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1. Introduction 

We shall assume throughout this paper that D and D '  are proper  subdomains of 

euclidean n-space R", n _-> 2. 

We say that D is a uniform domain if there exist constants a and b such that each 

pair of points x~, x2 E D can be joined by a rectifiable arc y C D for which 

(1.1) t s(~,)~a[x,-x~[, 
rain s('y(xj, x)) <- bd(x, OD) 
1~1,2 

for all x E y. 

Here  s (y )  denotes the euclidean length of y, y(xj, x)  the part of y between x~ and x, 

and d(x, OD) the euclidean distance from x to OD. 
Next for each x,, x2 E D we set 

ko(x~, x2) = invf f d(x, 0D)-ld~, 

where the infimum is taken over all rectifiable arcs 7 joining xl and x2 in D. We call 

k~, the quasi-hyperbolic metric in D. From lemma 2.1 in [6] it follows that 

(1.2) 
t d(xl, OD) I l~ d(xe, OD)[--- k D ( x h  x2), 

/Ix,-x~l + I)<kD(X,,X2), log \d(xh OD) -- ] = 1 , 2 ,  
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for all xt, x2 ~ D. Hence 

(1.3) 

where 

jr, (x t, x2) <= ko (X l, X2), 

1 [ IXl--X21 Xl--X2 +1  I I 1) § " 

Finally when n = 2, we say that D is quasiconformally decomposable if there 

exists a constant K with the following property. For each x~, x2 E D there exists a 

subdomain Do of D such that x~, x2 E/50 and such that 3Do is a K-quasiconformal 
circle, i.e., the image of the unit circle under a K-quasiconformal mapping of /~2 

onto itself [15]. Here  /~" = R"  U {0o}. 

Uniform domains were introduced recently in [11] and [12] by O. Martio and J. 

Sarvas in connection with approximation and injectivity properties of functions 

defined in domains in R ". P. W. Jones studied in [8] the domains D for which there 

exist constants c and d such that 

(1.4) ko (xl, x2) =< cjo (x,, x2) + d 

for all xl, x2 ~ D ;  it is precisely this class of domains D for which each function u 

with bounded mean oscillation in D has an extension v with bounded mean 

oscillation in R". 

We show in this paper that a domain D is uniform if and only if it satisfies (1.4) 

for some constants c and d;  hence the two classes of domains mentioned in the 

above paragraph are identical. This first characterization follows from properties of 

the quasi-hyperbolic geodesics established in section 2. In section 3 we show 

that kD and jo are quasi-invariant under quasiconformal mappings of D a n d / ~ ' ,  

respectively. This fact, together with the above characterization, immediately 

implies the invariance of the class of uniform domains under quasiconformal 

mappings o f /~" .  

In section 4 we obtain a second characterization for uniform domains in R 2, 

namely that a domain D in R 2 is uniform if and only if it is quasiconformally 

decomposable. We then apply this characterization to give an alternative proof for 

the main injectivity properties of uniform domains in R 2. Finally in section 5 we 

exhibit a domain D in R 2 which has these injectivity properties but which is not 

itself uniform. 

2. Quasi-hyperbol ic  metric in uni form domains  

We show here that a domain D is uniform if and only if it satisfies inequality 

(1.4). The necessity is an immediate consequence of the following result. 
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T h e o r e m  

which 
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1. Suppose that x~, x2 C D can be loined by a rectifiable arc T C D for 

(2.1) { s ( Y ) < = a l x ' - x " t '  

rain s(y(x,,x))<=bd(x, aD) f o r a l l x E  y. 
1~1 ,2  

Then 

(2.2) ko(x, ,  xz) <= cjo(x,, x2) + d 

where c = 2b and d = 2(b + b log a + l). 

P roo f .  Choose XoE 3' so that s(y(x~, xo))= s(y(xz, xo)). Then by the triangle 
inequality it is sufficient to show that 

(IxI--X21) 
(2.3) ko (x, xo) <= b log \d  (x,, OD ) + 1 + b (1 + log a) + 1 

for j -- 1,2. By symmetry we may assume that j = 1. 

Suppose first that 

(2.4) 

If x E y(x,,Xo), then 

and we obtain 

< b 
s(y(x,,  x,,)) = ~ - ~  d(x, ,  OD). 

1 
d(x, OD) >= d(x,,  OD) - s(y(x,,  x)) --> ~ d(x,,  OD) 

ko (Xh Xo) <= (b + 1) s(y(xl, xo)) < b. 
d ( x , , a D )  = 

This implies (2.3) since a -> 1. 
Suppose next that (2.4) does not hold and choose yl @ y(x,, xc,) so that 

b 
s(y(x , ,  y,)) = ~ d(x,,  aD). 

If x E y(yl, Xo), then 



UNIFORM DOMAINS 

1 d(x, oD) >= -g s(~,(x,, x)) 
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by (2.1) and hence 

ko(y,, ~0)=< b log (b + 1 s(v(x,,Xo))~ 
b d(x,, aD) / 

{s(r ( x , ,  x:)) '~ , 
< b log \ d (x 1, aD) / '- 1 

(Ix,-x~l +l)+l 
< b log a \d(xl ,  OD) 

again by (2.1). Now ko (x ,  yO<= b by what was proved above, and (2.3) follows 

from the triangle inequality. 

A rectifiable arc y C D is said to be a quasi-hyperbolic geodesic if 

(2.5) k~  Yz) = f d(x, OD) -lds 
"Y('Y 1, Y2) 

for each pair of points y,, y2~ y. Obviously each subarc of a quasi-hyperbolic 

geodesic is again a geodesic. 

L e m m a  1. For each pair of points Xh X2 ~ D there exists a quasi-hyperbolic 
geodesic y with xl and x2 as its end points. 

P r o o f .  Fix x,, xz E D. By definition there exists a sequence of rectifiable arcs 3,, 

joining x~ and x2 in D such that 

ko (x,, x2) = lira f d(x, OD)-'ds. 

Obviously we may assume that 

c = sup f d(x, OD)-'ds < ~. 
I 

If x ~ 3,,, then (1.2) implies that 
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whence 

Thus 

(2.6) 

d(x, aD) < ,  , . <  
log d(x,, OD)= xotx~, x )=  f d(x, 8D)-~ds, 

vl 

d(x, OD)<= eCd(x,, OD). 

s(y,) <- eCd(x,, aD) f d(x, OD)-'ds <= ceCd(x,, dD) 
v~ 

and the 3'j have uniformly bounded euclidean length. From the Helly selection 

principle we obtain a subsequence {jk} and a rectifiable curve 3' joining xt and x2 in 
D such that 

(2.7) 

Vt k 

(See, for example, pp. 72-75 in [17].) Then (2.7) implies that 3' is an arc, and with 
the triangle inequality we see that (2.5) holds for all yl, y2 • 3'. 

Theorem 1 implies that kD <= Cjr, + d if D is a uniform domain. We show now 
that this inequality holds only if D is uniform by establishing the following result. 

T h e o r e m  2. Suppose that 3" is a quasi-hyperbolic geodesic in D and suppose 
that 

(2.8) ko(y ,  Y2)---- cjo(y,  y~)+ d 

/or all yl, y2E y. Then 

(2.9) I s(y(x~, x2))_-< a Ix t -  x2[, 

! min s(y(x,, x)) <- ad(x, aD) 
1~1.2 

for each ordered triple of points x~, x, xz E 3", where 

a = 2be 2b, b = max (8c2e ~', 1). 

P r o o t .  Fix x~, x2 E 3'. To establish (2.9) we may assume that 3, = 3"(x~, x2). Set 
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r =  min ( sup  d(x, OD),21xl- x21) .  
\ xE~, 

We shall consider the cases where 

and where 

r < max d(x~, OD) 
]~1,2 

(2.10) r > max d(x~, OD) 
1~1.2 

separately. 

Suppose first that r < d(x,, dD). Then r --- 2 I x , -  x2l and 

1 
t x, - x21 <-- ~ a (x , ,  a o  ) <- a(x ,  a o  ) 

for all x on the segment /3 joining x~ and x2. Thus 

and by (1.2) 

y 21x,-x l<l ko(x,,x,)~ d(x, OD)-'ds < d(x,, O D )  = ' 

1 d(x~, ,gD)<- d(x, OD)<- ed(x,, ,gD) 
e 

for each x C y. These inequalities imply that 

that 

s (y )  = ed(x,, OD) f d(x, OD)-'ds <-_ 2e Ix, - x21, 

s(y(x~, x )) <= s(7 ) <- ed(xi, OD ) <- e2d(x, OD ) 
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2 for each x ~ y, and (2.9) follows since a = e . Similarly if r < d(x2, dD), we again 

obtain (2.9) by reversing the roles of xi and xz in the above argument. 

Suppose next that (2.10) holds. By compactness there exists a point xo ~ y with 
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r -< sup  d(x, OD) = d(xo, OD). 

Next  for  j = 1,2 let m, d e n o t e  the  l a rges t  i n t e g e r  fo r  which  

2" ,d  (x,, OD) <= r, 

and  let y, be  the  first po in t  of 3,(x, Xo) wi th  

d(y,, 3D) = 2",d(x,, 8D) 

as we t r a v e r s e  3' f r om xj t o w a r d s  x,,. O b v i o u s l y  

(2.1 l )  d(y , ,  OD)-< r < 2d(yl ,  0D) .  

W e  show first tha t  

s(3,(x,, y,)) ~ bd(y,, OD), 

s(3,(x,, x)) <= bebd(x, OD) for  x E y(xl ,  y,) ,  

for  ! = 1,2. C l ea r l y  we n e e d  on ly  c o n s i d e r  the  case  w h e r e  ] = 1 a n d  m~ => 1. F o r  this  

c h o o s e  p o i n t s  z~, - - . ,  z , . , . ,  E y(x~,  y~) so  tha t  z~ = x,  a n d  so tha t  zj is t he  first p o i n t  

of 3,(x~,y~) for  which  

(2.13) d(z ,  OD ) = 2'-'d(x,, OD ) 

as we t r a v e r s e  3' f r o m  x~ t o w a r d s  y~. T h e n  z,,,,+~ = y~. Fix j a n d  set  

t = s(y(Z,, z,+,)) 
d(z,,OD) 

If x E y ( z ,  zj+~), t hen  

and  h e n c e  

t ~ 2  

d(x, OD) <- d(z,+,, OD) = 2d(z,, OD), 

f d(x, OD)-'ds = 2kD(Z,, Z,+,), 
Tt 

because  3, is a q u a s i - h y p e r b o l i c  g e o d e s i c .  S ince  

~,, = 3,(z,, z , , ) ,  
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jo (z,, Z/+l) ~ log {I z, - z,+l I+ 1) =< log(t + 1), 
\d(z,, c~D ) 

inequality (2.8) implies that 

k D (Z D Z/+I) ~ C log (e a,~ (t + 1)) <= c (e ale (t + 1 ) )  1/2. 

If t => 1, we see from the above inequalities that 

t =< 8c 2e a/c =< b, (2.14) 

and hence that 

(2.15) 
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ko (z,, z,+~) <= c (2be ale ),/2 < b. 

If t < 1, then t < b and again we obtain (2.15). We conclude from (1.2) that 

[ s(y(z,, z,+l)) =< bd(z,, OD), 

(2.16) d(z,+1, 8D) <= ebd(x, 8D) for x E y(z,, z,+ O, 

for j = 1 , - . . ,  m~. Hence 

m I m 1 

s(y(xl ,  Y0) = ~ s(3~(z, z~+l))~ b ~ d(z,  OD) 
/ = 1  I = 1  

= b ( 2  m, - 1)d(xl, a D ) <  ba(y,, aD) 

by (2.13) and (2.16). Next if x E y ( x ,  yl), then x ~ y(z ,  z/+1) for some j and 

s(y(x, ,  x)) ~ ~ s(y(z,, z,+,)) <= b ~ d(z,  8D) 
t = l  i=1  

< bd(zl§ 8D)<= bebd(x, cgD) 

again by (2.13) and (2.16). This completes the proof of (2.12). 
We show next that if d(yl,  OD)=< d(y2, OD), then 

f s(y(yl ,  y2))=< be bd(yl, OD), 
(2.17) 

t d(yz, OD)_~ebd(x, SD) f o r x E ~ / ( y l ,  yz). 

Obviously we may assume that yl ~ y2 since otherwise there is nothing to prove. 
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Suppose first that 

and set 

If x E "/(yl, y2), then 
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r = s u p  d(x, aD) 
x E V  

t = S(5//(YI' Y2)) 
a (y , ,  a O )  " 

d(x, aD) _-< �9 < 2d(y~, aD) 

by (2.11) and we can repeat the proof of (2.16), with z, replaced by yt and z~+t by y2, 
to obtain (2.17). Suppose next that �9 = 21xj-Xzl .  Then the triangle inequality, 

(2.11) and (2.12) imply that 

l y , -  y2f-< s(r(x,, y,))+ s(~(x2, y,))+ Ix , -  x~l 

<-- bd(ym, OD)+ bd(yz, a D ) +  2 

-< 4bd(y~, aD).  

Hence jn (Y~, Yz) --< log 5b and 

ko (y~, yz) --< c log 0 b e  a/') =< c(5bea/') '~ < b 

by (2.8). If x ~ y(y~, y2), then 

e-'d(y~, aD ) <= d(x, aD)_--< e~d(y,, aD ) 

by (1.2), 

S(V(yt, y2)) ~ ebd(yl, aD)kn (yl, y2) ~ be bd(yl, aD)  

and again we obtain ( 2 . 1 7 ) .  

We now complete the proof of Theorem 2 as follows. By relabeling we may 

assume that d(yl,  aD)<= d(yz, aD). Then 

S(~ t) = S(~/(Xi, yl)) + S(*y(X2, y2)) + S('Y(yl, y2)) 

_-< 2be bd(y2, aD)  

<=4beblx,- x21 
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by (2.11), (2.12) and (2.17). This establishes the first part of (2.9). Next i fx  EE % then 

either x (E y (x,, yj) and 

min s(3' (x,, x)) _-< s (3"(x,, x)) < be bd(x, dD) 
j--l ,2 

by (2.12), or x E 3'(y,, y2) and 

<1  
rain s(3'(x~, x)) _- ~ s(3') < be~d(y2, OD) 
}s l ,2  

<- be 2~d (x, aD) 

by (2,17). In each case we obtain the second part of (2.9) and the proof is complete. 
Theorem 1, Lemma 1 and Theorem 2 yield the following characterization for 

uniform domains. 

Corollary 1. 
such that 

A domain D is uniform if and only if there exist constants c and d 

ko (xl, x2) <-- C]o (xl, xz) + d 

for all xt, x2 E D. 

These results also yield the following information about the quasi-hyperbolic 

geodesics in uniform domains. 

I[ D is a uniform domain, then there exist constants a and b such CoroLlary 2. 
that 

ordered triple of points 

s(3"(xl, xz)) <-- a } x2 - x21, 

rain s ( r (x  ,, x)) < bd(x, DD) 
I--1.2 

for each quasi-hyperbolic geodesic 3' in D and each 
X~,X, X 2 ~  3". 

Suppose next that pD is a function continuous in D and suppose that there exists 

a constant m such that 

(2.18) 1 d(x, dD)-'  <-_- po(x)  <- rod(x, dD)-'  
m 
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for all x E D. Next let 
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ho(x , ,  x2) = inf, f po(x)ds ,  
3" 

where the infimum is taken over all rectifiable arcs 3' which join x~ and x2 in D. 

Then hD is a metric in D and 

(2.19) 

for all x~, x2 E D. 

1 ho (x~, x2) <= ko (x,, x2) ~ mho (x,, x2) 
m 

Remark .  T he o re m  1, L e m m a  1, T he o rem 2 and hence  Corollaries 1 and 2 all 

hold with ko replaced by the metric ho. 

Proof .  Using (2.19) we see that the conclusion in Theo rem 1 takes the form 

ho (xa, x2) <= cjo (x,, x2) + d, 

where c = 2rob and d = 2m (b + b log a + 1), while the first half of (1.2) becomes  

(2.20) log d(x2, OD) <= mho(Xl ,  x2). 

The proof  of L e m m a  1 then follows f rom (2.18) and (2.20) with the constant  ce c in 

(2.6) replaced by mce "c. Finally if we carry through the proof  of Theorem 2 

assuming that 

ho (y a, y2)~  Cjo (y ~, y2) + d 

for all y~, y2 on an ho-geodesic  3', we again obtain (2.9) with 

a = 2mbe 2"b, b = max(8m2c2e u/c, m) .  

3. Quas i - invar iance  of jD and ko 

We begin with two results on distance distortion under  quasiconformal  

mappings. 
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L e m m a  2. There exists a constant  a depending only on n with the fol lowing 

property. I f  f zs a K-quas icon formal  mapping o f  D onto D ' ,  then 

If(xO-f(x,Ol< (Ix,-x-'l  )" 
(3.1) d ( f ( x , ) ,  c)D') = a \ d ( x , ,  8 D ) /  ~ = K " " - " '  

for all x,,  x ,  E D with 

d(xr,  O D ) =  a 

P r o o f .  By assumption D and D '  are p roper  subdomains  of R~. Then  by the 

n-dimensional  analogue of theorem 11 in [5], 

(3.2) tf(xO-f(x )l ( Ix,- x:l ) 
d ( f ( x , ) ,  8D ' )  - \ d ( x , ,  OD) /  

for all x , . x ~  D with I x , - x ~ l < d ( x , , O D ) .  (See p. 248 in [3].) Here  

OK ( t )  = (q* ' ( ~ ( 1 / t )  '~)) ' 

for 0 < t < 1, where log qb(s) and log ~ ( s )  denote  respectively the conformal  moduli  

of the Grbtz~ch and Teichmiiller ring domains,  R~ (s) and R r ( s ) ,  in R ". That  is, 

R G ( s ) = R  n - { x : l x t ~ l } - { x  = u e , : s < = u < m } ,  

for 1 < s ~-~ :c and 

R , ( s )  = R " - { x  = ue, : - 1 <~u <=O,s <= u <~c} 

for I )<  ~ -:- x, where e, = (1 ,0 , - . - , 0 ) .  It is well known that 

(3.3) s <_ ei,(s) ~ ~ s ,  'l*(s) = 4'((s + 1)'~:): 

where 4 _-<_ A,, - / e " .  (See [2], [3] and [13].) F rom (3.3) it follows that 

(3.4) 0,, (t) =< 2A -',t '~ 

= . 2 2 if 0 < t  <(2A~,) .... and hence we obtain (3.1) f rom (3.2) and (3.4) with a = A,, 

32=<a < 2 e  ~". 
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L e m m a  3. I[ f is a K-quasicon[ormal mapping o[ R" which fixes ~, then 

(3.5) If(x')-]f(xi)- f(x3)] f(x:)[ + l < b = (I x''x, - x21x3 + ) ' /" , a =  K '/"-"' , 

for all x,,x2, x3E R"  where b = 2a ~/", and a is the constant in Lemma 2. 

P roo f .  Fix distinct points X,,X2, X3ER n and let y ,= f (x , ) ,  D = R " - { x 2 } ,  

D ' =  R" -{y2}. We may assume that 

lY, -  Y3I < 2 =  a- , , .  ' 
l y , - y 2 l = b  

since otherwise (3.5) would follow trivially. Then 

l y , -  y21 = d(y,,  dD'), I x , - x 2 l = d ( x , , d D )  

and we can apply Lemma 2 to ]'-' to obtain 

- x , l <  : l r , - r ~ l ~  o 
IX:-x21=akly, -y=l/' 

which in turn yields (3.5). 

From Lemma 2 we obtain the following result on how ko changes under a 
quasiconformal mapping. 

T h e o r e m  3. There exists a constant c depending only on n and K with the 

[ollowing property. I[ ]~ is a K-quasicon[ormal mapping o[ D onto D',  then 

(3.6) ko,(f(x,),[(x2)) <= c max(ko(x~, x2), ko(x, ,  x2)"), a = K':"-"', 

[or all x,, x2 E D. 

P r o o f .  Fix x~, x2 ~ D and suppose first that 

(3.7) [,,x'- x~ ,  <_-(2a)-"~ < 1 ,  
a[x~, o u )  

where a is the constant in Lemma 2. Then 

(3.8) I f (x , ) -  :(x,)l < ,, ( I x , -  x~l ]"  < ! 
dff(x,),  0D') = - \ d (x , ,  OD ) /  = 2 
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1 
d(y, aD')>-_ ~ d(f(x,), o~D ') 

for all y on the segment /3 joining f(x 0 and [(x2). Hence 

(3.9) 

Next 

ko , ( f (x , ) ,  f(x2)) <- 2 I f ( x , )  - f ( x z )  I < 1. 
d ( f ( x , ) ,  aD ' )  = 

[tx,-x,I 
(3.10) ko(x,, x2)>_- log \d(x,,  #D) 

by (1.2) and (3.7), and me obtain 

+1)=> 1 Ix~-x2l 
a(x,, aD) 

from (3.8), (3.9) and (3.10). 
Suppose next that (3.7) does not hold and choose Yz,'" ",y,~+, on the quasi- 

hyperbolic geodesic joining x, and x: so that y, = x,, ym+, = x2 and 

by (3.9) while 

lY, - Y,-,] _ (2a)-,,~, lY,~ - Ym.,l ~-y~,-~-ff) _-< (2 a )-'/* 

for j = 1 , . . . , m  - 1. Then 

ko.(f(x,), f(x2)) - ~ ko.(f(y~), f(y,+,)) =< m 

ko(x,,x2) = ~ ko(YJ, Y,+,)= > - ~ ( 2 a )  -l/" 

by (3.10). Thus 

(3.12) 

since m => 2. Inequality (3.6) then follows from (3.11) and (3.12) with c = 4(2a) 't'. 

We have next the following analogue of Theorem 3 for the function jo. 

ko.(f (x,), f(x2)) _~ 4(2a)t'~ko (xl, x2) 

(3.11) ko.~(x,), f(x2)) <- 4ako (x,, x2) a 
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T h e o r e m  4.  There exist constants c and d depending only on n and K with the 
following property. If f is a K-quasiconformal mapping of [~" which maps D onto D', 
then 

(3.13) jo,(f(x,), f(x2)) --< cjo (x~, x2) + d 

for all x~,x2E D. 

P r o o f .  Fix xt, x 2 E D  and suppose first that f is a M6bius t ransformation.  

Choose  x , ~  aD and x ~ E / ~ "  - D so that 

(3.14) I f (x , ) -  f (x3) /=  d(f(x,), OD') 

and f(x,)= ~:. Since f is a M6bius t ransformation,  

(3.~5) I f ( x , ) -  f(x2)f = I f ( x , ) -  f(x2)J_ ix , -  x,_1 Ix.,- x~l 
d(f(xO, OO') I f ( x , ) - f ( x ~ ) l - l x  _ x, I I x2 - x41  

If x4 = zc, then (3.15) implies that 

I f ( x , ) - f ( x 2 ) l _ l x , - x 2 [ <  Ix,-x~_[ 
d(f(x,),OD') IXl--X~t= d(x,,c)O) 

since d(x,, aD)<=lx,-x3J; hence 

(3.16) t f ( x ' ) -  f(xz!l + l <= { I x ' -  x21 
d(f(x,), OD ) \d(Xl,  OD) 

If x ~ / 2 ,  then 

+ I~( Ix,- x,_l + 1) 
/ \d(x2, OD) " 

Ix~- x,f<=lx,-x:l+lx,- x~j+tx~_-x41, 

and (3.15) implies that 

I f (x , ) -  f(x:)l , { I x , -  x2t 
d(f(xO, OD') ~- 1 <= \ ~ -  x3t 

1) Jx,-x t+ 

hence (3.16) again holds since d(x2, OD)<=lx2-x41. We conclude that 

(3.17) jo,(f(x,), f(x2)) <= 2jo (x,, x2) 
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from interchanging the roles of x, and x2 in (3.16), taking logarithms and then 

adding. 

Suppose next that f is K-quas iconformal  and fixes ~, and choose x~ E 0D so that 

(3.14) holds. Then  

If(x,)-f(,,e)l (! x'-x-'I )'" K,,,, o, 
d(f(x,), a D ' )  + 1 ~ b ~ d ( x .  d O )  + 1 , ,~ = __ , 

by Lemma 3, and again as above we obtain 

1 j o ( x , x , ) + l o g b .  (3.18) /o , ( f (x , ) , f (x2))~-~ . 

For the general  case we can write f = g oh where h is a M6bius t ransformat ion 

and where g fixes :o. Then (3.13) follows f rom (3.17) and (3.18) with c = 2/oe and 

d = log b. 

The quas iconformal  invariance of uniform domains  is now an immedia te  

consequence  of  Corol lary  1 and Theorems  3 and 4. (See theorems 6.2 in [11] and 

2 .15  in [121.)  

C o r o l l a r y  3. If D is a uniform domain and if f is a quasiconformal mapping of 

" which maps D onto D', then D'  is a uniform domain. 

P r o o f .  By Corol lary l there exist constants  c and d such that 

ko (x,, xz) <= cjo (x~, x2) + d 

for all X,,x2CD. Next by Theorems  3 and 4 there exist constants  c,, c2, d2 
depending only on n and K such that 

ko,(y~, y2) <= cdko (x~, x2) + 1), 

jo (x> x2) <= c2jo,(y~, y~) + d2 

for all y , , y2E D'  where xj = f - ' (y j ) .  Hence  

kD,(y ,, y2) --<-- c ' jo,(y ,, y2) + d '  

for all y ~ , y . ~ D '  where  c ' = c ~ c 2 c ,  d ' = c ~ ( c d 2 + d + l ) ,  and D '  is uniform by 

Corollary 1. 

Now it is easy to check that if D is a half space in R",  then D satisfies (1.4) with 

c - - 2  and d = 0. Hence  we obtain the following result. 
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C o r o l l a r y  4. There exist constants a and b depending only on K and n with the 
[ollowing property. I[ D is the image of a ball or hal[space under a K-quasiconformal 
mapping of R", then 

(3.19) 

{ s(3"(x,,x~))<-alx,-x~l, 

min s(3"(x,,x )) <- bd(x, OD ) 
1=1,2 

for each quasi-hyperbolic geodesic 3, in D and each ordered triple of points 
x,, x, x2 E 3'. Moreover when n = 2, (3.19) also holds for each hyperbolic geodesic 3" in 
D and each ordered triple of points x~,x, x2E 3". 

P r o o f .  We may assume that D is the image of a half space H under a 

K-quasiconformal  mapping f of /~". Then ko <-CjD + d in D where c and d 

depend only on K and n, and (3.19) follows for quasi-hyperbolic geodesics from 

Theorem 2. 

When n = 2, the density po for the hyperbolic metric hn in D satisfies the 

,nequality 

1 
d(x, aD )-' <= On (x ) <= d(x, aD )-' 

by virtue of the Koebe  distortion theorem and the Schwarz Lemma.  Hence  (3.19) 

holds for hyperbolic geodesics 3' in D by the Remark  in section 2. 

4. Q u a s i c o n f o r m a i l y  d e c o m p o s a b l e  d o m a i n s  

We use results in the last two sections to obtain a new characterization for 

uniform domains in R ~. 

T h e o r e m  5. A domain D in R 2 is uniform if and only if it is quasiconformally 
decomposable. 

P r o o f .  Suppose that D is uniform. We want to find a constant K with the 

following property.  For each pair of points zl, z2 E D there exists a subdomain Do 

of D such that zl, z ,  ~ /50  and such that OD is a K-quasiconformal  circle. 

Fix zt, z2 E D and let 7 denote  a quasi-hyperbolic geodesic in D with zx and z2 as 

its end points. Then by Corollary 2, 
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J s (y(w, ,  w2)) <- a~lw~- w~ I for all w~, w2~ y, 

(4.1) ! rain s(y(z, ,z))<-b~d(z,  OD) foral l  z ~ y, 
j ' l . 2  

where a~ and b~ are constants depending only on D. Next for each ordered 

quadruple of points w ,  w2, w3, w4 ~ y let 

Iw, -  w21 f w3- w,I + Iw, -  w, ll w2- w~l 
c(w"w~'w3"")=lw,-w~llw~-w,I Iwt -  w~llw~- w , I  

From (4.1) it follows that 

max(I w~-  w~ I , I w~-  w31) <- s (y (w, ,  w~)) < a,) w , -  w~l, 

max0  w , -  w~l, I w3-  w,I)---< a, I w2-  w,I, 

I w , - w , l < - I w , - w , l + a ,  l w : - w , I ,  

and hence c(w~,w2, w~,w,)<2a~+a~. By theorem 1 of [16] there exists a K:- 

quasiconformal mapping f of/~2 which fixes ~ and maps y onto a segment 3" in the 

real axis so that f ( z  0 < f(z2); moreover  Kt is a constant which depends only on a~. 

Let u, = f(zj)  and set c~ = max(b,,  1) and 

D~ = {w = u + iv :[ v [ < (act)-~,min(u - u ,  u2-  u)}, 

where a is the constant in Lemma 2 when n = 2. Then D~ is a domain which 

contains f(zt) ,  f(z2) in its closure and aD~ is a K2-quasiconformal circle where K2 

depends only on b~ and K~. 

Let D~ = R 2 -  {zt, zz}, DI  = f (Dt )  and fix w = u + iv ~ D~. If Wo = u, then 

I w - wol < (ac,)-",a(wo, OD:) 
and hence 

Iz -~o l  < ( I w - w 0 1  ~"~'<• 
d(zo, aDO = a \d(wo, aDD/ c, 

by Lemma 2 applied to f - t ,  where z = f - ' ( w )  and Zo = Ft(wo). Since 

d(zo, OD,) < min s ( y ( z ,  zo)) < b,d(zo, OD ), 
I-1.2 

we conclude that Iz - Zol < d(zo, OD) and hence that z ~ D. Thus Do = f - ' (D~) is a 
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subdomain of D. z~, z2 E?_/5,, and ODo is a K-quasiconformal circle where K = K~K.. 
depends only on a, and b,. This completes the proof of the necessity part of 

Theorem 5. 

For the sufficiency part suppose that D is quasiconformally decomposable and fix 

z,,z:E?_ D. By hypothesis there exists a subdomain D,, of D such that Zl, Z~C [J,, 
and such that OD,, is a K-quasiconformal  circle, where K depends only on D. With 

the generalized Riemann mapping theorem [10] and lemma 1 in [18] we obtain a 

K2-quasiconformal mapping f of/~2 which maps D,, conformally onto the unit disk 

so that f(z,) and f(z2) lie on the real axis. Let/3 denote the closed segment joining 

f(z,) and f(z2) and let y = f 1(/3). If w,, z. w2 is any ordered triple of points on 

y f3 D,,. then y(w~, w2) is a hyperbolic geodesic in D<, and 

(4.2) 
[ s(y(w,,w2))<=alwl-w2j,  

min s(y(w,, z)) <= bd(z, ODo) <= bd(z, OD) 
I=12  

by Corollary 4, where a and b are constants which depend only on K and hence on 

D. If we now let wt---~z~ and w2---~ z2 along y. we obtain (4.2) with z, in place of w,. 

Thus D is uniform and the proof of Theorem 5 is complete. 

Theorem 5 yields a second proof of Corollary 3 for the case when n = 2. since the 

image of a quasiconformally decomposable domain under a quasiconformal 

mapping of /~-' is again clearly quasiconformally decomposable.  

Theorem 5 also yields a new proof of the main injectivity properties of uniform 

domains in R-'. We require first the following result essentially due to Duren, 

Shapiro and Shields [4]. 

L e m m a  4. If g is analytic in a domain D in R 2, then 

(4.3) 

P r o o f .  

sup Ig'(z)ld(z, 3D)2 =< 4 sup Ig(z)ld(z, OD). 
z E D  z E D  

We may clearly assume that 

sup ig(z)ld(z, OD) = c < ~c. 
z C O  

Fix z E D and let r = �89 OD). Then the Cauchy integral formula implies that 

1 4c 
/g '(z)J < -  sup Ig(~)l<=d(z, OD)2, 
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and we obtain (4.3). 

We have next the following extension, due to Martio and Sarvas [12], of an 

important and seminal result of Nehari [14]. 

T h e o r e m  6. If  D is a uniform domain in R 2, then there exist positive constants 

a and b with the following property. I f f  is analytic and locally univalent in D and if 

either 

(4.4) sup I St(z )l d(z, O D  ) 2 < -  _ a 
zE/)  

o r  

(4.5) f"(z)  I d(z, OD)<=b, s?p 

then f ts univalent in D. 

Here St denotes the Schwarzian derivative of f, 

{ g ] , _  1 .f,,.2 s'= (7;) 

P r o o f .  Suppose first that OD is a K-quasiconformal  circle. Then by a theorem 

of Ahlfors ([1] or [9]) there exists a positive constant a depending only on K such 

that each f satisfying (4.4) must be univalent in /). Choose b > 0  so that 

4b + b2/2 = a. If f satisfies (4.5), then Lemma 4 applied to g = f"/f '  implies that 

(4.4) holds and hence f must again be univalent in /9. 

For the general case fix zi, z2E D with z~ ~ z2. By Theorem 5 there exists a 

subdomain D,~ of D such that z~, z2 E ff)~ and such that OD,I is a K-quasiconformal  

circle where K depends only on D. Choose a and b corresponding to K as above 

and suppose that f satisfies the hypotheses of Theorem 6. Then f satisfies the same 

hypotheses with D replaced by Dr, f ( z l ) ~  f(z2) by what was proved above and 

hence f is univalent in D. 

5. A n  E x a m p l e  

We say that a domain D in R 2 satisfies the Schwarzian univalence criterion if 

there exists a positive constant a with the following property.  If f is analytic and 

locall~r univalent in D and if 

sup I Si(z) t  d(z, ODf  <- a, 
zEtD 
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then [ is univalent in D. 

We then have the following characterization for finitely connected uniform plane 
domains. 

Coro l lary  5. A finitely connected domain D in R 2 is uniform if and only if it 
satisfies the Schwarzian univalence criterion. 

P r o o f .  If D is uniform, then D satisfies the Schwarzian univalence criterion by 

Theorem 6. Conversely if D satisfies the Schwarzian univalence criterion, then D is 

quasiconformally decomposable by theorem 5 in [15] and hence uniform by 

Theorem 5 of the present paper. 

It is natural to ask if the above characterization holds when D is an infinitely 

connected plane domain. We present here an example to show that this is not the 
case. We require first the following result on removable singularities. 

L e m m a  5. Suppose that ZoE D C R 2 and that f is analytic and locally 
univalent in D -{zo}. I f  

(5.1) lim sup I S r ( z ) l l z  - Zol ~ < oo, 
z ~ z  o 

then [ has a meromorphic extension to D. If  

z 3 
(5.2) limszup [St(z)l Iz - Zol < ~ ,  

then f is locally univalent in D. 

Proof .  It is sufficient to consider the case where z0 = 0 and D is the disk 
{z : l z l < r } .  

Since f '  ~ 0, Sr is analytic in D - {0}. Thus Sr has a meromorphic extension to D 
with at most a pole of order 2 at z = 0 by (5.1), and z = 0 is a regular singular point 
for the differential equation 

1 
(5.3) w" + ~ Siw = O, w = w (z) .  

The indicial equation for (5.3) is p 2 _ p  + q = 0 where 

1 
q = ~ ! ~  z % ( z ) .  
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Let p~, p2 be the roots of this equation numbered  so that Re(pz) _-< Re(p2). Then 

(5.4) p ,+p2  = 1, Ip,p21 = [q[. 

Next let D~ be the slit disk 

D j = D - { z  = t : -  r < t =0}.  

By Fuchs' theorem we can find two linearly independent solutions w~ and w2 of 

(5.3) in D,,  

w, ( z )  = z",g,(z) ,  

w2(z) = zP2gz(z)+ awt(z ) log  z, 

where gl and g2 are analytic in D with gt (0)= g2(0) = 1 and where a is a constant 

which is zero if p2 ~ p~ (rood 1) and nonzero if p2 = p~. (See, for example,  theorem 

5.3.1 in [7].) By replacing r by a smaller constant we may assume that g~ ~ 0 in D. 

Then h = w2/wx is analytic with Sh = S t  in D,  and we can find a M6bius 

transformation T such that 

(5.5) T(f (z ) )  = h ( z ) =  z" : - " ,g (z )+  a log z 

in D~, where g = g2/g~ is analytic in D. 

Now (5.5) implies that h has a meromorphic  extension to D -{0}. From this it 

follows first that p 2 - P z  is a nonnegative integer n and next that a = 0. Thus 

h(z )  = z ' g ( z )  has an analytic extension to D and f = T - Ioh  is meromorphic  in D. 

Next if (5.2) holds, then 

n2=(p~+p2)2-4p,p2<--1+41ql<4, n= l ,  

by (5.4), h has a simple zero at z -- 0 and [ is locally univalent at z = 0 and hence in 

D. 

R e m a r k .  The function f ( z ) =  z 2 with S t ( z ) =  - ~ z  -2 shows that the constant 

in (5.2) cannot be improved.  

T h e o r e m  7. There exists a domain D in R 2 which satisfies the Schwarzian 

univalence criterion and which is not uniform. 

P r o o f .  Let Q denote the open square 
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O = { Z = x + i y : l x J < l ,  l y J < l } ,  

and for j = 1 , 2 , . . . ,  let 

aj = {z E 0 : d(z ,  OO) = r,}, 5 = 2  J, 

{ 3} /3,= z ~ O : d ( z ,  OO)=xr ,  . 

Next for each j let B, denote the set of points in/3, whose coordinates are multiples 

o f l  -' ~r,. We shall show that the domain 

D = O -  U B , 
/ = 1  

has the desired properties. 

Since OO is a quasiconformal circle, there exists a positive constant c with the 

following property.  If f is meromorphic  and locally univalent in O and if 

(5.6) sup [ S t ( z ) l d ( z ,  00)2<= c, 
z E r 

then f is umvalent in O. (See [1] or [9].) Next let a = min(c/64, 1) and suppose that 

f is analytic and locally univalent in D with 

(5.7) sup I Sf(z )l d(z ,  OD )2 <= a. 
z E D  

Then (5.2) holds for each zoE  OD A Q, and Lemma 5 implies that f has an 

extension which is meromorphic  and locally univalent in O. Fix z~ E O and choose j 

so that 

(5.8) r, < d(z , ,  OO) <= 25. 

I f . -Cc~ ,  then d(z.  OD) > ~=45 a n d b y ( 5 . 7 )  

(5.9) I S f ( z  )l ~ 16at;  2. 

The maximum principle, (5.8) and (5.9) then yield 

[ Sf(z~)l <= 16arl 2 ~ c d ( z h  0Q) -2, 
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and we conc lude  that f is univalent  in O and hence  in D.  Thus  D satisfies the 
Schwarzian un iva lence  criterion. 

Finally suppose  that D satisfies the s econd  part of  (1.1), fix j so that br, < 1 and 

choose  z ,  E as N D and z 2 ~  a,+x r D.  By hypothes i s  there exists a rectifiable arc y 

joining z~ and z :  in D so that 

(5.10) rain s ( y ( z  1, z ) ) ~  bd(z, OD) 
]--1,2 

for all z E y. Let z be the point  where y meets  fl,. Then 

1 1 r~ ~rj ~min,=,,2 Iz' - z l '  d(z'OD)<=4 

and with (5.10) we obtain 1 _-< br~ contradict ing the way j was chosen.  Thus  D is not 

a uniform domain  and the proof  of  T h e o r e m  7 is complete .  
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