EE Distinguished Lecture: Precise Timing and Localization in Indoor Spaces

Topic: 
Precise Timing and Localization in Indoor Spaces
Tuesday, April 19, 2016 - 4:15pm to 5:15pm
Venue: 
Packard 101
Speaker: 
Anthony Rowe (Carnegie Mellon University)
Abstract / Description: 

Over 300 years ago, an English carpenter realized that the key to safely navigating the ocean was being able to precisely measure time. Since then, timing and localization technologies have continued to push the limits of technology resulting in systems like GPS and our most sophisticated scientific instruments. Our new challenge in localization is providing coverage for indoor spaces where barriers attenuate and scatter radio signals. Precise indoor localization has the potential to enable applications ranging from asset tracking, indoor navigation and augmented reality all the way to highly optimized beam forming for improved spatial capacity of wireless networks.

In this talk, I will describe a localization system that uses time synchronized beacons with a combination of Bluetooth Low-Energy (BLE) and ultrasonic signals that are able to provide decimeter-ranging accuracy. The ultrasonic transmissions are designed to be inaudible to humans, but still detectable by microphones found on standard mobile devices. We are able to further improve localization performance by fusing information from the phone's IMU as well as constraints derived from building floor plans. As these systems scale, we show how pedestrian range-based Simultaneous Localization and Mapping (SLAM) can be used to bootstrap the beaconing infrastructure as well as detect and correct configuration faults.

Bio:

Anthony Rowe is an Associate Professor in the Electrical and Computer Engineering Department at Carnegie Mellon University. His research interests are in networked real-time embedded systems with a focus on wireless communication. His most recent projects have related to large-scale sensing for critical infrastructure monitoring, indoor localization, building energy-efficiency and technologies for microgrids. His past work has led to dozens of hardware and software systems, four best paper awards and several widely adopted open-source research platforms. He earned a Ph.D in Electrical and Computer Engineering from CMU in 2010, received the Lutron Joel and Ruth Spira Excellence in Teaching Award in 2013 and the CMU CIT Early Career Fellowship and the Steven Ferves Award for Systems Research in 2015.