EE Student Information

The Department of Electrical Engineering supports Black Lives Matter. Read more.

• • • • •

EE Student Information, Spring Quarter through Academic Year 2020-2021: FAQs and Updated EE Course List.

Updates will be posted on this page, as well as emailed to the EE student mail list.

Please see Stanford University Health Alerts for course and travel updates.

As always, use your best judgement and consider your own and others' well-being at all times.

AP/Physics colloquium presents "Frontiers in Cosmic Magnetism and in Many-Body Physics"

Frontiers in Cosmic Magnetism and in Many-Body Physics
Tuesday, October 6, 2020 - 4:30pm
Zoom ID: 96054036699; +password
Susan Clark & Vedika Khemani (Stanford)
Abstract / Description: 

Galaxies like our Milky Way host large-scale, weak magnetic fields. The interstellar magnetic field affects a wide range of physics, from cosmic ray propagation to star formation. The magnetic interstellar medium is also a formidable foreground for experimental cosmology, particularly for the quest to find signatures of inflation in the polarized cosmic microwave background. Despite its importance, the Galactic magnetic field and its role in interstellar processes remain poorly understood. Susan Clark will discuss a few of the big questions that drive her research on cosmic magnetism.

Many-body physics is concerned with the emergent properties - those that characterize the collectivity but not the individual constituents - of macroscopic systems with large numbers of strongly interacting particles. Ensembles of many interacting particles can support qualitatively new phenomena, with the same system able to exist in different universal phases of matter with sharply distinct properties. Due to a variety of conceptual and experimentally motivated reasons, the modern theory of quantum many body systems is largely built around the study of low-temperature and near-equilibrium properties of time independent Hamiltonians. However, such systems represent a small subset of the possible quantum mechanical descriptions of a physical system - which allow for more general unitary evolutions interrupted by non-unitary measurements. Vedika Khemani will describe some highlights of an active research program to advance many-body theory beyond the regime of near-equilibrium time-independent Hamiltonians, with a view towards uncovering complex emergent phenomena in new non-equilibrium regimes. These theoretical efforts are synergistic with recent advances in building controllable quantum devices that naturally implement more general time evolutions generated by circuits of unitary gates, starting from initial states that are not "low energy" in any useful sense.


Susan Clark will start as an Assistant Professor of Physics at Stanford in Fall 2021. She was awarded a PhD from Columbia in 2017, and is currently holds a NASA Hubble Fellowship and a Natural Science Fellowship at the Institute for Advanced Study. In 2019, she was awarded the Unsung Hero Award for her work on the Princeton Prison Teaching Initiative.

Vedika Khemani started as an Assistant Professor of Physics at Stanford in 2019. After graduating from Princeton in 2016, she spent her postdoctoral years as a Junior Fellow at the Harvard Society of Fellows. In 2020, she was awarded a Sloan Research Fellowship, a DOE Early Career Award, the McMillan Award and the American Physical Society's George E Valley Jr. Prize, "For seminal theoretical work on novel phases of many-body localized and Floquet systems, including demonstrating the absolute stability of a time crystal in such systems."