processing" inner retinal layers are relatively well preserved. Information can be reintroduced into the visual system using electrical stimulation of the surviving inner retinal neurons. Some electronic retinal prosthetic systems have been already approved for clinical use, but they provide low resolution and involve very difficult implantation procedures.

We developed a photovoltaic subretinal prosthesis which converts light into pulsed electric current, stimulating the nearby inner retinal neurons. Visual information is projected onto the retina from video goggles using pulsed near-infrared (~880nm) light. This design avoids the use of bulky electronics and wiring, thereby greatly reducing the surgical complexity. Optical activation of the photovoltaic pixels allows scaling the implants to thousands of electrodes.
In preclinical studies, we found that prosthetic vision with subretinal implants preserves many features of natural vision, including flicker fusion at high frequencies (>20 Hz), adaptation to static images, center-surround organization and non-linear summation of subunits in receptive fields, providing high spatial resolution. Initial results of the clinical trial with our implants (PRIMA, Pixium Vision) having 100mm pixels, as well as preclinical measurements, confirm that spatial resolution of prosthetic vision can reach the sampling density limit.

For a broad acceptance of this technology by millions of patients who lost central vision due to age-related macular degeneration, visual acuity should exceed 20/100, which requires pixels smaller than 25mm. I will describe the fundamental limitations in electro-neural interfaces and 3-dimensional configurations which should enable such a high spatial resolution. Ease of implantation of these wireless modules, combined with high resolution opens the door to highly functional restoration of sight.

Aut. Qtr. Colloq. committee: R. Blandford (Chair), A. Kapitulnik, R. Laughlin, L. Senatore

Location: Hewlett Teaching Center, Rm. 200