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1. Introduction

We shall assume throughout this paper that D and D' are proper subdomains of
euclidean n-space R", n = 2.

We say that D is a uniform domain if there exist constants a and b such that each
pair of points x,,x,€ D can be joined by a rectifiable arc y C D for which

s(¥)=alxi— x4,

(1.1)
g\ig s(y(x;x))=bd(x,dD) forall x €.

Here s(y) denotes the euclidean length of v, y(x;, x) the part of y between x; and x,
and d(x, D) the euclidean distance from x to aD.
Next for each x,, x, € D we set

ko (X1, x2) = inf f d(x, 3D)"ds,
k4
)

where the infimum is taken over all rectifiable arcs y joining x; and x. in D. We call
kp the quasi-hyperbolic metric in D. From lemma 2.1 in [6] it follows that

l g xh | kp(xuxz)y

2 %5, 3D)
log (}i(——a’% S koeox), =12,
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for all x;, x,€ D. Hence

(1.3) Jo(xi, x2)=kp (x4, x2),

where

o e 2 = S 10g (=l 1) (L)

Finally when n =2, we say that D is quasiconformally decomposable if there
exists a constant K with the following property. For each x,, x, € D there exists a
subdomain D, of D such that x,, x, € D, and such that 3D, is a K -quasiconformal
circle, i.e., the image of the unit circle under a K-quasiconformal mapping of R?
onto itself [15]. Here R* = R" U {}.

Uniform domains were introduced recently in [11] and [12} by O. Martio and J.
Sarvas in connection with approximation and injectivity properties of functions
defined in domains in R". P. W. Jones studied in [8] the domains D for which there
exist constants ¢ and d such that

(1-4) kD (xl,X2)§ CjD (xl, x2)+ d

for all x4, x, € D; it is precisely this class of domains D for which each function u
with bounded mean oscillation in D has an extension v with bounded mean
oscillation in R".

We show in this paper that a domain D is uniform if and only if it satisfies (1.4)
for some constants ¢ and d; hence the two classes of domains mentioned in the
above paragraph are identical. This first characterization follows from propertics of
the quasi-hyperbolic geodesics established in section 2. In section 3 we show
that kp, and j, are quasi-invariant under quasiconformal mappings of D and R",
respectively. This fact, together with the above characterization, immediately
implies the invariance of the class of uniform domains under quasiconformal
mappings of R".

In section 4 we obtain a second characterization for uniform domains in R?
namely that a domain D in R? is uniform if and only if it is quasiconformally
decomposable. We then apply this characterization to give an alternative proof for
the main injectivity properties of uniform domains in R>. Finally in section 5 we
exhibit 2 domain D in R’ which has these injectivity properties but which is not
itself uniform.

2. Quasi-hyperbolic metric in uniform domains

We show here that a domain D is uniform if and only if it satisfies inequality
(1.4). The necessity is an immediate consequence of the following result.
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Theorem 1. Suppose that x,, x, € D can be joined by a rectifiable arc y C D for
which

s(y)=alx - xal,

2.1)

}'\;l}l’% s(y(x,x))=bd(x,3D) forallx € y.
Then
2.2) kp(xy, x2) = ¢jp (x5, x2)+d

where ¢ =2b and d =2(b+ bloga +1).

Proof. Choose x,€ y so that s(y(x, Xo)) = s(y(x, xo)). Then by the triangle
inequality it is sufficient to show that

(2.3) ko (x, xo) = b log (-tli-zl—aD%+l>+b(l+loga)+l

for j =1,2. By symmetry we may assume that j = 1.
Suppose first that

b
(2.4) s(y(x,,x(,))ém d(x,, D).
If x € y(x, xo), then

d(x,dD)= d(x,, D) s(y(x),x)) = +— d(x:,dD)

b+1

and we obtain

ko (x1, x0) = (b + 1) Mﬁ%)))s b.

This implies (2.3) since a = 1.
Suppose next that (2.4) does not hold and choose y; € y(x,, x,) so that

$(y(x1, 7)) = 2 d(xr, D).

If x € y(y1, x0), then
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d(x,6D)= % s(y(x1, x))

by (2.1) and hence

s (£ )

S! Z!xl, xz!!)
<blog ( d(x,, oD) +1

<bloga<-J£’—-—xz-L+1)+1

d(x,, 9D)

again by (2.1). Now kp(x,,y)=b by what was proved above, and (2.3) follows
from the triangle inequality.
A rectifiable arc y C D is said to be a quasi-hyperbolic geodesic if

2.5) ko (v, y2) = f d(x, aD)"'ds

¥{y1.y2)

for each pair of points y,, y.€ y. Obviously each subarc of a quasi-hyperbolic
geodesic is again a geodesic.

Lemma 1. For each pair of points x,,x, € D there exists a quasi-hyperbolic
geodesic y with x, and x, as its end points.

Proof. Fix x,, x, € D. By definition there exists a sequence of rectifiable arcs v,
joining x; and x, in D such that

kD (xl, xz) = }1_];2 j d(x, BD)“‘ds.

Y

Obviously we may assume that
¢ =sup f d(x, D) 'ds < oo,
1
/]

If x € v, then (1.2) implies that
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d!x, D) f »
g Jx.. oDy = ko (xu X)= | d(x,6D)"'ds,
i
whence
d(x,dD) = e“d(x,, 3D).
Thus
(2.6) s(v)=e‘d(x,,dD) f d(x,dD) 'ds = ce‘d(x,, D)

R

and the vy, have uniformly bounded euclidean length. From the Helly selection
principle we obtain a subsequence {j.} and a rectifiable curve vy joining x, and x; in
D such that

2.7 ko (x1, x2) = lim f d(x,dD)'ds = f d(x,3D) 'ds.

i k4

(See, for example, pp. 72-75 in [17).) Then (2.7) implies that vy is an arc, and with
the triangle inequality we see that (2.5) holds for all y,, y, € v.

Theorem 1 implies that kp = ¢jp + d if D is a uniform domain. We show now
that this inequality holds only if D is uniform by establishing the following result.

Theorem 2. Suppose that vy is a quasi-hyperbolic geodesic in D and suppose
that

(2.8 ko (yi, y2)=cjp(y, y2)+d
forall y,y, € y. Then
s(y(x,x2)) = alxi— xsf,

2.9
E}'; s(y(x, x)) = ad(x, D)

for each ordered triple of points x,, x, x, € y, where
a =2be®, b = max (8c’e“", 1).

Proof. Fix x,, x; € . To establish (2.9) we may assume that y = y(x,, x,). Set
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r = min (ilé[y) d(x,3D),2|x,~ le) .
We shall consider the cases where
r< max d(x;, D)
and where
(2.10) r= max d(x;,aD)

separately.
Suppose first that r < d(x,, dD). Then r =2|x,— x,| and

fx = xzfé-lz-d(x,, aD)=d(x, D)

for all x on the segment 8 joining x, and x,. Thus

1 2{x;,— X2
ko(xl,X2)§[ d(x,3D) 'ds = d(x, aD)§ 1,
B
and by (1.2)

L d(x,, aD) = d(x, D) = ed(x,, aD)
for each x € y. These inequalities imply that

s{y)=ed(x,,dD) f d(x, dD) 'ds =2e|x,~ x|,

that

s(y(xy, x)) = s(y)= ed(x,,0D) = e’d(x,3D)

for each x € y, and (2.9) follows since a = e?. Similarly if r < d(x,, 3D), we again
obtain (2.9) by reversing the roles of x, and x; in the above argument.
Suppose next that (2.10) holds. By compactness there exists a point x, € y with
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r = sup d(x,3D) = d(xo, ¢D).

Next for j = 1,2 let m, denote the largest integer for which
2™d(x, D)=,
and let y, be the first point of y(x, x,) with
d(y,aD)=2"d(x, éD)
as we traverse y from x, towards x,. Obviously
(2.11) d(y,aD)=r<2d(y,aD).

We show first that

V)= bd(y, D),
@12 {s(v(x ¥) (y»9D)

s(y(x,x))= be’d(x,dD) for x € y(x,y,),

for j = 1,2. Clearly we need only consider the case where j = 1 and m, = 1. For this
choose points z,, - -+, Z,.,.. € y(x,;, y:) so that z, = x; and so that z, is the first point
of y(x.,y,) for which

(2.13) d(z,9D)=2"d(x,, aD)

as we traverse y from x, towards y,. Then z,.; =y, Fix j and set

t:S!‘y!Z,ZHn
d(z,dD)

If x € y(z,z,.). then
d(x,dD)=d(z,.,,8D)=2d(z, D),

and hence

=2 f d(x, aD)_]dS = 2kD(z,, Z/H)» Y= V(Zl’ zl*l)’

Vi

because y is a quasi-hyperbolic geodesic. Since
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LZL——ZLﬂlﬁ-l)élog(tle),

jo(z,z,.1) = log (d(z,, aD)
inequality (2.8) implies that
kp(z,z)=clogle (t+ 1) = cleV (¢t + 1))~
If t 2 1, we see from the above inequalities that
(2.14) t=8c’e =b,
and hence that
(2.15) ko (z, 2,41) = c(2be <) < b.

If + <1, then t < b and again we obtain (2.15). We conclude from (1.2) that

s(v(z, z,+1)) = bd(z, 4D),
(2.16) {

d(z,+1,dD)=e’d(x,dD) for x € y(z,, z,+1),

for j=1,---,m,. Hence

s(y(xn y) :2 S(r(zm 7)) = bz d(z, aD)

= b@2™ - 1)d(x;, aD) < bd(y,, dD)

by (2.13) and (2.16). Next if x € y(x,, y1), then x € y(z, z,+:) for some | and

s(y(xn,x))= 2 s(y(z,z))=b 2 d(z, 8D)

< bd(z,+1, D)= be’d(x, D)

again by (2.13) and (2.16). This completes the proof of (2.12).
We show next that if d(y,, dD)=d(y:, dD), then

@.17) { s(y(y1, y2)) = be’d(y,, aD),

d(y, dD)=e"d(x,dD) for x € y(yi, y2).

Obviously we may assume that y, # y, since otherwise there is nothing to prove.
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Suppose first that

r = sup d(x, dD)

xEy

and set

t= S(xﬂzn, 22)2
d(yh aD) ’

If x € y(y,, y2), then
d(x,dD)=r <2d(y:, D)

by (2.11) and we can repeat the proof of (2.16), with z, replaced by y, and 2,.. by y,,
to obtain (2.17). Suppose next that r =2|x,— x,|. Then the triangle inequality,
(2.11) and (2.12) imply that

[yi= y2l = s(y(x0, y)) + (¥ (%2, y2)) + | 31— X3
=< bd(y,, D)+ bd(y>, aD)+§
=4bd(y,, 3D).

Hence jo(yi, y2) =log 5b and
ko(yy, y2) = c log(Sbe )= c(Sbe?)* < b
by (2.8). If x € y(y1, y2), then

e ’d(y;, 3D)= d(x,dD) = e"d(y,, D)
by (1.2),
s(Y(y1, y2)) = €°d(y1, 3D )ko (y1, y2) = be"d(y,, 6D)
and again we obtain (2.17).

We now complete the proof of Theorem 2 as follows. By relabeling we may
assume that d(y,, dD) = d(y, D). Then

s(y) = s(y(x1, y1)) + s(y(x2, y2)) + s(y(y1, y2))
<2be"d(ys, 3D)

=4be®|x,— x,]
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by (2.11), (2.12) and (2.17). This establishes the first part of (2.9). Next if x € vy, then
either x € y(x,y,) and

min s(y(x, x)) = s(y(x, x)) = be"d(x, 0D)
by (2.12), or x € y(y, y2) and

min s(v(x, X)) S s(v) S be"d(ys, 4D)
= be*d(x, D)

by (2.17). In each case we obtain the second part of (2.9) and the proof is complete.
Theorem 1, Lemma 1 and Theorem 2 yield the following characterization for
uniform domains.

Corollary 1. A domain D is uniform if and only if there exist constants c and d
such that

ko (xh xz) = (xl, X2) +d
for all x,, x, € D.

These results also yield the following information about the quasi-hyperbolic
geodesics in uniform domains.

Corollary 2. If D is a uniform domain, then there exist constants a and b such
that

s(y(xy, x2)) = a|x,— xof,

min s(y (x, x)) = bd (x, oD)

for each quasi-hyperbolic geodesic y in D and each ordered triple of points
X1, X, X2€ 7.

Suppose next that pp is a function continuous in D and suppose that there exists
a constant m such that

2.18) 7:,— d(x, D) = po (x) < md(x, 3D)""
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for all x € D. Next let

hp(x1, x2) = inff po (x)ds,

where the infimum is taken over all rectifiable arcs y which join x, and x, in D.
Then hp is a metric in D and

1
(2.19) ;‘ho()ﬁ, x;_)éko(xl, x2)§mhp(x1, xz)

for all x,,x.€ D.

Remark. Theorem 1, Lemma 1, Theorem 2 and hence Corollaries 1 and 2 all
hold with k, replaced by the metric hp.

Proof. Using (2.19) we see that the conclusion in Theorem 1 takes the form
hp (xl, X:) = ch (xl, xz) +d,
where ¢ = 2mb and d = 2m (b + b log a + 1), while the first half of (1.2) becomes

(2.20) 'l d(x,, oD

og d(xs, aD)' = mhp (x4, X2).

The proof of Lemma 1 then follows from (2.18) and (2.20) with the constant ce® in
(2.6) replaced by mce™. Finally if we carry through the proof of Theorem 2
assuming that

ho (1, y2) = ¢jp (1, y2) + d
for all y,, v, on an hp-geodesic y, we again obtain (2.9) with

a = 2mbe*™, b = max(8m°c’e”, m).

3. Quasi-invariance of j, and k,

We begin with two results on distance distortion under quasiconformal

mappings.
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Lemma 2. There exists a constant a depending only on n with the following
property. If f1s a K-quasiconformal mapping of D onto D', then

Jf(xi)ﬁi(x3ﬂ< lx’*x—‘l “ g lti-n)
(-0 d(f(xl),aD')=a<d(x.,r’)D)>’ a= K

for all x,.x,€ D with

X, — X =q "

d(x,,oD)

Proof. By assumption D and D' are proper subdomains of R". Then by the
n-dimensional analogue of theorem 11 in [5],

(3.2) Lﬂﬁ;ﬂﬁﬂsox< X=X )
d(f(x,),aD") ~ " \d(x\, D)

for all x,.x.&€ D with [x,~ x| < d(x,, dD). (See p. 248 in [3].) Here
O (1) = (W '(P(1/1)")) "

for 0 <t < I, where log ®(s) and log W(s) denote respectively the conformal moduli
of the Grotzsch and Teichmiiller ring domains, R (s) and R, (s), in R". That is,

Ro(s)=R"—{x:[x|=1}—{x =ue :s =u <},

for 1 < s < = and

Ri(s)=R"-{x=ue,:—1=u=0,s=u<x}
for 0 < s x, where e; = (1,0,---,0). It is well known that
(3.3) s =d(s) = A8, Y(s) = d((s + )7y

where 4= A, < ¢ (See [2], {3] and [13].) From (3.3) it follows that
3.4 INGERIW

if 0<t=(2A%) " and hence we obtain (3.1) from (3.2) and (3.4) with a = 2A%,
R=a<e™
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Lemma 3. If fis a K-quasiconformal mapping of R" which fixes «, then

Ve
(3.5) +1=b <L¥_1____l+ 1) , a=K"m

fx) = f(xa)|
[f(x)) = f(x3)] [x1 = X

for all x,,x,,x;E R" where b =2a', and a is the constant in Lemma 2.

Proof. Fix distinct points x,,x,,x;€ R" and let y, = f(x,), D = R" —{x,},
D’'= R" ~{y,}. We may assume that

LYI_Xil<Z_a—wa
=b

[yi= yal ’
since otherwise (3.5) would follow trivially. Then
lyi=y:l=d(y,,0D"),  |x,—x:|=d(x,, D)
and we can apply Lemma 2 to f™' to obtain
X1~ X3 Sa( 1 3)“
lxi= x|~ “\|lyi—yal/
which in turn yields (3.5).
From Lemma 2 we obtain the following result on how kp changes under a

quasiconformal mapping.

Theorem 3. There exists a constant ¢ depending only on n and K with the
following property. If f is a K-quasiconformal mapping of D onto D', then

(36) kD'(f(xl),f(x:))é (o ln@x(kp (xl,X2), kD(xl,xZ)“), a = K”“_"),
for all x,,x,&€ D.

Proof. Fix x,,x;€ D and suppose first that

X\ < ~la
3.7 3‘-(7.,7)15 (a) " <1,

where a is the constant in Lemma 2. Then

If(xl)‘f(xz)l lxl 1‘2] a<_1_
(3:8) d(f(x),eD") = ° (d(x.,aD)) =3
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by Lemma 2 and
d(y, 3D 2 3 d(f(x:), oD")

for all y on the segment B joining f(x,) and f(x,). Hence

(3.9) ko (F(x,), fx)) = %aﬁg—fglg 1.
Next

(3.10) ko (x1, x:) = log (BI:T'.,%%L)’“ 1);%%&%
by (1.2) and (3.7), and we obtain

(3.11) ko (f(x1), f(x2)) = dakp (x,, x2)"

from (3.8), (3.9) and (3.10).
Suppose next that (3.7) does not hold and choose y;, -, Y. on the quasi-
hyperbolic geodesic joining x, and x; so that y, = x,, y..., = x, and

’.VI - YI*‘[ _ ~1/a ‘ym - ymH, - ~Va
d(y,eD) =@V Gapy =G4

for j=1,--,m ~ 1. Then
ko (O, FGN) = 3, Korlf9) o) S m
by (3.9) while
ko (x1, x2) = ,i. ko (Y, y,e) Z —'5'7—1 (2a)™=

by (3.10). Thus
(3.12) ko (F(x1), f(x2) = 4(2a) "k (x1, X2)

since m z 2. Inequality (3.6) then follows from (3.11) and (3.12) with ¢ = 4(2a)"".
We have next the following analogue of Theorem 3 for the function jp.
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Theorem 4. There exist constants ¢ and d depending only on n and K with the
following property. If f is a K -quasiconformal mapping of R" which maps D onto D',
then

(3.13) o (f(x1) f(x2)) = ¢fo (x1, x2) + d

for all x,,x.€ D.

Proof. Fix x,,x,€ D and suppose first that f is a Mdbius transformation.
Choose x.€ 4D and x,€ R" — D so that

(3.14) [f(x) = f(x3)| = d(f(x,), aD")

and f(x,) = =. Since f is a Md&bius transformation,

(3.15) Lf(x1) = f(x2)| — Lﬂxx)_f(xz)J: X1~ Xo| [ X3~ X
o d(f(x1),aD")  |f(x)= )l o= xaf fxa = xa]

If x, ==, then (3.15) implies that

o) = fG)| _[xi=xa] %= xs
d(f(x)),dD") |x,— x|~ d(x,, D)

since d{x,,dD)=|x,— x;|; hence

flx)— f(x2) —(1xi— x5 [X— x:]
(3.16) d(fxn.eD) T 1= (d(xl, aD) " 1><d(xz, aD) " 1) :

If x;# =, then

[x3— x4 S| x0 = X2+ x0— x5 + | x2— x4,

and (3.15) implies that

o= F L (=] Nflxi—x] .
d(f(x), 3D')+I=<]xu—x3f+l><|xz—x4]+l> ;

hence (3.16) again holds since d(x., dD)=|x.— x,|. We conclude that

(3.]7) jD'(f(Xx),f(X2))§2jD (xl,xz)
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from interchanging the roles of x, and x. in (3.16), taking logarithms and then
adding.

Suppose next that f is K-quasiconformal and fixes », and choose x, € 4D so that
(3.14) holds. Then

lf(xl)‘f(x2)1+1<b( [xi—x;

[ex
] — e ia-n)
d(f(x).eD) T1=E d(x,.aD)+1>’ a= K7

by Lemma 3, and again as above we obtain

(3.18) o (f(x1), f(xz))é'clffo (x4, x2) + log b.

For the general case we can write f = g oh where h is a Mdbius transformation
and where g fixes ». Then (3.13) follows from (3.17) and (3.18) with ¢ = 2/a and
d=loghbh.

The quasiconformal invariance of uniform domains is now an immediate
consequence of Corollary 1 and Theorems 3 and 4. (See theorems 6.2 in [11] and
2.15 in [12].)

Corollary 3. If Disa uniform domain and if f is a quasiconformal mapping of
R™ which maps D onto D', then D' is a uniform domain.

Proof. By Corollary 1 there exist constants ¢ and d such that
ko(xnx)Scjp(x,x2)+ d

for all x,,x,€ D. Next by Theorems 3 and 4 there exist constants ¢,, ¢, d
depending only on n and K such that

ko (ys, y2) = (ko (1, x2) + 1),
jo (X1, X)) = Cop(y1, y2) + d;
for all y,, y, € D' where x, = f'(y,). Hence
kD'(yly )’2) = C’jD‘(yls )’z)+ d’

for all y,,y,€ D' where ¢’ = cic2c, d' = ci{cd,+d + 1), and D’ is uniform by
Corollary 1.

Now it is easy to check that if D is a half space in R", then D satisfies (1.4) with
¢ =2 and d = 0. Hence we obtain the following result.
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Corollary 4. There exist constants a and b depending only on K and n with the
following property. If D is the image of a ball or half space under a K -quasiconformal
mapping of R", then

s(y(x, x2)) = alx,— xa,
(3.19)
mp} s(y(x,x)) = bd(x, dD)

for each quasi-hyperbolic geodesic vy in D and each ordered triple of points
X1, X, X € y. Moreover when n = 2, (3.19) also holds for each hyperbolic geodesic vy in
D and each ordered triple of points x,, x,x, € y.

Proof. We may assume that D is the image of a half space H under a
K-quasiconformal mapping f of R". Then kp =cjp+d in D where ¢ and d
depend only on K and n, and (3.19) follows for quasi-hyperbolic geodesics from
Theorem 2.

When n =2, the density pp for the hyperbolic metric hp in D satisfies the
inequality

% d(x,dD)"'=pp(x)=d(x, D)’

by virtue of the Koebe distortion theorem and the Schwarz Lemma. Hence (3.19)
holds for hyperbolic geodesics y in D by the Remark in section 2.

4. Quasiconformally decomposable domains

We use results in the last two sections to obtain a new characterization for
uniform domains in R2.

Theorem 5. A domain D in R? is uniform if and only if it is quasiconformally
decomposable.

Proof. Suppose that D is uniform. We want to find a constant K with the
following property. For each pair of points z,, z; € D there exists a subdomain D,
of D such that z,,2z,€ D, and such that 3D is a K-quasiconformal circle.

Fix z,, 2. € D and let y denote a quasi-hyperbolic geodesic in D with 2z, and z, as
its end points. Then by Corollary 2,
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s(y(wy, wo)) = as|w,—w;| forall w, w,E v,

“.1)
gr_lgrg s(v(z,2))=bd(z,0D) forallz €y,

where a, and b, are constants depending only on D. Next for each ordered
quadruple of points w,, W, wi, w, € vy let

[wi— wal[wa— wa|  [wi— wal[w:— ws|
[wi—ws|[w.~wi  |w,— ws|[wa—wa|

c(w,, Wi, wi, w)) =

From (4.1) it follows that

max (| w,— wa|,| w2~ ws|) = s(y(wi, w3)) = ai| wi — ws},
max (| w,— ws|, | ws— wi) =S a,fw,— waf,
Jwi—wo Sfw, = ws]+ afw.— wal,
and hence c(w,, w,, w;, w,) <2a’+ a,. By theorem 1 of [16] there exists a K-
quasiconformal mapping f of R? which fixes ® and maps y onto a segment y’ in the

real axis so that f(z.) < f(z,); moreover K, is a constant which depends only on a,.
Let u, = f(z;) and set ¢, = max(b,,1) and

Di={w=u+iv:|p|<(acy ™ min(u — u, u:~ u)}

where a is the constant in Lemma 2 when n = 2. Then D; is a domain which
contains f(z,), f(z,) in its closure and 4D is a K,-quasiconformal circle where K,
depends only on b, and K.

Let D, = R*—{z,,z,}, D{=f(Dy) and fix w = u + iv € D¢. If wo= u, then

| w = wo| <(ac,) ™d(w,, 3D})

and hence

|z —zof Sa( w = wol )"K‘<l
d(z,,8D,)~ ~\d(w,, D7) <

by Lemma 2 applied to f™', where z = f™'(w) and z, = f~'(w,). Since
d(z,,0D)) = }1-1}2 s(y(z; 20)) = bid(2,, 3D),

we conclude that |z — zo] < d (2o, 3D) and hence that z € D. Thus Dy = f"'(Dg)is a
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subdomain of D, z,, 2, € D, and 3D, is a K -quasiconformal circle where K = K K-
depends only on a; and b,. This completes the proof of the necessity part of
Theorem 5.

For the sufficiency part suppose that D is quasiconformally decomposable and fix
z,,2:€ D. By hypothesis there exists a subdomain D, of D such that z,,z.-€ D,
and such that D, is a K-quasiconformal circle, where K depends only on D. With
the generalized Riemann mapping theorem [10] and lemma 1 in [18] we obtain a
K’-quasiconformal mapping f of R? which maps D, conformally onto the unit disk
so that f(z,) and f(z,) lie on the real axis. Let 8 denote the closed segment joining
f(z)) and f(z.) and let y = f'(B). If w,, z, w, is any ordered triple of points on
y N D,, then y(w,, w>) is a hyperbolic geodesic in D, and

S(‘y(W., Wz))§ a 4 L W;l,

min s(y(w, z)) = bd(z,dD,) = bd(z,dD)

by Corollary 4, where a and b are constants which depend only on K and hence on
D. If we now let w,— z, and w.— z, along vy, we obtain (4.2) with z, in place of w,
Thus D is uniform and the proof of Theorem S is complete.

Theorem 5 yields a second proof of Corollary 3 for the case when n = 2, since the
image of a quasiconformally decomposable domain under a quasiconformal
mapping of R’ 1s again clearly quasiconformally decomposable.

Theorem S also yields a new proof of the main injectivity properties of uniform
domains in R°. We require first the following result essentially due to Duren,
Shapiro and Shields [4].

Lemma 4. If g is analytic in a domain D in R*, then
4.3) sup|g'(z)|d(z,dD)* =4 sup [g(z)]d(z. aD).
zeD zeD
Proof. We may clearly assume that

sup {g(z)ld(z,0D) = c <.
zeED

Fix z € D and let r = 1d(z, 3D). Then the Cauchy integral formula implies that

4 <1 <__iC__
g =7 sup [8()I= 7 5py
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and we obtain (4.3).
We have next the following extension, due to Martio and Sarvas {12], of an
important and seminal result of Nehari [14].

Theorem 6. If D isa uniform domain in R, then there exist positive constants
a and b with the following property. If f is analytic and locally univalent in D and if
either

(4.4) sup |S,(z)|d(z, D) = a
or
(4.5) sup ?’(L%) d(z.0D)= b,

then f 1s univalent in D.

Here S; denotes the Schwarzian derivative of f,

A 1 1y 2
SF(%) ‘5(1;7)~

Proof. Suppose first that D is a K-quasiconformal circle. Then by a theorem
of Ahlfors ([1] or [9]) there exists a positive constant a depending only on K such
that each f satisfying (4.4) must be univalent in D. Choose b >0 so that
4b + b2 = a. 1f f satisfies (4.5), then Lemma 4 applied to g = f”/f' implies that
(4.4) holds and hence f must again be univalent in D.

For the general case fix z;, 2, € D with z,# z,. By Theorem 5 there exists a
subdomain D, of D such that z,,z, € D, and such that 4D, is a K-quasiconformal
circle where K depends only on D. Choose a and b corresponding to K as above
and suppose that f satisfies the hypotheses of Theorem 6. Then f satisfies the same

hypotheses with D replaced by D,, f(z;) # f(z.) by what was proved above and
hence f is univalent in D.

5. An Example
We say that a domain D in R’ satisfies the Schwarzian univalence criterion if

there exists a positive constant a with the following property. If f is analytic and
locally univalent in D and if

sup |S;(2)|d(z,0D) = a,
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then f is univalent in D.
We then have the following characterization for finitely connected uniform plane
domains.

Corollary 5. A finitely connected domain D in R* is uniform if and only if it
satisfies the Schwarzian univalence criterion.

Proof. If D is uniform, then D satisfies the Schwarzian univalence criterion by
Theorem 6. Conversely if D satisfies the Schwarzian univalence criterion, then D is
quasiconformally decomposable by theorem 5 in [15] and hence uniform by
Theorem 5 of the present paper.

It is natural to ask if the above characterization holds when D is an infinitely
connected plane domain. We present here an example to show that this is not the
case. We require first the following result on removable singularities.

Lemma 5. Suppose that z,€ D C R? and that f is analytic and locally
univalent in D —{z}. If

5.1 limsup |S;(2)]|2z — zof* <,

z—2g

then f has a meromorphic extension to D. If
. .2 3
(5.2) limsup | S;(z)||z — zo| <3,
then f is locally univalent in D.
Proof. It is sufficient to consider the case where z,=0 and D is the disk
{z:]z]|<r}
Since f'# 0, S; is analytic in D — {0}. Thus S, has a meromorphic extension to D

with at most a pole of order 2 at z = 0 by (5.1), and z = 0 is a regular singular point
for the difterential equation

(5.3) w"+% Sw =0, w=w(z).
The indicial equation for (5.3) is p*~ p + q = 0 where

q =% lim z2S;(z).

>0
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Let p,, p2 be the roots of this equation numbered so that Re(p,) = Re(p,). Then

(5.4) pitp=1,  |pip:l=|q].
Next let D, be the slit disk
Di=D—-{z=t:—r<1=0}

By Fuchs’ theorem we can find two linearly independent solutions w, and w, of
(5.3) in D,,

wi(z) = z"g:(z),

wiz) = 2%z )+ aw,(z)log z,

where g, and g, are analytic in D with g(0) = g(0) = 1 and where a is a constant
which is zero if p, # p, (mod 1) and nonzero if p, = p,. (See, for example, theorem
5.3.1in [7].) By replacing r by a smaller constant we may assume that g, # 0 in D.
Then h = w,/w, is analytic with S, =8, in D, and we can find a Moébius
transformation T such that

(5.5) T(f(z)=h(z)=2z"""g(z)+alogz
in D,, where g = g,/g, is analytic in D.

Now (5.5) implies that h has a meromorphic extension to D — {0}. From this it
follows first that p,~ p, is a nonnegative integer n and next that a =0. Thus
h(z)= z"g(z) has an analytic extension to D and f = T™'oh is meromorphic in D.
Next if (5.2) holds, then

n2=(p,+p2)2—4p,p2§1+4|q’<4, n=1,

by (5.4), h has a simple zero at z = 0 and f is locally univalent at z = 0 and hence in
D.

Remark. The function f(z)= z” with S;(z) = — 3z shows that the constant
in (5.2) cannot be improved.

Theorem 7. There exists a domain D in R® which satisfies the Schwarzian
univalence criterion and which is not uniform.

Proof. Let Q denote the open square
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Q={z=x+iy:|x|<1,|y|<1},
and for j=1,2,---, let
a,={z€0Q:d(z,Q)=r1}, r,=2"

3]={ZEO:d(Z,GQ)=%'I}'

Next for each j let B, denote the set of points in 8, whose coordinates are multiples
of ir;. We shall show that the domain

D=0 - OB,

has the desired properties.
Since 4Q is a quasiconformal circle, there exists a positive constant ¢ with the
following property. If f is meromorphic and locally univalent in Q and if

(5.6) sup |5,(2)]d(z Q) =,

then f is umvalent in Q. (See [1] or [9].) Next let @ = min(c/64, 1) and suppose that
f is analytic and locally univalent in D with

(5.7 sup |{S;(z)|d(z,dDY = a.
z€ED

Then (5.2) holds for each z,€ 9D N Q, and Lemma 5 implies that f has an
extension which is meromorphic and locally univalent in Q. Fix z, € Q and choose j
so that

(5.8) r, < d(z, dQ)=2r,

If z €aq, then d(z, D)z r, and by (5.7)

(5.9) IS, ()| = 16ar.

The maximum principle, (5.8) and (5.9) then yield

[S;(z,)| = 16ar;* = cd(z,,00)7%,
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and we conclude that f is univalent in Q and hence in D. Thus D satisfies the
Schwarzian univalence criterion.

Finally suppose that D satisfies the second part of (1.1), fix j so that br, <1 and
choose z, € ¢, N D and z. € a,., N D. By hypothesis there exists a rectifiable arc y
joining z, and z; in D so that

(5.10) min s(y(z, z))=bd(z,0D)
;=12
for all z € y. Let z be the point where y meets 8, Then
L, < min lz,—z|, d(z ¢9D)<lr2
4 ]:1:1.2 ! ’ ’ =4 !

and with (5.10) we obtain 1 = br, contradicting the way j was chosen. Thus D is not
a uniform domain and the proof of Theorem 7 is complete.
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