Adversarial perceptual representation learning across diverse modalities and domains [SCIEN]

Topic: 
Adversarial perceptual representation learning across diverse modalities and domains
Wednesday, February 8, 2017 - 4:30pm
Venue: 
Packard 101
Speaker: 
Trevor Darrell (University of California at Berkeley)
Abstract / Description: 

Learning of layered or "deep" representations has provided significant advances in computer vision in recent years, but has traditionally been limited to fully supervised settings with very large amounts of training data. New results in adversarial adaptive representation learning show how such methods can also excel when learning in sparse/weakly labeled settings across modalities and domains. I'll review state-of-the-art models for fully convolutional pixel-dense segmentation from weakly labeled input, and will discuss new methods for adapting models to new domains with few or no target labels for categories of interest. As time permits, I'll present recent long-term recurrent network models that learn cross-modal description and explanation, visuomotor robotic policies that adapt to new domains, and deep autonomous driving policies that can be learned from heterogeneous large-scale dashcam video datasets.

Bio:

Prof. Darrell is on the faculty of the CS Division of the EECS Department at UC Berkeley and he is also appointed at the UC-affiliated International Computer Science Institute (ICSI). Darrell's group develops algorithms for large-scale perceptual learning, including object and activity recognition and detection, for a variety of applications including multimodal interaction with robots and mobile devices. His interests include computer vision, machine learning, computer graphics, and perception-based human computer interfaces. Prof. Darrell was previously on the faculty of the MIT EECS department from 1999-2008, where he directed the Vision Interface Group. He was a member of the research staff at Interval Research Corporation from 1996-1999, and received the S.M., and PhD. degrees from MIT in 1992 and 1996, respectively. He obtained the B.S.E. degree from the University of Pennsylvania in 1988, having started his career in computer vision as an undergraduate researcher in Ruzena Bajcsy's GRASP lab.